Open Source Python Object Detection Models - Page 2

Browse free open source Python Object Detection Models and projects below. Use the toggles on the left to filter open source Python Object Detection Models by OS, license, language, programming language, and project status.

  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time, it is possible to build a video inference loop from scratch using just Norfair and a detector. Supports moving camera, re-identification with appearance embeddings, and n-dimensional object tracking. Norfair provides several predefined distance functions to compare tracked objects and detections. The distance functions can also be defined by the user, enabling the implementation of different tracking strategies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Objectron

    Objectron

    A dataset of short, object-centric video clips

    The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists of 15K annotated video clips supplemented with over 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure geo-diversity, our dataset is collected from 10 countries across five continents. Along with the dataset, we are also sharing a 3D object detection solution for four categories of objects — shoes, chairs, mugs, and cameras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory of transfer learning and show how to apply it in useful projects. The development is on progress! The API will be updated soon, the more talented and light-weight API will be available in this repo! Detailed API documentation and sample jupyter notebooks that explain basic usages of API will be added!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 >= TF >= 1.4.0). Applicability. Many people already have their own ML workflows and want to put a new model on their workflows. TensorNets can be easily plugged together because it is designed as simple functional interfaces without custom classes. Manageability. Models are written in tf.contrib.layers, which is lightweight like PyTorch and Keras, and allows for ease of accessibility to every weight and end-point. Also, it is easy to deploy and expand a collection of pre-processing and pre-trained weights. Readability. With recent TensorFlow APIs, more factoring and less indenting can be possible. For example, all the inception variants are implemented as about 500 lines of code in TensorNets while 2000+ lines in official TensorFlow models. Reproducibility. You can always reproduce the original results with simple APIs including feature extractions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    UniVL

    UniVL

    Official implementation for UniVL video and language training models

    UniVL is a video-language pretrain model. It is designed with four modules and five objectives for both video language understanding and generation tasks. It is also a flexible model for most of the multimodal downstream tasks considering both efficiency and effectiveness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    VoteNet

    VoteNet

    Deep Hough Voting for 3D Object Detection in Point Clouds

    VoteNet is a 3D object detection framework for point clouds that combines deep point set networks with a Hough voting mechanism to localize and classify objects in 3D space. It tackles the challenge that object centroids in 3D scenes often don’t lie on any input surface point by having each point “vote” for potential object centers; these votes are then clustered to propose object hypotheses. Once cluster centers are formed, the network regresses bounding boxes around them and classifies them. VoteNet works end-to-end: it learns the voting, aggregation, and bounding-box regression components jointly, enabling strong detection accuracy without relying on 2D proxies or voxelization. The codebase includes data preparation for indoor datasets (SUN RGB-D, ScanNet), training and evaluation scripts, and demo utilities to visualize predicted boxes over point clouds.
    Downloads: 0 This Week
    Last Update:
    See Project