Open Source Python Business Software for Mac - Page 4

Python Business Software for Mac

View 444 business solutions

Browse free open source Python Business Software for Mac and projects below. Use the toggles on the left to filter open source Python Business Software for Mac by OS, license, language, programming language, and project status.

  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Encord Active

    Encord Active

    The toolkit to test, validate, and evaluate your models and surface

    Encord Active is an open-source toolkit to test, validate, and evaluate your models and surface, curate, and prioritize the most valuable data for labeling to supercharge model performance. Encord Active has been designed as a all-in-one open source toolkit for improving your data quality and model performance. Use the intuitive UI to explore your data or access all the functionalities programmatically. Discover errors, outliers, and edge-cases within your data - all in one open source toolkit. Get a high level overview of your data distribution, explore it by customizable quality metrics, and discover any anomalies. Use powerful similarity search to find more examples of edge-cases or outliers.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Gretel Synthetics

    Gretel Synthetics

    Synthetic data generators for structured and unstructured text

    Unlock unlimited possibilities with synthetic data. Share, create, and augment data with cutting-edge generative AI. Generate unlimited data in minutes with synthetic data delivered as-a-service. Synthesize data that are as good or better than your original dataset, and maintain relationships and statistical insights. Customize privacy settings so that data is always safe while remaining useful for downstream workflows. Ensure data accuracy and privacy confidently with expert-grade reports. Need to synthesize one or multiple data types? We have you covered. Even take advantage or multimodal data generation. Synthesize and transform multiple tables or entire relational databases. Mitigate GDPR and CCPA risks, and promote safe data access. Accelerate CI/CD workflows, performance testing, and staging. Augment AI training data, including minority classes and unique edge cases. Amaze prospects with personalized product experiences.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    Pathway is an open-source framework designed for building real-time data applications using reactive and declarative paradigms. It enables seamless integration of live data streams and structured data into analytical pipelines with minimal latency. Pathway is especially well-suited for scenarios like financial analytics, IoT, fraud detection, and logistics, where high-velocity and continuously changing data is the norm. Unlike traditional batch processing frameworks, Pathway continuously updates the results of your data logic as new events arrive, functioning more like a database that reacts in real-time. It supports Python, integrates with modern data tools, and offers a deterministic dataflow model to ensure reproducibility and correctness.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Recap

    Recap

    Recap tracks and transform schemas across your whole application

    Recap is a schema language and multi-language toolkit to track and transform schemas across your whole application. Your data passes through web services, databases, message brokers, and object stores. Recap describes these schemas in a single language, regardless of which system your data passes through. Recap schemas can be defined in YAML, TOML, JSON, XML, or any other compatible language.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Saleor Commerce

    Saleor Commerce

    A modular, high performance, headless e-commerce platform

    An open-source, GraphQL-first e-commerce platform delivering ultra-fast, dynamic and personalized shopping experiences. A headless, GraphQL commerce platform delivering ultra-fast, dynamic, personalized shopping experiences. Beautiful online stores, anywhere, on any device. Saleor is a rapidly-growing open source e-commerce platform that has served high-volume companies from branches like publishing and apparel since 2012. Based on Python and Django, the latest major update introduces a modular front end powered by a GraphQL API and written with React and TypeScript. A comprehensive system for orders, dispatch, and refunds. Advanced payment and tax options, with full control over discounts and promotions. Packed with features that get stores to a wider audience.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    VectorVein

    VectorVein

    No-code AI workflow

    Use the power of AI to build your personal knowledge base + automated workflow. No programming, just dragging to create a strong workflow and automate all tasks. Vector vein is affected LangChain as well as langflow The uncode AI workflow software developed by the inspiration aims to combine the powerful capabilities of large language models and allow users to realize the intelligibility and automation of various daily workflows through simple drag. After the software is opened normally, click on the set button. Please fill in API Key of OpenAI to use the AI function and select the output folder for storing the files during workflow output. If you need to use the function of mail delivery, please fill in the mailbox information on the set page. A workflow represents a work task process that includes input, output, and workflow triggering methods. You can arbitrarily define what the input is, what the output is, and how the input is processed and reaches the output result.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    geemap

    geemap

    A Python package for interactive geospaital analysis and visualization

    A Python package for interactive geospatial analysis and visualization with Google Earth Engine. Geemap is a Python package for geospatial analysis and visualization with Google Earth Engine (GEE), which is a cloud computing platform with a multi-petabyte catalog of satellite imagery and geospatial datasets. During the past few years, GEE has become very popular in the geospatial community and it has empowered numerous environmental applications at local, regional, and global scales. GEE provides both JavaScript and Python APIs for making computational requests to the Earth Engine servers. Compared with the comprehensive documentation and interactive IDE (i.e., GEE JavaScript Code Editor) of the GEE JavaScript API, the GEE Python API has relatively little documentation and limited functionality for visualizing results interactively. The geemap Python package was created to fill this gap.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    gusty

    gusty

    Making DAG construction easier

    gusty allows you to control your Airflow DAGs, Task Groups, and Tasks with greater ease. gusty manages collections of tasks, represented as any number of YAML, Python, SQL, Jupyter Notebook, or R Markdown files. A directory of task files is instantly rendered into a DAG by passing a file path to gusty's create_dag function. gusty also manages dependencies (within one DAG) and external dependencies (dependencies on tasks in other DAGs) for each task file you define. All you have to do is provide a list of dependencies or external_dependencies inside of a task file, and gusty will automatically set each task's dependencies and create external task sensors for any external dependencies listed. gusty works with both Airflow 1.x and Airflow 2.x, and has even more features, all of which aim to make the creation, management, and iteration of DAGs more fluid, so that you can intuitively design your DAG and build your tasks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    missingno

    missingno

    Missing data visualization module for Python

    Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities that allows you to get a quick visual summary of the completeness (or lack thereof) of your dataset. Just pip install missingno to get started. This quickstart uses a sample of the NYPD Motor Vehicle Collisions Dataset dataset. The msno.matrix nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion. At a glance, date, time, the distribution of injuries, and the contribution factor of the first vehicle appear to be completely populated, while geographic information seems mostly complete, but spottier. The sparkline at right summarizes the general shape of the data completeness and points out the rows with the maximum and minimum nullity in the dataset. This visualization will comfortably accommodate up to 50 labelled variables.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Zenoss Community Edition

    Zenoss Community Edition

    Zenoss - Intelligent IT Operations Management

    Zenoss provides software-defined IT operations for the world’s largest organizations. We deliver the ultimate level of IT service health with simplicity by providing the most granular and intelligent IT service modeling possible, at any scale, and sharing these unique insights with other IT operations management (ITOM) tools to make them more efficient. Zenoss Community Edition is not a “demo” or trial version of Zenoss Enterprise or Zenoss Cloud! Before You install Zenoss Community Edition, check out Zenoss Cloud, our new Saas-based platform for intelligent IT operations management, designed for enterprise hybrid IT environments. https://www.zenoss.com/product/zenoss-cloud-it-operations-management Zenoss Cloud extends your monitoring capabilities well beyond those available in our Community Edition. View the differences here: https://www.zenoss.com/get-started Features of Zenoss Cloud include:
    Downloads: 13 This Week
    Last Update:
    See Project
  • 12
    Datapipe

    Datapipe

    Real-time, incremental ETL library for ML with record-level depend

    Datapipe is a real-time, incremental ETL library for Python with record-level dependency tracking. Datapipe is designed to streamline the creation of data processing pipelines. It excels in scenarios where data is continuously changing, requiring pipelines to adapt and process only the modified data efficiently. This library tracks dependencies for each record in the pipeline, ensuring minimal and efficient data processing.
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 13
    istSOS

    istSOS

    Free and Open Source Sensor Observation Service Data Management System

    istSOS is an OGC SOS server implementation written in Python. istSOS allows for managing and dispatch observations from monitoring sensors according to the Sensor Observation Service standard. The project provides also a Graphical user Interface that allows for easing the daily operations and a RESTful Web api for automatizing administration procedures. istSOS is released under the GPL License, and runs on all major platforms (Windows, Linux, Mac OS X), even though tests were conducted under a Linux environment.
    Downloads: 68 This Week
    Last Update:
    See Project
  • 14
    PyMOL Molecular Graphics System

    PyMOL Molecular Graphics System

    PyMOL is an OpenGL based molecular visualization system

    The Open-Source PyMOL repository has been moved to github: https://github.com/schrodinger/pymol-open-source We still use the pymol-users mailing list here on sourceforge. Please subscribe for community support: https://pymol.org/maillist (Note: SourceForge email newsletter and special offers are optional and can be unchecked) The PyMOL community wiki has its own home: https://pymolwiki.org/
    Downloads: 64 This Week
    Last Update:
    See Project
  • 15
    QtiPlot
    QtiPlot is a user-friendly, platform independent data analysis and visualization application similar to the non-free Windows program Origin.
    Downloads: 67 This Week
    Last Update:
    See Project
  • 16
    QUAST

    QUAST

    Quality Assessment Tool for Genome Assemblies

    QUAST performs fast and convenient quality evaluation and comparison of genome assemblies. It is maintained by the Gurevich lab at HIPS (https://helmholtz-hips.de/en/hmsb). For the most up-to-date description, please visit http://quast.sf.net. Below are just some highlights. QUAST computes several well-known metrics, including contig accuracy, the number of genes discovered, N50, and others, as well as introducing new ones, like NA50 (see details in the paper and manual). A comprehensive analysis results in summary tables (in plain text, tab-separated, and LaTeX formats) and colorful plots. The tool also produces web-based reports condensing all information in one easy-to-navigate file. QUAST and its three follow-up papers (MetaQUAST, Icarus, QUAST-LG) papers were published in Bioinformatics; the last paper (WebQUAST) is out in Nucl Acid Research.
    Leader badge
    Downloads: 60 This Week
    Last Update:
    See Project
  • 17
    Apache Airflow Provider

    Apache Airflow Provider

    Great Expectations Airflow operator

    Due to apply_default decorator removal, this version of the provider requires Airflow 2.1.0+. If your Airflow version is 2.1.0, and you want to install this provider version, first upgrade Airflow to at least version 2.1.0. Otherwise, your Airflow package version will be upgraded automatically, and you will have to manually run airflow upgrade db to complete the migration. This operator currently works with the Great Expectations V3 Batch Request API only. If you would like to use the operator in conjunction with the V2 Batch Kwargs API, you must use a version below 0.1.0. This operator uses Great Expectations Checkpoints instead of the former ValidationOperators. Because of the above, this operator requires Great Expectations >=v0.13.9, which is pinned in the requirements.txt starting with release 0.0.5.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. Easily improve/tune your bespoke models and data pipelines, or customize AutoGluon for your use-case. AutoGluon is modularized into sub-modules specialized for tabular, text, or image data. You can reduce the number of dependencies required by solely installing a specific sub-module via: python3 -m pip install <submodule>.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the excellent Tensor2Tensor visualization tool. The model view shows a bird's-eye view of attention across all layers and heads. The neuron view visualizes individual neurons in the query and key vectors and shows how they are used to compute attention.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Bowtie

    Bowtie

    Create a dashboard with python!

    Bowtie is a library for writing dashboards in Python. No need to know web frameworks or JavaScript, focus on building functionality in Python. Interactively explore your data in new ways! Deploy and share with others! Bowtie uses Yarn to manage node packages. If you installed Bowtie through conda, Yarn was also installed as a dependency. Yarn can be installed through conda. An early integration with Jupyter has been prototyped. I encourage you to try it out and share feedback. I hope this will make it easier to make Bowtie apps. Bowtie helps you visualize your data interactively. No Javascript required, you build your dashboard in pure Python. Easy to deploy so you can share results with others. Ships with many useful widgets including charts, tables, dropdown menus, sliders, and markdown. All widgets come equipped with events and commands for interaction. Compiles a single Javascript bundle speeding up load times and removes CDN dependencies.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    CleanVision automatically detects potential issues in image datasets like images that are: blurry, under/over-exposed, (near) duplicates, etc. This data-centric AI package is a quick first step for any computer vision project to find problems in the dataset, which you want to address before applying machine learning. CleanVision is super simple -- run the same couple lines of Python code to audit any image dataset! The quality of machine learning models hinges on the quality of the data used to train them, but it is hard to manually identify all of the low-quality data in a big dataset. CleanVision helps you automatically identify common types of data issues lurking in image datasets. This package currently detects issues in the raw images themselves, making it a useful tool for any computer vision task such as: classification, segmentation, object detection, pose estimation, keypoint detection, generative modeling, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    A logical, reasonably standardized, but flexible project structure for doing and sharing data science work. When we think about data analysis, we often think just about the resulting reports, insights, or visualizations. While these end products are generally the main event, it's easy to focus on making the products look nice and ignore the quality of the code that generates them. Because these end products are created programmatically, code quality is still important! And we're not talking about bikeshedding the indentation aesthetics or pedantic formatting standards, ultimately, data science code quality is about correctness and reproducibility. It's no secret that good analyses are often the result of very scattershot and serendipitous explorations. Tentative experiments and rapidly testing approaches that might not work out are all part of the process for getting to the good stuff, and there is no magic bullet to turn data exploration into a simple, linear progression.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    FuzzyWuzzy

    FuzzyWuzzy

    Fuzzy string matching in Python

    We’ve made it our mission to pull in event tickets from every corner of the internet, showing you them all on the same screen so you can compare them and get to your game/concert/show as quickly as possible. Of course, a big problem with most corners of the internet is labeling. One of our most consistently frustrating issues is trying to figure out whether two ticket listings are for the same real-life event (that is, without enlisting the help of our army of interns). To pick an example completely at random, Cirque du Soleil has a show running in New York called “Zarkana”. When we scour the web to find tickets for sale, mostly those tickets are identified by a title, date, time, and venue. We’ve built up a library of “fuzzy” string matching routines to help us along. And good news! We’re open sourcing it. The library is called “Fuzzywuzzy”, the code is pure python, and it depends only on the (excellent) difflib python library.
    Downloads: 2 This Week
    Last Update:
    See Project