Data Science Tools

View 124 business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    AWA-Core

    AWA-Core

    Full application for factory, process engineer and Automation..

    NEW -- NEW -- NEW -- NEW -- NEW AWA-Core 2025 is coming with a totally new architecture. The core is now in Client/Server architecture and open to other applications. New interfaces for the server and client sides. Stay tuned !! AWA-Core (Another Way of Automation) is a complete suite that allows engineers, PLC programmers and factory designers to create huge projects for retrieving data, creating graphics, automatic scripts, exports and data links. You can easily manage AWA-Core and it's easier than Historian softwares.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    Catbird Linux

    Catbird Linux

    Linux for content creation, web scraping, coding, and data analysis.

    Catbird Linux is a USB pluggable Live Linux operating system built for media creation, web scraping, and software coding. It is the daily driver you want for retrieving data, making videos or podcasts, and making software tools to automate the repetitive tasks. It is ready for work in Python, Lua, and Go languages, with numerous packages for web scraping or downloading data via API calls. Using Catbird Linux, it is possible to accomplish in depth stock market analysis, track weather trends, follow social media sentiment, or do other tasks in data science. The system is programmer friendly, ready for creating and running the tools you use to measure and understand your world. In addition to search and GPT tools, you have what you need to take notes, write reports or presentations, record and edit audio or video. Under the hood, the system is tuned to be fast and responsive on modest equipment, with a real time kernel and lightweight tiling / tabbing window manager.
    Leader badge
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    Power Analytics for Excel

    Power Analytics for Excel

    Data Science made available for Excel

    This plugin for Excel comes with statistical methods such as Muliple Regression, Analysis of Variance (ANOVA) and Distribution Tests.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    sadsa

    sadsa

    SADSA (Software Application for Data Science and Analytics)

    SADSA (Software Application for Data Science and Analytics) is a Python-based desktop application designed to simplify statistical analysis, machine learning, and data visualization for students, researchers, and data professionals. Built using Python for the GUI, SADSA provides a menu-driven interface for handling datasets, applying transformations, running advanced statistical tests, machine learning algorithms, and generating insightful plots — all without writing code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    AWS SDK for pandas

    AWS SDK for pandas

    Easy integration with Athena, Glue, Redshift, Timestream, Neptune

    aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. It also supports Redshift, OpenSearch, and other services, enabling ETL tasks that blend SQL engines and Python transformations. Operational helpers handle IAM, sessions, and concurrency while exposing knobs for encryption, versioning, and catalog consistency. The result is a productive workflow that keeps your analytics in Python while leveraging AWS-native storage and query engines at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Adele

    Adhoc Data Exploration - Live & Easy

    Adele was developed to simplify the daily work with data. Use it as a swiss knife to fill the gap between your work with spreadsheet application like MS Excel and enterprise servers like SAP ERP. Specialized tools like Rapid Miner, KNIME or similiary stuff should not be replaced. But Adele is designed for business people working with spreadsheet applications to analyse their data. There are many technical concepts in an easier way included. For example realtime OLAP, transformations, charts, analysis tools,... Connectors (e.g. JDBC, SAP ABAP, OData) can be used to pre-analyse the data and extract it without saving the data as text files. A plugin concept for enhancements are available. Enjoy! Its free for commercial use too. Adele runs without installation from USB stick for Windows, Linux and MacOSX. Last added changes: - data science tools (V1, IQR) - export to remote and desktop databases (mysql,sqlite, ms access) - internet features for emails and domains
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Amazon SageMaker Examples

    Amazon SageMaker Examples

    Jupyter notebooks that demonstrate how to build models using SageMaker

    Welcome to Amazon SageMaker. This projects highlights example Jupyter notebooks for a variety of machine learning use cases that you can run in SageMaker. If you’re new to SageMaker we recommend starting with more feature-rich SageMaker Studio. It uses the familiar JupyterLab interface and has seamless integration with a variety of deep learning and data science environments and scalable compute resources for training, inference, and other ML operations. Studio offers teams and companies easy on-boarding for their team members, freeing them up from complex systems admin and security processes. Administrators control data access and resource provisioning for their users. Notebook Instances are another option. They have the familiar Jupyter and JuypterLab interfaces that work well for single users, or small teams where users are also administrators. Advanced users also use SageMaker solely with the AWS CLI and Python scripts using boto3 and/or the SageMaker Python SDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    DEPRECATED - KVFinder

    Cavity Detection PyMOL plugin

    The KVFinder software, originally published in 2014, is deprecated. We published more recent software: parKVFinder and pyKVFinder. [parKVFinder] A Linux/macOS version is available in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder, while a Windows version is in this GitHub repository, https://github.com/LBC-LNBio/parKVFinder-win. Please read and cite the original paper ParKVFinder: A thread-level parallel approach in biomolecular cavity detection (10.1016/j.softx.2020.100606). [pyKVFinder] pyKVFinder is available in this Python Package Index (PyPI) repository, https://pypi.org/project/pyKVFinder and this GitHub repository, https://github.com/LBC-LNBio/pyKVFinder. Please read and cite the original paper pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science (10.1186/s12859-021-04519-4).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DSTK - Data Science TooKit 3

    DSTK - Data Science TooKit 3

    Data and Text Mining Software for Everyone

    DSTK - Data Science Toolkit 3 is a set of data and text mining softwares, following the CRISP DM model. DSTK offers data understanding using statistical and text analysis, data preparation using normalization and text processing, modeling and evaluation for machine learning and algorithms. It is based on the old version DSTK at https://sourceforge.net/projects/dstk2/ DSTK Engine is like R. DSTK ScriptWriter offers GUI to write DSTK script. DSTK Studio offers SPSS Statistics like GUI for data mining, and DSTK Text Explorer offers GUI for Text Mining. DSTK Engine and DSTK ScriptWriter are opensource, but DSTK Studio and Text Explorer requires small amount of payment. DSTK Studio and Text Explorer are free to use 10 times
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    Data Science

    A learning library for Data Science

    This project is a collection of sub-projects that contain various experiments in various languages for exploring the machine learning and data science fields. Notable languages are Scala and Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Data Science at the Command Line

    Data Science at the Command Line

    Data science at the command line

    Command Line by Jeroen Janssens, published by O’Reilly Media in October 2021. Obtain, scrub, explore, and model data with Unix Power Tools. This repository contains the full text, data, and scripts used in the second edition of the book Data Science at the Command Line by Jeroen Janssens. This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools, useful whether you work with Windows, macOS, or Linux. You’ll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you’re comfortable processing data with Python or R, you’ll learn how to greatly improve your data science workflow by leveraging the command line’s power.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepLearningProject

    DeepLearningProject

    An in-depth machine learning tutorial

    This tutorial tries to do what most Most Machine Learning tutorials available online do not. It is not a 30 minute tutorial that teaches you how to "Train your own neural network" or "Learn deep learning in under 30 minutes". It's a full pipeline which you would need to do if you actually work with machine learning - introducing you to all the parts, and all the implementation decisions and details that need to be made. The dataset is not one of the standard sets like MNIST or CIFAR, you will make you very own dataset. Then you will go through a couple conventional machine learning algorithms, before finally getting to deep learning! In the fall of 2016, I was a Teaching Fellow (Harvard's version of TA) for the graduate class on "Advanced Topics in Data Science (CS209/109)" at Harvard University. I was in charge of designing the class project given to the students, and this tutorial has been built on top of the project I designed for the class.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    FlexiList.

    FlexiList.

    FlexiList is a Java data structure that combines the benefits of array

    FlexiList is a Java data structure that combines the benefits of arrays and linked lists. Like an array, it allows for efficient access to elements by index. Like a linked list, it allows for efficient insertion and deletion of elements at any position in the list. Benefits Over Arrays and ArrayList ->Efficient Insertion and Deletion: FlexiList can insert or delete nodes at any position in the list in O(1) time, whereas arrays require shifting all elements after the insertion or deletion point. ->Dynamic Size: FlexiList can grow or shrink dynamically as elements are added or removed, whereas arrays have a fixed size. ->Good Memory Locality: FlexiList nodes are stored in a contiguous block of memory, making it more cache-friendly than arrays. ->Faster Insertion and Deletion: FlexiList can insert or delete nodes at any position in the list in O(1) time, whereas ArrayList requires shifting all elements after the insertion or deletion point.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    NVIDIA Merlin

    NVIDIA Merlin

    Library providing end-to-end GPU-accelerated recommender systems

    NVIDIA Merlin is an open-source library that accelerates recommender systems on NVIDIA GPUs. The library enables data scientists, machine learning engineers, and researchers to build high-performing recommenders at scale. Merlin includes tools to address common feature engineering, training, and inference challenges. Each stage of the Merlin pipeline is optimized to support hundreds of terabytes of data, which is all accessible through easy-to-use APIs. For more information, see NVIDIA Merlin on the NVIDIA developer website. Transform data (ETL) for preprocessing and engineering features. Accelerate your existing training pipelines in TensorFlow, PyTorch, or FastAI by leveraging optimized, custom-built data loaders. Scale large deep learning recommender models by distributing large embedding tables that exceed available GPU and CPU memory. Deploy data transformations and trained models to production with only a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NuzeBot

    NuzeBot

    Finds interesting news headlines.

    This is a bot to finds the news you want to see. It can be made to find the news that interests you and reject everything else. View on one page the most interesting headlines from many websites.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    OGLDataScienceTool

    Opengl tool for data science visualization

    Data visualization tool written in LWJGL Compatible with libgdx and other opengl wrappers The project depends on apache poi, and apache commons, for office files support Planned features for next release: * reading json, and other nosql data structures * jdbc connection for creating dataframes * data heatmaps, and additional plots for questions, contact me kumar.santhi1982@hotmail.com more details: http://www.java-gaming.org/topics/ds/41920/view.html http://datascienceforindia.com/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Orchest

    Orchest

    Build data pipelines, the easy way

    Code, run and monitor your data pipelines all from your browser! From idea to scheduled pipeline in hours, not days. Interactively build your data science pipelines in our visual pipeline editor. Versioned as a JSON file. Run scripts or Jupyter notebooks as steps in a pipeline. Python, R, Julia, JavaScript, and Bash are supported. Parameterize your pipelines and run them periodically on a cron schedule. Easily install language or system packages. Built on top of regular Docker container images. Creation of multiple instances with up to 8 vCPU & 32 GiB memory. A free Orchest instance with 2 vCPU & 8 GiB memory. Simple data pipelines with Orchest. Each step runs a file in a container. It's that simple! Spin up services whose lifetime spans across the entire pipeline run. Easily define your dependencies to run on any machine. Run any subset of the pipeline directly or periodically.
    Downloads: 0 This Week
    Last Update:
    See Project