Open Source Python Image Recognition Software for Mac

Python Image Recognition Software for Mac

View 10 business solutions

Browse free open source Python Image Recognition Software for Mac and projects below. Use the toggles on the left to filter open source Python Image Recognition Software for Mac by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    LabelImg

    LabelImg

    Graphical image annotation tool and label object bounding boxes

    LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML files in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO and CreateML formats. Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8. However, Python 3 or above and PyQt5 are strongly recommended. Virtualenv can avoid a lot of the QT / Python version issues. Build and launch using the instructions. Click 'Change default saved annotation folder' in Menu/File. Click 'Open Dir'. Click 'Create RectBox'. Click and release left mouse to select a region to annotate the rect box. You can use right mouse to drag the rect box to copy or move it. The annotation will be saved to the folder you specify. You can refer to the hotkeys to speed up your workflow.
    Downloads: 149 This Week
    Last Update:
    See Project
  • 2

    PaddleOCR

    Awesome multilingual OCR toolkits based on PaddlePaddle

    PaddleOCR offers exceptional, multilingual, and practical Optical Character Recognition (OCR) tools that can help users train better models and apply them into practice. Inspired by PaddlePaddle, PaddleOCR is an ultra lightweight OCR system, with multilingual recognition, digit recognition, vertical text recognition, as well as long text recognition. It features a PPOCR series of high-quality pre-trained models, which includes: ultra lightweight ppocr_mobile series models, general ppocr_server series models, and ultra lightweight compression ppocr_mobile_slim series models. PaddleOCR is easy to install and easy to use on Windows, Linux, MacOS and other systems.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 3
    labelme Image Polygonal Annotation

    labelme Image Polygonal Annotation

    Image polygonal annotation with Python

    Labelme is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Image annotation for polygon, rectangle, circle, line and point. Image flag annotation for classification and cleaning. Video annotation. (video annotation). GUI customization (predefined labels / flags, auto-saving, label validation, etc). Exporting VOC-format dataset for semantic/instance segmentation. (semantic segmentation, instance segmentation). Exporting COCO-format dataset for instance segmentation. (instance segmentation). The first time you run labelme, it will create a config file in ~/.labelmerc. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the --config flag.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 4
    scikit-image

    scikit-image

    Image processing in Python

    scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. scikit-image builds on scipy.ndimage to provide a versatile set of image processing routines in Python. This library is developed by its community, and contributions are most welcome! Read about our mission, vision, and values and how we govern the project. Major proposals to the project are documented in SKIPs. The scikit-image community consists of anyone using or working with the project in any way. A community member can become a contributor by interacting directly with the project in concrete ways.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    DETR

    DETR

    End-to-end object detection with transformers

    PyTorch training code and pretrained models for DETR (DEtection TRansformer). We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning-based face alignment method. For numerical evaluations, it is highly recommended to use the lua version which uses identical models with the ones evaluated in the paper. More models will be added soon. By default, the package will use the SFD face detector. However, the users can alternatively use dlib, BlazeFace, or pre-existing ground truth bounding boxes. While not required, for optimal performance(especially for the detector) it is highly recommended to run the code using a CUDA-enabled GPU. While here the work is presented as a black box, if you want to know more about the intrisecs of the method please check the original paper either on arxiv or my webpage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MMDetection

    MMDetection

    An open source object detection toolbox based on PyTorch

    MMDetection is an open source object detection toolbox that's part of the OpenMMLab project developed by Multimedia Laboratory, CUHK. It stems from the codebase developed by the MMDet team, who won the COCO Detection Challenge in 2018. Since that win this toolbox has continuously been developed and improved. MMDetection detects various objects within a given image with high efficiency. Its training speed is comparable or even faster than those of other codebases like Detectron2 and SimpleDet. It supports multiple detection frameworks right out of the box, as well as various backbones and methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    howmanypeoplearearound

    howmanypeoplearearound

    Count the number of people around you by monitoring wifi signals

    howmanypeoplearearound calculates the number of people in the vicinity using the approximate number of smartphones as a proxy (since ~70% of people have smartphones nowadays). A cellphone is determined to be in proximity to the computer based on sniffing WiFi probe requests. Possible uses of howmanypeoplearearound include, monitoring foot traffic in your house with Raspberry Pis, seeing if your roommates are home, etc. There are a number of possible USB WiFi adapters that support monitor mode. Namely you want to find a USB adapter with one of the following chipsets: Atheros AR9271, Ralink RT3070, Ralink RT3572, or Ralink RT5572. You will be prompted for the WiFi adapter to use for scanning. Make sure to use an adapter that supports "monitor" mode. You can modify the scan time, designate the adapter, or modify the output using some command-line options.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next