1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
Copyright (C) 2008 Grame
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __JackFilters__
#define __JackFilters__
#ifdef __APPLE__
#include <TargetConditionals.h>
#endif
#include "jack.h"
#ifndef MY_TARGET_OS_IPHONE
#include "JackAtomicState.h"
#endif
#include <math.h>
#include <stdlib.h>
namespace Jack
{
#ifndef TARGET_OS_IPHONE
#define MAX_SIZE 64
PRE_PACKED_STRUCTURE
struct JackFilter
{
jack_time_t fTable[MAX_SIZE];
JackFilter()
{
for (int i = 0; i < MAX_SIZE; i++) {
fTable[i] = 0;
}
}
void AddValue(jack_time_t val)
{
memcpy(&fTable[1], &fTable[0], sizeof(jack_time_t) * (MAX_SIZE - 1));
fTable[0] = val;
}
jack_time_t GetVal()
{
jack_time_t mean = 0;
for (int i = 0; i < MAX_SIZE; i++) {
mean += fTable[i];
}
return mean / MAX_SIZE;
}
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
class JackDelayLockedLoop
{
private:
jack_nframes_t fFrames;
jack_time_t fCurrentWakeup;
jack_time_t fCurrentCallback;
jack_time_t fNextWakeUp;
float fSecondOrderIntegrator;
jack_nframes_t fBufferSize;
jack_nframes_t fSampleRate;
jack_time_t fPeriodUsecs;
float fFilterCoefficient; /* set once, never altered */
bool fUpdating;
public:
JackDelayLockedLoop()
{}
JackDelayLockedLoop(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
{
Init(buffer_size, sample_rate);
}
void Init(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
{
fFrames = 0;
fCurrentWakeup = 0;
fCurrentCallback = 0;
fNextWakeUp = 0;
fFilterCoefficient = 0.01f;
fSecondOrderIntegrator = 0.0f;
fBufferSize = buffer_size;
fSampleRate = sample_rate;
fPeriodUsecs = jack_time_t(1000000.f / fSampleRate * fBufferSize); // in microsec
}
void Init(jack_time_t callback_usecs)
{
fFrames = 0;
fCurrentWakeup = 0;
fSecondOrderIntegrator = 0.0f;
fCurrentCallback = callback_usecs;
fNextWakeUp = callback_usecs + fPeriodUsecs;
}
void IncFrame(jack_time_t callback_usecs)
{
float delta = (int64_t)callback_usecs - (int64_t)fNextWakeUp;
fCurrentWakeup = fNextWakeUp;
fCurrentCallback = callback_usecs;
fFrames += fBufferSize;
fSecondOrderIntegrator += 0.5f * fFilterCoefficient * delta;
fNextWakeUp = fCurrentWakeup + fPeriodUsecs + (int64_t) floorf((fFilterCoefficient * (delta + fSecondOrderIntegrator)));
}
jack_nframes_t Time2Frames(jack_time_t time)
{
long delta = (long) rint(((double) ((long long)(time - fCurrentWakeup)) / ((long long)(fNextWakeUp - fCurrentWakeup))) * fBufferSize);
return (delta < 0) ? ((fFrames > 0) ? fFrames : 1) : (fFrames + delta);
}
jack_time_t Frames2Time(jack_nframes_t frames)
{
long delta = (long) rint(((double) ((long long)(frames - fFrames)) * ((long long)(fNextWakeUp - fCurrentWakeup))) / fBufferSize);
return (delta < 0) ? ((fCurrentWakeup > 0) ? fCurrentWakeup : 1) : (fCurrentWakeup + delta);
}
jack_nframes_t CurFrame()
{
return fFrames;
}
jack_time_t CurTime()
{
return fCurrentWakeup;
}
} POST_PACKED_STRUCTURE;
PRE_PACKED_STRUCTURE
class JackAtomicDelayLockedLoop : public JackAtomicState<JackDelayLockedLoop>
{
public:
JackAtomicDelayLockedLoop(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
{
fState[0].Init(buffer_size, sample_rate);
fState[1].Init(buffer_size, sample_rate);
}
void Init(jack_time_t callback_usecs)
{
JackDelayLockedLoop* dll = WriteNextStateStart();
dll->Init(callback_usecs);
WriteNextStateStop();
TrySwitchState(); // always succeed since there is only one writer
}
void Init(jack_nframes_t buffer_size, jack_nframes_t sample_rate)
{
JackDelayLockedLoop* dll = WriteNextStateStart();
dll->Init(buffer_size, sample_rate);
WriteNextStateStop();
TrySwitchState(); // always succeed since there is only one writer
}
void IncFrame(jack_time_t callback_usecs)
{
JackDelayLockedLoop* dll = WriteNextStateStart();
dll->IncFrame(callback_usecs);
WriteNextStateStop();
TrySwitchState(); // always succeed since there is only one writer
}
jack_nframes_t Time2Frames(jack_time_t time)
{
UInt16 next_index = GetCurrentIndex();
UInt16 cur_index;
jack_nframes_t res;
do {
cur_index = next_index;
res = ReadCurrentState()->Time2Frames(time);
next_index = GetCurrentIndex();
} while (cur_index != next_index); // Until a coherent state has been read
return res;
}
jack_time_t Frames2Time(jack_nframes_t frames)
{
UInt16 next_index = GetCurrentIndex();
UInt16 cur_index;
jack_time_t res;
do {
cur_index = next_index;
res = ReadCurrentState()->Frames2Time(frames);
next_index = GetCurrentIndex();
} while (cur_index != next_index); // Until a coherent state has been read
return res;
}
} POST_PACKED_STRUCTURE;
#endif
/*
Torben Hohn PI controller from JACK1
*/
struct JackPIControler {
double resample_mean;
double static_resample_factor;
double* offset_array;
double* window_array;
int offset_differential_index;
double offset_integral;
double catch_factor;
double catch_factor2;
double pclamp;
double controlquant;
int smooth_size;
double hann(double x)
{
return 0.5 * (1.0 - cos(2 * M_PI * x));
}
JackPIControler(double resample_factor, int fir_size)
{
resample_mean = resample_factor;
static_resample_factor = resample_factor;
offset_array = new double[fir_size];
window_array = new double[fir_size];
offset_differential_index = 0;
offset_integral = 0.0;
smooth_size = fir_size;
for (int i = 0; i < fir_size; i++) {
offset_array[i] = 0.0;
window_array[i] = hann(double(i) / (double(fir_size) - 1.0));
}
// These values could be configurable
catch_factor = 100000;
catch_factor2 = 10000;
pclamp = 15.0;
controlquant = 10000.0;
}
~JackPIControler()
{
delete[] offset_array;
delete[] window_array;
}
void Init(double resample_factor)
{
resample_mean = resample_factor;
static_resample_factor = resample_factor;
}
/*
double GetRatio(int fill_level)
{
double offset = fill_level;
// Save offset.
offset_array[(offset_differential_index++) % smooth_size] = offset;
// Build the mean of the windowed offset array basically fir lowpassing.
double smooth_offset = 0.0;
for (int i = 0; i < smooth_size; i++) {
smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i];
}
smooth_offset /= double(smooth_size);
// This is the integral of the smoothed_offset
offset_integral += smooth_offset;
// Clamp offset : the smooth offset still contains unwanted noise which would go straight onto the resample coeff.
// It only used in the P component and the I component is used for the fine tuning anyways.
if (fabs(smooth_offset) < pclamp)
smooth_offset = 0.0;
// Ok, now this is the PI controller.
// u(t) = K * (e(t) + 1/T \int e(t') dt')
// Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T
double current_resample_factor
= static_resample_factor - smooth_offset / catch_factor - offset_integral / catch_factor / catch_factor2;
// Now quantize this value around resample_mean, so that the noise which is in the integral component doesn't hurt.
current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;
// Calculate resample_mean so we can init ourselves to saner values.
resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
return current_resample_factor;
}
*/
double GetRatio(int error)
{
double smooth_offset = error;
// This is the integral of the smoothed_offset
offset_integral += smooth_offset;
// Ok, now this is the PI controller.
// u(t) = K * (e(t) + 1/T \int e(t') dt')
// Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T
return static_resample_factor - smooth_offset/catch_factor - offset_integral/catch_factor/catch_factor2;
}
void OurOfBounds()
{
int i;
// Set the resample_rate... we need to adjust the offset integral, to do this.
// first look at the PI controller, this code is just a special case, which should never execute once
// everything is swung in.
offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
// Also clear the array. we are beginning a new control cycle.
for (i = 0; i < smooth_size; i++) {
offset_array[i] = 0.0;
}
}
};
}
#endif
|