Presentation is loading. Please wait.

Presentation is loading. Please wait.

Triangle Congruence by ASA and AAS

Similar presentations


Presentation on theme: "Triangle Congruence by ASA and AAS"β€” Presentation transcript:

1 Triangle Congruence by ASA and AAS
Skill 21b

2 Objective HSG-SRT.5: Students are responsible for proving two triangles are congruent by ASA and AAS.

3 Postulate 14 E B F C D A If βˆ π‘¨β‰Œβˆ π‘« , ∠π‘ͺβ‰Œβˆ π‘­ , and 𝑨π‘ͺ β‰Œ 𝑫𝑭 Then βˆ†π‘¨π‘©π‘ͺβ‰Œβˆ†π‘«π‘¬π‘­
Angle-Side-Angle Postulate If two angles and the included side of one triangle aer congruent to two angles and the included side of another triangle, then the two triangles are congruent. B A C E D F If βˆ π‘¨β‰Œβˆ π‘« , ∠π‘ͺβ‰Œβˆ π‘­ , and 𝑨π‘ͺ β‰Œ 𝑫𝑭 Then βˆ†π‘¨π‘©π‘ͺβ‰Œβˆ†π‘«π‘¬π‘­

4 Theorem 19 E B F C D A If βˆ π‘¨β‰…βˆ π‘« , βˆ π‘©β‰…βˆ π‘¬ , and 𝑨π‘ͺ β‰Œ 𝑫𝑭 Then βˆ†π‘¨π‘©π‘ͺβ‰Œβˆ†π‘«π‘¬π‘­
Angle-Angle-Side Theorem If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded side of another triangle, then the two triangles are congruent. B A C E D F If βˆ π‘¨β‰…βˆ π‘« , βˆ π‘©β‰…βˆ π‘¬ , and 𝑨π‘ͺ β‰Œ 𝑫𝑭 Then βˆ†π‘¨π‘©π‘ͺβ‰Œβˆ†π‘«π‘¬π‘­

5 Theorem 19; AAS Theorem Given: βˆ π΄β‰…βˆ π·, βˆ π΅β‰…βˆ πΈ, and 𝐴𝐢 β‰Œ 𝐷𝐹
Prove: βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ B A C E D F Statement Reason 1) βˆ π΄β‰…βˆ π·, βˆ π΅β‰…βˆ πΈ, & 𝐴𝐢 β‰Œ 𝐷𝐹 1) Given 2) βˆ πΆβ‰…βˆ πΉ 2) 3rd Angle Thm. 3) βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ 3) ASA Postulate

6 Example 1; Writing a proof using ASA Post.
Given: 𝐴𝐡 β‰Œ 𝐷𝐸 , βˆ π΄β‰…βˆ π·, and ∠𝐡 & ∠𝐸 are rt. βˆ β€™s. Prove: βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ A B C E D F Statement Reason 1) 𝐴𝐡 β‰Œ 𝐷𝐸 , βˆ π΄β‰…βˆ π·, and ∠𝐡 and ∠𝐸 are right angles. 1) Given 2) βˆ π΅β‰Œβˆ πΈ 2) β‰Œ of Rt. βˆ β€™s Thm. 3) βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ 3) ASA Postulate

7 Example 2; Using SAS Postulate
a) Which triangles are congruent? Explain. S U V E N O T W A βˆ πΈβ‰Œβˆ π‘ˆ βˆ π‘‚β‰Œβˆ π‘‰ 𝐸𝑂 β‰Œ π‘ˆπ‘‰ (included side) βˆ†πΈπ‘‚π‘β‰Œβˆ†π‘ˆπ‘‰π‘† by SAS Postulate

8 Example 2; Using SAS Postulate
b) Which triangles are congruent? Explain. F N I O H G T C A βˆ πΆβ‰Œβˆ πΊ βˆ π΄β‰Œβˆ π» 𝐢𝐴 β‰Œ 𝐺𝐻 (included side) βˆ†πΆπ΄π‘‡β‰Œβˆ†πΊπ»π‘‚ by SAS Postulate

9 Example 3; Writing a proof using ASA Post.
Given: βˆ πΆπ΄π΅β‰…βˆ π·π΄πΈ, 𝐡𝐴 β‰Œ 𝐸𝐴 , and ∠𝐡 & ∠𝐸 are right angles. Prove: βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ A B C E D Statement Reason 1) βˆ πΆπ΄π΅β‰…βˆ π·π΄πΈ, 𝐡𝐴 β‰Œ 𝐸𝐴 , and ∠𝐡 & ∠𝐸 are right angles. 1) Given 2) βˆ π΅β‰Œβˆ πΈ 2) β‰Œ of Rt. βˆ β€™s Thm. 3) βˆ†π΄π΅πΆβ‰Œβˆ†π·πΈπΉ 3) ASA Postulate

10 #21b: Triangle Congruence by ASA & AAS
Questions? Summarize Notes Homework Video Quiz


Download ppt "Triangle Congruence by ASA and AAS"

Similar presentations


Ads by Google