Generating Vocabulary Sets for Implicit Language Learning using Masked Language Modeling

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

A well-balanced language curriculum must include both explicit vocabulary learning and implicit vocabulary learning. However, most language learning applications focus on explicit instruction. Students require support with implicit vocabulary learning because they need enough context to guess and acquire new words. Traditional techniques aim to teach students enough vocabulary to comprehend the text, thus enabling them to acquire new words. Despite the wide variety of support for vocabulary learning offered by learning applications today, few offer guidance on how to select an optimal vocabulary study set. This paper proposes a novel method of student modeling with masked language modeling to detect words that are required for comprehension of a text. It explores the efficacy of using deep learning via a pre-trained masked language model to model human reading comprehension and presents a vocabulary study set generation pipeline (VSGP). Promising results show that masked language modeling can be used to model human comprehension and the pipeline produces reasonably sized vocabulary study sets that can be integrated into language learning systems.

Description

Keywords

Text Analytics, language modeling, machine learning, vocabulary learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Collections

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.