Field of Science

Showing posts with label hacrobia. Show all posts
Showing posts with label hacrobia. Show all posts

Cryptomonads: solar-powered armoured battleships

ResearchBlogging.orgI've been 'scoping around some pond water lately and came across some relatively big cryptomonads (g. Cryptomonas, I think). Cryptos aren't all that rare, but most of them whirl about rather hyperactively, rendering them as troublesome photo subjects. This specimen, on the other hand, had a convenient habit of pausing every once in a while to have its picture taken. Finally, I have my own cryptomonad shots!


Cryptomonas(?) sp. The cell is about ~30µm long, pretty big for a cryptomonad. On its right side the cryptomonad has a furrow – or, in some species, an tube-like gullet – lined with ejectisomes (particularly visible in the top right image). The vesicle at the anterior tip of the cell is its contractile vacuole. Refractile stuff is the starch granules. 40x objective, DIC

Despite their small size and superficially generic algal appearance, cryptomonads do have quite a few awesome bits about them. From an evolutionary standpoint, they have pretty damn awesome plastids – products of secondary endosymbiosis of red algae, complete with a shrunken relict nucleus ("nucleomorph") of the red algal ex-host! The plastids also have four membranes, complicating the delivery of plastid-targetting proteins from the cryptomonad host nucleus. But I'll save that story for some other time, and instead keep it superficial. Literally: it has ejectile things lining its surface, and who doesn't like the idea of a microscopic solar-powered hyperactive battleship?

Prior to embarking on some battle scenes, lets look around the ship's anatomy a little bit mostly as an excuse to show off a diagram. At its fore we have a pair of flagella, lined with little hairs – also a characteristic of many Alveolates and Stramenopiles, with whom Cryptomonads might share the secondary red algal symbiosis event with. Much of the cell is occupied with a single plastid, making the fucker a bit difficult to diagram. In all his/her/its infinite wisdom, the designer apparently failed to take into consideration the future pains of this student attempting to tame the wild beast that is Illustrator while drawing this cell. Asshole. Besides the plastid, there's also a single mitochondrion and a bunch of other small crap that a eukaryote ought to have. The plastid's outermost (fourth) membrane is contiguous with the endoplasmic reticulum system, presumably homologous to the original digestive vesicle that enveloped the 'enslaved'* red alga. The third membrane derives from the red algal cell membrane, whereas the inner pair are the usual plastid membranes. Pop quiz: where would you expect to find the relict endosymbiont's nucleus (the nucleomorph)? (Answer at the bottom of the post, or in the diagram if you're so inclined to 'cheat' ;p)

*Google [scholar] "Cavalier-Smith" and "enslaved". When he likes certain words, he really likes them.

Back to the surface. The cryptomonad surface is quite complex, consisting of an inner and surface periplast layers separated by the cell membrane. Sometimes the surface layer can be be covered in scales, sometimes fibrous matter. This periplast is perforated with pores for ejectisomes, much like battlements on a warship. Ejectisomes themselves consist of coiled proteinaceous ribbons that extend forcefully upon firing.

Cryptomonad periplast. IPC – inner periplast layer, PM – plasma membrane, S – scales (of the surface periplast layer). On the right is a freeze fracture EM of the plasma membrane, which shows imprints of the surface scales (vaguely hexagonal) and pores for ejectisomes (E). In other words, the surface of an armoured warship with battlements. (Brett & Wetherbee 1986 Protoplasma)

Ejectisomes – more generally, extrusomes – are not all that unusual in the protist world. Many ciliates are loaded with menacing trichocysts and green algae like Pyramimonas are not afraid to fire similar structures either. Some bacterial endo- and episymbionts also bear similar coiled structures, but that's a topic for some other day as well. Extrusomes can also be used more locally to glue prey to the organism – if you, upon finding yourself shrunk to microns, accidentally bump into a frail-looking centrohelid heliozoan, be afraid. Be very afraid. It will smother you in adhesive proteins from the extrusomes lining its fragile-looking axopodia and devour you alive and possibly paralysed.

Ejectisomes in cryptomonads and their non-photosynthetic close relatives, katablepharids. Pyramimonas is only distantly related, and probably evolved its ejectisomes completely independently. (Kugrens et al. 1994 Protoplasma: nice review on protist ejectisomes in general, excluding ciliates)

One of the poor cryptomonads got stuck as my slide was drying out, and in its agony, released an explosion of ejectisomes. As any other biologist excessively attached to their subjects, I hate seeing protists die; at least this one didn't die in vain but gave us a nice demonstration. Extrusome firing often accompanies stress in protists that have them, drying out definitely qualifying. The following images are quite graphic, and not for the faint of heart. At least because the image quality is seriously compromised by a random layer of air between the coverslip and the specimen covered with remnants of water – a total chaos of refraction indexes.


Lysed cryptomonad on a dried out slide, surrounded fired ejectisomes. The fibrils around the cryptomonad remains are the uncoiled ribbons propelling the ejectisomes (refractile granules seen well in phase contrast, bottom images). 40x obj, DIC and PC.

While the cryptomonad may use its ejectisomes for hunting (most photosynthetic unicellular protists tend to be predators as well), perhaps they play a larger role in defense. Partly in stabbing its own predators, but additionally in a way that's quite counterintuitive to large creatures like us – sudden movement.

You might notice there isn't really much projectile action per se happening at the microbial scale. The firing is closer to an extrusion of a structure rather than freely propelling it a far distance. Furthermore, unlike an actual battleship, the cryptomonad can stop and turn almost instantaneously, and doesn't have much inertia. There is a reason for that, and it lies in the physics of fluid dynamics, a topic few of us outside biophysical biology concern ourselves with. Luckily, Purcell took care of that for us in his rather interesting 1977 paper, "Life at low Reynold's Number*" – turns out, the effect of viscosity on the behaviour of an object depends on its size, and water from a microorganism's perspective is a very different substance than what it is to us. In fact, it helps to imagine that microbial creatures live in honey or molasses – while water's viscosity doesn't actually change, it acts on µm-size things in a manner somewhat similar to how highly viscous fluids would act on things of our scale. Biophysics is quite a bit different at that scale, and different strategies are required in dealing with it.

*Reynold's number = proportion between object's velocity*size*[fluid density] and the fluid's viscosity)

In highly viscous fluids, coasting is not really an option. Things stop as soon as the driving force ceases to be applied, as anyone who's paddled a canoe across a lake of molasses would know (Bostonians from the early 1900's, perhaps?). This is why you don't really see stiff fins on bacteria or single-celled eukaryotes, at least not for motility itself. There are many ways to use a flagellum – a topic deserving of its own post – the beating strategy requiring it to be flexible at the right times. More importantly to our topic, you can't realistically give something enough force for it to keep moving like a bullet, so shooting things is out of question. Instead, the projectile must keep being pushed, usually by something unfolding or unraveling – in the case of the cryptomonad, a coiled protein ribbon. Cryptomonad artillery is perhaps more similar to harpoons than cannons.

This means a fired ejectisome can be used to essentially "push off" in the opposite direction, providing the organism with a sudden, drastic movement it wouldn't be able to obtain by flapping its flagella. The armoury of a threatened cryptomonad may be more important in providing it with rapid escape than damaging its pursuers. The microbial art of war is seldom discussed in non-enzymatic terms, but it is too a diverse and fascinating area, peppered with counterintuitive surprises. Life, and war, are indeed very different at low Reynold's numbers.

References
Brett, S., & Wetherbee, R. (1986). A comparative study of periplast structure inCryptomonas cryophila andC. ovata (Cryptophyceae) Protoplasma, 131 (1), 23-31 DOI: 10.1007/BF01281684

Kugrens, P., Lee, R., & Corliss, J. (1994). Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists Protoplasma, 181 (1-4), 164-190 DOI: 10.1007/BF01666394

Purcell, E. (1977). Life at low Reynolds number American Journal of Physics, 45 (1) DOI: 10.1119/1.10903

Answer to the nucleomorph scavenger hunt: between the third (red algal) and second (plastid outer) membranes. The nucleus was originally in the cytoplasm, within the red algal cell membrane and outside the plastid. Oh, and if you want real topological clusterfuck, may I recommend the tertiary endosymbiosis in Kryptoperidinium – also try to count the genomes!

Sunday Protist - Assorted oddballs

As I scramble to finish a chapter before my supervisor notices his hiring mistake, instead of writing out a mini-review paper about a single group of sorts, I'll use the opportunity to point out a few of the oddballs I've accumulated lately. Many of them have just a single paper, or a passing mention and a reference to a paper I can't get easily (and that would likely be in some language I can't read to begin with...), and thus they don't really make good weekly protists by themselves. But yet, many are too cool to ignore mentioning.

Our first exhibit is a peculiar association between a coccolithophorid haptophyte (small phytoplankton), Reticulofenestra sessilis, and a centric diatom, Thalassiosira sp.:

The thing in the centre is the centric diatom. The scaley things around are the coccoliths, or calcified scales, of the haptophytes Reticulofenestra clustering around it. The exact nature of this relationship is unknown, though presumably beneficial for the haptophyte, as R.sesslis is found almost exclusively attached to diatoms. Image by from nannotax.org; original citation - Gaarder & Hasle 1962 Nyü Mag Bot (which doesn't exist online *gasp*)

Speaking of haptophytes, here's another cool-looking one. There is quite a bit to say about haptophytes overall, just too lazy to do it right now. There is a post in the making though...
Umbellosphaera. The things on the surface are its coccoliths, of which each individual is intricately crafted into a chanterelle/trumped-like shape. SEM on the left from a nice image repository/course supplement by Isao Inouye from U Tsukuba, one of the Meccas of protistology. (Website is in Japanese, unfortunately for [most of?] us. I really need to learn Japanese someday...) Image of single coccolith on the right from eol.org.

Now for an obligatory ciliate. Trichodina is a cute little peritrich (group that includes the coiled-stemmed-trumpet Vorticella) that deserves more attention than just a pretty picture, but its looks can't wait to be exposed. Both the top and bottom sides have cilia, and the creature is like a miniature robotic vacuum cleaner, vacuuming the fish gills (or other substrates, like jellyfish) of bacteria and various other prey that accumulate there. In doing so, it causes fish disease, but the cute lil' thing didn't mean to!
Left: Trichodina 'vacuuming' fish gills (source). Middle: DIC image of the Trichodina 'sucker' (surprisingly from National Geographic, of all places). Right: Drawing of the ciliate. (HJ Clark 1866 Am J Sci) Will surely come back to it someday!

And last for today, this little critter is absolutely adorable. There's actually quite a bit to say about it, but I'm not gonna do it because some other blogger is far more qualified to write it up. Perhaps after the conference season calms down a little, said blogger could share their wonderful stories with us...
Apusomonas proboscidea. To paraphrase Opisthokont, 'cute Apusomonas' would be redundant. You see that little protrusion at the top? It wiggles 'spastically' as the critter crawls forward along its flagellum. If you're really keen check out the movies in this recent paper on apusomonads (TC-S alert!). Left: Karpov & Myl'nikov 1989 Zoologicheskiy Zhurnal (in Russ.) Right: Flemming Ekelund at ToLWeb (Apusomonas is really tiny...)

That's it for today. Am going out of town until middle of next week, will likely lack internet (eeek, how will I live?!), so if comments are mysteriously ignored, that's why.

Criminally photosynthetic: Myrionecta, Dinophysis and stolen plastids

ResearchBlogging.orgThe microbial world is full of vicious beasts. Yes, much of microbial life is cute and cuddly in one way or another. But that doesn't stop many of them from making wolverines seem docile by comparison. There is an entire mafia out there built around...organ theft; including some multicellular players as well, in case you thought animals were saintly. Today we'll look at some famous thieving masterminds of the plastid black market, but keep in mind that there are many more fascinating relationships involving keeping entire organisms or their parts alive within the host, and vastly more oddities that have still escaped human attention (not hard to do, actually).

Let's start off the messy subject with a pretty diagram summarising the major plastid hoarding events of the [moderately] distant past:
Pac-Man!* Today all we need to do is appreciate the overall big picture: there were numerous symbiotic events and by about tertiary endosymbiosis, it gets messy. Not pictured are the cases of more-or-less transient kleptoplasty (plastid-theft), which would do serious harm to the readability and aesthetic qualities of this diagram. (Keeling 2004 Am J Bot; free access) For those keen on extra gory details of plastid endosymbiosis, see this recent review.
*If somebody were to make a game of Pac-Man: Endosymbiosis Edition...


Today's plastidial saga will involve an arduous journey from the cyanobacterium to the red algal endosymbiont of the cryptomonad, to the subsequent ingestion by a ciliate and a dinoflagellate. In fact, just keep in mind that the cryptomonad itself is the result of a hungry heterotroph getting a habit of devouring red algae and developing a case of terminal indigestion, ultimately gaining a plastid and plastid-targetting genes in its own nucleus. The cryptomonad in particular happens to be really awesome in another way: it actually still retains the original, eukaryotic, red algal nucleus of its former prey! That nucleus has been badly shrunk in the wash, and the genome is essentially on crack, but that's a long story for some other day.

Just so you get an idea of what a cryptomonad roughly looks like:

Cryptomonas. Note its very diminutive size. Source: Micro*scope.

We're about to move on to the sleazy thieving ciliates and dinoflagellates. But first, we must establish how kleptoplasty (lit. plastid theft) differs from endosymbiosis. To clarify, I use 'symbiosis' as a general term for an intimate interaction between two different species, including parasitism, mutualism and commensalism. Thus, an endosymbiont needn't feel the same way about the relationship as its host, and very often doesn't. Keep in mind that it is often not very obvious which exact category the symbiosis falls into, as nature doesn't particularly care for our naming fetish.

Endosymbiosis, in the context of organelles and other intracellular stuff, typically entails the complete engulfment of another organism by the cell. Once gene transfer occurs between the genomes of the two organisms, some declare the endosymbiont is now officially an organelle. The endosymbiont-organelle debate is old, stale and utterly pointless; thus, as I have declared in a previous post, I like to call plastids and mitochondria 'endosymbionts' and the more questionable cases, like Perkinsela, 'organelles'. That way, I can piss off just about everyone. Ha!

Then there is the much-awaited plastid theft, where only the plastid itself of the failed endosymbiont is retained, with the rest of it typically digested away. The katablepharid Hatena which Labrat wrote a wonderful post about (as well as Merry at Small Things Considered), is a striking case of kleptoplasty (and only discovered this past decade!). The intensity of kleptoplasty, as well as endosymbiosis, vary greatly from transient plastids (or endosymbionts) that are not essential to the host, to mostly permanent plastids or endosymbionts that are retained indefinitely, capable of reproducing on their own, and completely obligatory for the host's survival. This is nicely summarised in this diagram from a recent review on acquired photosynthesis by Stoeker et al 2009:

Two ways to get a plastid: 1) steal a plastid-bearing alga and lock it in your basement keep it alive within you (endosymbiosis); 2) mug the alga, steal its plastid and try to keep it alive yourself. Along the two paths lie multitudes of intermediate steps different in the persistence of the plastid (how long it lasts) and how dependent the host is upon it. (Stoecker et al. 2009 Aquat Microbiol Ecol)

In the endosymbiotic pathway, nucleomorphs (and the original plastidial prokaryotic genome) suggest the permanent associations we know among the 'normal' algae come from the endosymbiotic path, as there is evidence for whole host retention at some point. However, the data do not entirely rule out some independent secondary plastid acquisition via kleptoplasty rather than endosymbiosis. As for tertiary plastidial symbionts, it gets fun. The classic persistent cases like Kryptoperidinium tend to have a whole endosymbiont, nucleus and all, so the endosymbiotic pathway is also more likely, cut things like Dinophysis, on the other hand, are just weird.

Now, at last, our long-awaited thief: the ciliate Myrionecta rubra (=Mesodinium rubrum):

Myrionecta rubra (originally Mesodinium rubrum); c - cirri; ChC - chloroplast complexes; ECB - equatorial ciliary band (Taylor et al. 1969 Nature) Right: SEM of Myrionecta by Takayama Haruyoshi (more awesome micrographs here)

As you can see, this ciliate bears plastids - a rather non-ciliate activity. In fact, if you slice it up, you'll find that the plastids are very carefully arranged at the periphery:

N - cryptomonad nucleus; M - ciliate macronucleus (note the difference in chromatin organisation); note how the plastids are not only predominantly on the cell periphery but also tend to all face outward! (Oakley & Taylor 1978 Biosyst)

The ciliate captures a cryptophyte, takes its plastids -- along with the nucleomorphs, pyrenoids and other plastid-associated stuff, as well as cryptomonad mitochondria -- and packages them up in their own little compartments. Furthermore, the nucleus is also retained and consistently packaged in an entirely separate package from the plastids. Quite remarkably, the cryptomonad nucleus remains transcriptionally active! (Apparently, Elio beat me to it in 2007. Grrr) Presumably, maintaining an active host nucleus would help keep the plastids functional longer.

Oddly enough, I have difficulties finding anything on the exact process of crypto acquisition - I initially thought it just phagocytoses them, but a friend of mine studying weird plastid aquisition thinks they may actually employ myzocytosis - sucking out the contents of its prey through a 'straw', like many other alveolates do: this may explain the segregation and separate enveloping of the plastid and crypto nucleus. This would require Myrianecta to be quite fast and well-coordinated; the speed is there as it tends to jump instead of moving gradually (details here).


There is a plot twist to this story. A stroke of irony, or poetic justice, or karma if you're into such things. The thieving ciliate itself gets mugged...by a dinoflagellate!

At first glance, Dinophysis caudata is a normal photosynthetic dino, which isn't particularly surprising as roughly half of them are (most with their own plastids). Dinophyceans are quite trippy morphologically, which made it even more frustrating that Dinophysis appeared impossible to culture, despite being photosynthetic. For a while, no one could figure out what exactly was wrong with it. Turns out, its plastids aren't its own, and are rather cryptomonad-like. Great, so it kleptoplasties the cryptos, let's just grow it in a jar full of them! Again, no luck - for some reason, Dinophysis appeared incapable of ingesting the cryptomonads!

It was all rather perplexing until someone figured out the problem in the 2000's, publishing the first successful culturing attempt in 2006 (Park et al. 2006 Aquat Microbiol Ecol). Here's what was missing:

Dinophysis (the jug-like thing with a conspicuous flagellum) sucking the plastids out of Myrionecta, who's rolled up into a small, whimpering ball by this point. (Park et al. 2006 Aquat Microbiol Ecol)

Not only is Dinophysis caudata a stinkin' thief, but it can't even do the primary stealing itself - the dino requires Myrionecta to do all the dirty work of packaging up the plastids. But it gets messier. First, a summary of the plastid's plight:

Dinophysis ingests plastids from the ciliate Myrionecta, who in turn stole them from a cryptomonad. Who, if you recall, obtained it a long time ago as a red algal endosymbiont. Who, of course, obtained the original plastid as a cyanobacterial symbiont. I think it ends there though. That poor cyanobacterial genome has been through a lot! (Wisecaver & Hackett 2010 BMC Genomics)

Now, whether Dinophysis also bears proper plastids of its own is up to heated debate at the moment. It looks like I'm not the only one thoroughly confused by it, and sorting out this issues is slightly beyond the responsibilities of a mere blogger at the moment, so let's leave this part of the story explicitly vague. It seems like Dinophysis may somehow supplement its own stock with the stolen plastids, as it appears to have plastid-targetting genes in its own genome (Wisecaver & Hackett 2010 BMC Genomics). However, there are also cases of Dinophysis carrying plastids that appeared very non-cryptomonad, and most likely to be of dinoflagellate origin (Garcia-Cuetos et al. 2009 Harmful Algae).

The chaos is quite understandable: it is actually very difficult to determine the nature of a relationship between two organisms, especially on the microscopic scale, and especially when one is inside another. It's often hard to distinguish a permanent from a transient relationship, and a mutualistic from a parasitic one. While there is strong direct evidence that the dino sucks plastids out of Myrionecta, that does not necessarily mean all of its plastids originated there. Or that it lacks its own (though that would make sense). Or more importantly, that the various research teams are even looking at the same bloody organism! Speaking of which, Myrionecta and Dinophysis appear to be in a 'bit' of taxonomic mess too, so I'll just let the professionals fight it out amongst themselves.

While that's going on, one cannot help but wonder how many such 'unconventional' relationships there really are. Food webs are not as direct as people think, the once one peers a little further than the usual stereotyped interactions (predator, parasite, prey, producer, whatever), ecology actually becomes an interesting (admittedly, fascinating!) subject. On that note, I think we should really be careful when trying to force terrestrial and macroscopic ecological terms onto the microbial world -- and by careful, I think we should perhaps come up with a system specialised for microbial life from the very beginning. While we seldom see one animal rip out an organ of another and keep it alive for itself, organelle theft is actually not all that uncommon. Life on the cellular level is weird to us, and many traditional terms simply fail to describe it.

There's a whole black market of utterly bizarre microbial interactions out there. We are only scratching the surface.


References
Garcia-Cuetos, L., Moestrup, �., Hansen, P., & Daugbjerg, N. (2010). The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts Harmful Algae, 9 (1), 25-38 DOI: 10.1016/j.hal.2009.07.002

Johnson, M. (2010). The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles Photosynthesis Research DOI: 10.1007/s11120-010-9546-8

Johnson, M., Oldach, D., Delwiche, C., & Stoecker, D. (2007). Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra Nature, 445 (7126), 426-428 DOI: 10.1038/nature05496

Keeling, P. (2004). Diversity and evolutionary history of plastids and their hosts American Journal of Botany, 91 (10), 1481-1493 DOI: 10.3732/ajb.91.10.1481

OAKLEY, B., & TAYLOR, F. (1978). Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia Biosystems, 10 (4), 361-369 DOI: 10.1016/0303-2647(78)90019-9

Park, M., Kim, S., Kim, H., Myung, G., Kang, Y., & Yih, W. (2006). First successful culture of the marine dinoflagellate Dinophysis acuminata Aquatic Microbial Ecology, 45, 101-106 DOI: 10.3354/ame045101

Stoecker, D., Johnson, M., deVargas, C., & Not, F. (2009). Acquired phototrophy in aquatic protists Aquatic Microbial Ecology, 57, 279-310 DOI: 10.3354/ame01340

TAYLOR, F., BLACKBOURN, D., & BLACKBOURN, J. (1969). Ultrastructure of the Chloroplasts and Associated Structures within the Marine Ciliate Mesodinium rubrum (Lohmann) Nature, 224 (5221), 819-821 DOI: 10.1038/224819a0

Wisecaver, J., & Hackett, J. (2010). Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata BMC Genomics, 11 (1) DOI: 10.1186/1471-2164-11-366