Эчтәлеккә күчү

DAG1

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/DAG1 latin yazuında])
DAG1
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген DAG1[d][1]
Молекуляр функция calcium ion binding[d][2], связывание с белками плазмы[d][3][4][5][…], virus receptor activity[d][2], alpha-actinin binding[d][6], vinculin binding[d][6], actin binding[d][6], tubulin binding[d][6], structural constituent of muscle[d][7], SH2 domain binding[d][8], laminin binding[d][2], laminin-1 binding[d][2][2] һәм dystroglycan binding[d][2]
Күзәнәк компоненты cell-cell junction[d][2], төш[2][2], синапс[2][2], contractile ring[d][6], filopodium[d][6], Перехваты Ранвье[d][2], costamere[d][2], lamellipodium[d][6], dystroglycan complex[d][2], липидный рафт[d][2], межклеточные контакты[d][2], цитоскелет[d][2], мембрана[d][2][2][2], экзосома[d][9][10][11], basolateral plasma membrane[d][2], postsynaptic membrane[d][2], Сарколемма[d][2][2], цитоплазма[2][2][12], мембрана өлеше[d][2][13], фокальные контакты[d][14][15][16], күзәнәк мембранасы[d][2][2][2][…], dystrophin-associated glycoprotein complex[d][2][2][17], нуклеоплазма[d][2][12], базаль мембрана[d][2][18], цитозоль[d][2], күзәнәк тышындагы мохит[d][14][14][19][…], endoplasmic reticulum lumen[d][2], Люмен аппарата Гольджи[d][2], plasma membrane raft[d][2], наружная сторона клеточной мембраны[d][2], nuclear periphery[d][2], внеклеточный матрикс[d][20], күзәнәк тышындагы өлкә[d][14][14][21], күзәнәк тышындагы өлкә[d][2][2][22], күзәнәк тышындагы мохит[d][2][2][23][…], фокальные контакты[d][2][6][24], collagen-containing extracellular matrix[d][25], экзосома[d][26][27], glutamatergic synapse[d][2], GABA-ergic synapse[d][2] һәм postsynaptic cytosol[d][2]
Биологик процесс NLS-bearing protein import into nucleus[d][28], extracellular matrix organization[d][2], вирусный процесс[d][2], regulation of embryonic cell shape[d][2], response to peptide hormone[d][2], regulation of epithelial to mesenchymal transition[d][29], positive regulation of basement membrane assembly involved in embryonic body morphogenesis[d][29], viral entry into host cell[d][2], regulation of gastrulation[d][29], negative regulation of cell migration[d][30], Schwann cell development[d][2], membrane protein ectodomain proteolysis[d][31], calcium-dependent cell-matrix adhesion[d][2], negative regulation of MAPK cascade[d][30], nerve maturation[d][2], microtubule anchoring[d][6], commissural neuron axon guidance[d][2], branching involved in salivary gland morphogenesis[d][2], negative regulation of protein kinase B signaling[d][30], morphogenesis of an epithelial sheet[d][2], myelination in peripheral nervous system[d][2], basement membrane organization[d][2], epithelial tube branching involved in lung morphogenesis[d][2], modulation by virus of host process[d][32], protein O-linked glycosylation[d][14], positive regulation of cell-matrix adhesion[d][2], старение человека[d][2], Schwann cell differentiation[d][2], response to denervation involved in regulation of muscle adaptation[d][2], nerve development[d][2], axon regeneration[d][2], positive regulation of myelination[d][2], skeletal muscle tissue regeneration[d][2], positive regulation of protein kinase activity[d][2], positive regulation of oligodendrocyte differentiation[d][2], cellular response to mechanical stimulus[d][2], cellular response to cholesterol[d][2], angiogenesis involved in wound healing[d][2], regulation of synapse organization[d][2], regulation of neurotransmitter receptor localization to postsynaptic specialization membrane[d][2] һәм retrograde trans-synaptic signaling by trans-synaptic protein complex[d][2]
Изображение Gene Atlas

DAG1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[33][34]

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 2,62 2,63 2,64 2,65 2,66 2,67 2,68 2,69 2,70 2,71 2,72 2,73 2,74 2,75 2,76 2,77 GOA
  3. Macioce P. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M005321200PMID:10988290
  4. Fletcher G. C., S Patel, K Tyson et al. hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan // Br. J. Cancer, BJCNPG, 2003. — ISSN 0007-0920; 1532-1827doi:10.1038/SJ.BJC.6600740PMID:12592373
  5. Brancaccio A. Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1998. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.273.1.600PMID:9417121
  6. 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 Cerecedo D., Cisneros B., Suárez-Sánchez R. et al. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets // Br. J. Haematol.Wiley-Blackwell, 2008. — ISSN 0007-1048; 1365-2141doi:10.1111/J.1365-2141.2008.07048.XPMID:18341635
  7. Muntoni F., Jimenez-Mallebrera C., Topaloglu H. et al. A comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of alpha-dystroglycan does not consistently correlate with clinical severity // Brain Pathol.Wiley, 2009. — ISSN 1015-6305; 1750-3639doi:10.1111/J.1750-3639.2008.00198.XPMID:18691338
  8. F Sotgia, H Lee, Bedford M. T. et al. Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins // Biochemistry / A. SchepartzACS, 2001. — ISSN 0006-2960; 1520-4995; 1943-295Xdoi:10.1021/BI011247RPMID:11724572
  9. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  10. Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. StimsonWiley, 2013. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.201200561PMID:23533145
  11. Farina A., Lane L., Lescuyer P. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine // Journal of ProteomicsElsevier BV, 2013. — ISSN 1874-3919; 0165-022Xdoi:10.1016/J.JPROT.2013.01.012PMID:23376485
  12. 12,0 12,1 Oppizzi M. L., Akhavan A., Singh M. et al. Nuclear translocation of beta-dystroglycan reveals a distinctive trafficking pattern of autoproteolyzed mucins // TrafficWiley-Blackwell, 2008. — ISSN 1398-9219; 1600-0854doi:10.1111/J.1600-0854.2008.00822.XPMID:18764929
  13. Muntoni F., Bove K. E., Horssen J. v. et al. MLC1 is associated with the dystrophin-glycoprotein complex at astrocytic endfeet // Acta Neuropathol. (Berl)Springer Science+Business Media, 2007. — ISSN 0001-6322; 1432-0533doi:10.1007/S00401-007-0247-0PMID:17628813
  14. 14,0 14,1 14,2 14,3 14,4 14,5 GOA
  15. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  16. Cerecedo D., Cisneros B., Suárez-Sánchez R. et al. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets // Br. J. Haematol.Wiley-Blackwell, 2008. — ISSN 0007-1048; 1365-2141doi:10.1111/J.1365-2141.2008.07048.XPMID:18341635
  17. Sharma P., Gerthoffer W. T., Halayko A. J. Expression of the dystrophin-glycoprotein complex is a marker for human airway smooth muscle phenotype maturation // American Journal of Physiology: Lung Cellular and Molecular Physiology — 2008. — ISSN 1040-0605; 1522-1504doi:10.1152/AJPLUNG.00378.2007PMID:17993586
  18. Ishiyama A., Mowry S. E., Lopez I. A. et al. Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects // Hearing ResearchSpringer Science+Business Media, Elsevier BV, 2009. — ISSN 0378-5955; 1878-5891doi:10.1016/J.HEARES.2009.03.014PMID:19348877
  19. Palmer D. J., Kelly V. C., Smit A. et al. Human colostrum: identification of minor proteins in the aqueous phase by proteomics // Proteomics / L. StimsonWiley, 2006. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.200500558PMID:16502470
  20. Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // CirculationLippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539doi:10.1161/CIRCULATIONAHA.115.016423PMID:27559042
  21. Yin X., Mayr M., Porter K. E. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins // Cardiovascular ResearchOUP, 2016. — ISSN 0008-6363; 1755-3245doi:10.1093/CVR/CVW075PMID:27068509
  22. Yin X., Mayr M., Porter K. E. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins // Cardiovascular ResearchOUP, 2016. — ISSN 0008-6363; 1755-3245doi:10.1093/CVR/CVW075PMID:27068509
  23. Saito F., Saito-Arai Y., Nakamura A. et al. Processing and secretion of the N-terminal domain of alpha-dystroglycan in cell culture media // FEBS LettersElsevier BV, 2008. — ISSN 0014-5793; 1873-3468doi:10.1016/J.FEBSLET.2008.01.006PMID:18201566
  24. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  25. Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // CirculationLippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539doi:10.1161/CIRCULATIONAHA.115.016423PMID:27559042
  26. Gonzalez-Begne M., Lu B., Han X. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT) // J. Proteome Res. / J. YatesACS, 2009. — ISSN 1535-3893; 1535-3907doi:10.1021/PR800658CPMID:19199708
  27. Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. StimsonWiley, 2013. — ISSN 1615-9853; 1615-9861doi:10.1002/PMIC.201200561PMID:23533145
  28. Lara-Chacón B., León M. B., Leocadio D. et al. Characterization of an Importin alpha/beta-recognized nuclear localization signal in beta-dystroglycan // J. Cell. Biochem.Wiley, 2010. — ISSN 0730-2312; 1097-4644; 0733-1959doi:10.1002/JCB.22581PMID:20512930
  29. 29,0 29,1 29,2 Nakaya Y., Sukowati E. W., Sheng G. Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex // J. Cell Biol. / J. NunnariRockefeller University Press, 2013. — 15 p. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.201302075PMID:23940118
  30. 30,0 30,1 30,2 Bao X., Kobayashi M., Hatakeyama S. et al. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2009. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0904515106PMID:19587235
  31. Sbardella D., Sciandra F., Brancaccio A. et al. Enzymatic processing of beta-dystroglycan recombinant ectodomain by MMP-9: identification of the main cleavage site // IUBMB LifeWiley-Blackwell, IUBMB, 2009. — ISSN 1521-6543; 1521-6551doi:10.1002/IUB.273PMID:19946898
  32. Callewaert N., Brancaccio A., Oxenius A. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function // J. Virol.ASM, 2005. — ISSN 0022-538X; 1098-5514; 1070-6321doi:10.1128/JVI.79.22.14297-14308.2005PMID:16254364
  33. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  34. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.
  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)