Thermodynamics on Formation of Condensed Phases during CVD Si3N4 Process with Sicl4-NH3-H2 Precursors

Article Preview

Abstract:

Formation conditions of the condensed phases (Si3N4 and Si) in CVD process of SiCl4-NH3-H2 precursors have been investigated in detail with thermodynamic analyses by using the FactSage code and its embedded database (44 species being involved). The productions have been examined at different SiCl4/(SiCl4+NH3) ratios, H2/(SiCl4+NH3) ratios, temperatures and pressures. The results showed that the condensed phase composition was quite sensitive to the ratios and temperature whereas it was insensitive to pressure. The ideal conditions for the deposition of Si3N4 were listed as followed: the ratio of SiCl4/(SiCl4+NH3) and H2/(SiCl4+NH3) was 0.44 and in the scope of 100.6-105.2, respectively. Temperature ranged from 1200 to 1300 K with lower pressure. Si was formed in the H2/(SiCl4+NH3) ratio of 103~105 and SiCl4/(SiCl4+NH3) ratio of 0.44-1.0. The formation of single-phase Si3N4 or Si would be easily controlled by changing the ratios of SiCl4/(SiCl4+NH3) and H2/(ZrCl4+BCl3). SiHCl3, SiCl3 and SiH2Cl2 should be the crucial intermediates in the process of CVD Si3N4 and could participate in the competition in deposition process. The results in this work were instructive for further investigation on the experiments under different conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

1516-1523

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Barta, M. Manela, R. Fischer: Mater. Sci. Eng. Vol. 71 (1984), p.265.

Google Scholar

[2] G.C. Dodds, R.A. Tanzilli, U.S. Patent 5, 891, 815. (1999).

Google Scholar

[3] L.K. Edward, H.S. Frederick, F.S. James, U.S. Patent 4, 677, 443. (1987).

Google Scholar

[4] J. Verzemnieks, H.S. Fredrick, U.S. Patent 5, 103, 239. (1992).

Google Scholar

[5] G.T. Inna, A.M. Curtis, A.D. Haught, and A.H. Lee, U.S. Patent 5, 573, 986. (1996).

Google Scholar

[6] J.D. Walton: Am. Ceram. Soc. Bull. Vol. 53 (1974), p.255.

Google Scholar

[7] S. Immelmann, E. Welle, W. Reimers: Mater. Sci. Eng. Vol. A238 (1997), p.287.

Google Scholar

[8] M.J. Hoffmann, A. Geyer, R. Oberacker: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2359.

Google Scholar

[9] K. Ueno, T. Inoue: Ceram Int. Vol. 23 (1997), p.165.

Google Scholar

[10] A. Demir, D.P. Thompson: J. Eur. Ceram. Soc. Vol. 21 (2001), p.639.

Google Scholar

[11] R.T. Bhatt: J. Am. Ceram. Soc. Vol. 75 (1992), p.406.

Google Scholar

[12] W. Fohey, R.T. Bhatt, G.Y. Baaklini: Annual HITEMP Review-1993, NASA CP 19117, pp.68-1.

Google Scholar

[13] Han Guifang, Ph. D. Thesis, Northwestern Polytechnical University, (2008).

Google Scholar

[14] R. Naslain: Compos. Sci. Technol. Vol. 64 (2004), p.155.

Google Scholar

[15] Y.D. Xu, L.F. Cheng, L.T. Zhang, H.F. Yin, X.W. Yin: Mater. Sci. Eng. Vol. A318 (2001), p.183.

Google Scholar

[16] P. Delhae`s, M. Trinquecoste, J.F. Lines, A. Cosculluela, J.M. Goyhe´ne`che, M. Couzi: Carbon Vol. 43 (2005), p.681.

Google Scholar

[17] A. Glaser, S.M. Rosiwal, B. Freels, R.F. Singer: Diamond Relat. Mater. Vol. 13 (2004), p.834.

Google Scholar

[18] A. Glaser, S.M. Rosiwal, and R. F. Singer: Diamond Relat. Mater. Vol. 15 (2006), p.49.

Google Scholar

[19] J. P. Kent, M. B. Theodore, P. S. David, A. L. Richard, J. A. Timothy, and L. S. Thomas: Surf. Coat. Technol. Vol. 120-121 (1999), p.250.

Google Scholar

[20] C. Vahlas, V. Em. Vamvakas, D. Davazoglou: Microelectron. Reliab. Vol. 39 (1999), p.303.

Google Scholar

[21] A.A. Baqatur'yants, K.P. Novoselov, A.A. Safonov: Surf. Sci. Vol. 486 (2001), p.213.

Google Scholar

[22] N. Banerji, J. Serra, S. Chiussi, F. Lusquińos : Appl. Surf. Sci. Vol. 138-139 (1999), p.383.

Google Scholar

[23] Y. Shigeichi, M. Masatoshi: Jpn. J. Appl. Phys., Part 1 Vol. 32 (1993), p.462.

Google Scholar

[24] S. Tamir, S. Berger, N. Shakour: Appl. Surf. Sci. Vol. 186 (2002), p.251.

Google Scholar

[25] H. Umemoto, T. Morimoto, M. Yamawaki: Thin Solid Films Vol. 430 (2003), p.24.

Google Scholar

[26] Y. Khalid, A.P. Catherine, J.P. Couderc: J. Electrochem. Soc. Vol. 146 (1999), p.3018.

Google Scholar

[27] F. Shizuo, N. Zhou, S. Akio: Jpn. J. Appl. Phys., Part 2: Letters Vol. 22 (1983), p. l100.

Google Scholar

[28] S.B. Patil, A. Kumbhar, P. Waghmare: Thin Solid Films Vol. 395 (2001), p.270.

Google Scholar

[29] J. Buehler, E. Fitzer, D. Kehr: Tsement (1977), p.493.

Google Scholar

[30] J.J. Gebhardt, R.A. Tanzilli, T.A. Harris: Lett. Heat Mass Transf. (1975), p.786.

Google Scholar

[31] T. Taniuchi, T. Adachi, K. Kobayashi: Surf. Coat. Technol. Vol. 49 (1991), p.13.

Google Scholar

[32] K. Niihara, T. Hirai. J. Mater. Sci. Vol. 11 (1976), p.593.

Google Scholar

[33] K. Niihara, T. Hirai: J. Mater. Sci. Vol. 11 (1976), p.604.

Google Scholar

[34] K. Niihara, T. Hirai: J. Mater. Sci. Vol. 12 (1977), p.1233.

Google Scholar

[35] K. Niihara, T. Hirai: J. Mater. Sci. Vol. 12 (1977), p.1243.

Google Scholar

[36] H. Doi, N. Kikuchi, Y. Oosawa: Mater. Sci. Eng. Vol. A105-6 (1988), p.465.

Google Scholar

[37] Tanaka Masayuki, Saida Shigehiko and Lijima Tadashi, in: Digest of Technical Papers-Symposium on VLSI Technology, (1999), p.47.

Google Scholar

[38] Hay Stephen O., Veltri R.D. and Lee W.Y., in: Proceedings of SPIE-The International Society for Optical Engineering, 1435 (1991), p.352.

Google Scholar

[39] Yongsheng Liu, Laifei Cheng, Litong Zhang: J. Sci. Eng. Comp. Mater. In press.

Google Scholar

[40] Y. Liu, Y. Liu, L. Zhang, L. Cheng, Y. Xu: Journal of Inorganic Materials Vol. 21 (2006), p.979.

Google Scholar

[41] Y. Liu, Y. Liu, L. Zhang, L. Cheng, Y. Xu: Aeronautical Manufacturing Technology Vol. 4 (2007), p.73.

Google Scholar

[42] Y. Liu, L. Cheng, L. Zhang: Mater. Sci. Eng. Vol. A 475 (2008), p.217.

Google Scholar

[43] Liu Yi, MA. Eng, Research of Particles Reinforce Silicon Nitride Composite by CVI Method. Northwestern Polytechnical University, (2006).

Google Scholar

[44] Y. Liu, L. Cheng, L. Zhang, Y. Xu, Y. Liu: Vol. 20 (2005), p.1208.

Google Scholar

[45] Y. Liu, L. Cheng, L. Zhang: J. Unvi. Sci. Tech. B. Vol. 14 (2007), p.454.

Google Scholar

[46] X.P. Yao, K.H. Su, J.L. Deng, X. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang: Comput. Mater. Sci. Vol. 40 (2007).

Google Scholar

[47] J.L. Deng, K.H. Su, X. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang: Chem. Vap. Deposition Vol. 15 (2009), p.1.

Google Scholar

[48] Y. Zeng, K.H. Su, J.L. Deng, T. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang: J. Mol. Struct. Theochem. Vol. 861 (2008), p.103.

Google Scholar

[49] T. Wang, K.H. Su, J.L. Deng, Y. Zeng, Q.F. Zeng, L.F. Cheng, L.T. Zhang: J. Theor. Compu. Chem. Vol. 7 (2008), p.1269.

Google Scholar

[50] J.L. Deng, K.H. Su, X. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang: Theor. Chim. Acta Vol. 122 (2009), p.1.

Google Scholar

[51] Q.F. Zeng, Ph. D. Thesis, Northwestern Polytechnical University, (2001).

Google Scholar

[52] FactSage 5. 4. 1, Montreal, Quebec, Canada. (2006).

Google Scholar

[53] Scientific Group Thermodata Europe (SGTE) data base, BP 166, 38402 Saint Martind Hères, France.

Google Scholar