LIC LAB FILE
SUBMITTED BY: S.SRIVATHSAN
526/IC/11
EXPERIMENT 1
AIM: Simulate Op-Amp(741) as Inverting and Non-inverting amplifier
1. DC analysis(Find linear range for all values of Rf)
2. AC analysis(Gain v/s Frequency graph)
3. Transient Analysis
1. Inverting amplifier :
Inverting(DC)
*inverting opamp
X 0 2 7 4 6 UA741
rin 1 2 1K
rf 6 2 2K
vp 7 0 DC 12V
vn 0 4 DC 12V
vin 1 0 DC 0V
.lib eval.lib
.dc vin -15 +15 0.1
.probe
.end
20V
0V
-20V
-15V
vin
-10V
-5V
0V
V(6)
vin
5V
10V
15V
Inverting(AC)
*inverting ac
X 0 2 7 4 6 UA741
rin 1 2 1K
rf 6 2 2K
vp 7 0 DC 12V
vn 0 4 DC 12V
vin 1 0 AC 2V
.lib eval.lib
.ac DEC 20 1Hz 2MEGHz
.probe
.end
4.0V
3.0V
2.0V
1.0V
1.0Hz
V(6)
10Hz
100Hz
1.0KHz
Frequency
Inverting(Transient)
*opamp inverting amplifier*
x1 0 2 3 4 5 uA741
.lib eval.lib
r1 1 2 1k
rf 2 5 10k
v1 1 0 sin(0 1 1k)
v+ 3 0 DC 12V
v- 0 4 DC 12V
.Tran 0.1us 5ms 0ms 0.01ms
.probe
10KHz
100KHz
1.0MHz
10V
5V
0V
-5V
-10V
0s
0.5ms
V(5)
1.0ms
1.5ms
2.0ms
2.5ms
V(1)
Time
2. Non-Inverting Amplifier
Non-Inverting (DC)
*noninverting opamp dc
X 3 2 7 4 6 UA741
rin 2 0 1K
rf 6 2 2K
vp 7 0 DC 12V
vn 0 4 DC 12V
vin 3 0 DC 0V
.lib C:\Cadence\SPB_16.3\tools\pspice\library\eval.lib
.dc lin vin -12 +12 1
.probe
.end
3.0ms
3.5ms
4.0ms
4.5ms
5.0ms
20V
0V
-20V
-12V
V(6)
-10V
vin
-8V
-6V
-4V
-2V
0V
2V
4V
6V
8V
10V
12V
vin
Non-Inverting (AC)
*noninverting opamp ac
X 3 2 7 4 6 UA741
rin 2 0 1K
rf 6 2 2K
vp 7 0 DC 12V
vn 0 4 DC 12V
vin 3 0 AC 2V
.lib C:\Cadence\SPB_16.3\tools\pspice\library\eval.lib
.ac DEC 20 1Hz 2MEGHz
.probe
.end
6.0V
4.0V
2.0V
0V
1.0Hz
V(6)
10Hz
100Hz
1.0KHz
10KHz
Frequency
100KHz
1.0MHz
10MHz
* Non-Inverting(Transient)
*non-inv opamp
x1 1 2 3 4 5 uA741
.lib eval.lib
r1 0 2 1k
rf 2 5 10k
v+ 3 0 DC 12V
v- 0 4 DC 12V
v1 1 0 sin(0 1 1k)
.tran 0.1us 5ms 0ms 0.01ms
.probe
12V
8V
4V
0V
-4V
-8V
-12V
0s
0.5ms
V(5)
1.0ms
1.5ms
2.0ms
2.5ms
V(1)
Time
3.0ms
3.5ms
4.0ms
4.5ms
5.0ms
EXPERIMENT 2
AIM: To study basic application of OP-AMP as a differentiator and as an integrator
and obtain different RC combination for each giving an undistorted output by
using built in Opamp library
INTEGRATOR
* Op-amp integrator
x 0 3 4 5 6 uA741
.lib eval.lib
r1 1 3 10k
r2 3 6 10k
c1 3 6 0.01uf
v1 1 0 pulse(-1v 1v 0ms 0ms 0ms 0.1ms 0.2ms)
.tran 0.1us 2ms 1ms 0.01ms
.probe
1.5V
1.0V
0.5V
0V
-0.5V
-1.0V
-1.5V
1.0ms
V(1)
1.1ms
V(6)
1.2ms
1.3ms
1.4ms
1.5ms
Time
1.6ms
1.7ms
1.8ms
1.9ms
2.0ms
*integrator
r1 1 2 5.5k
c1 2 6 0.01uf
x1 0 2 7 4 6 ua741
vp 7 0 dc 12v
vn 0 4 dc 12v
vin 1 0 sin(0 2 500hz)
.lib nom.lib
.tran 0.01m 0.01 0 0.01m
.probe
.end
20V
0V
-20V
0s
1ms
V(1)
2ms
3ms
4ms
5ms
6ms
7ms
8ms
9ms
10ms
1.2s
1.4s
1.6s
1.8s
2.0s
V(6)
Time
*integrator
r1 1 2 5.5k
c1 2 6 1uf
x1 0 2 7 4 6 ua741
vp 7 0 dc 12v
vn 0 4 dc 12v
vin 1 0 pulse(-3 3 1n 0.5 0.5 1n 1)
.lib nom.lib
.tran 0.01 2 0 0.01
.probe
.end
10V
0V
-10V
0s
0.2s
V(1)
0.4s
0.6s
0.8s
1.0s
V(6)
Time
DIFFERENCIATOR
*Op-amp differentiator
x 0 3 4 5 6 uA741
.lib eval.lib
r1 1 2 1k
r2 3 6 1k
c1 2 3 0.005uf
v+ 4 0 DC 12v
v- 0 5 DC 12v
v1 1 0 pulse(-1v 1v 0ms 0ms 0ms 0.1ms 0.2ms)
.tran 0.1us 1ms 0ms 0.01ms
.probe
1.5V
1.0V
0.5V
-0.0V
-0.5V
-1.0V
-1.5V
0s
V(6)
0.1ms
V(1)
0.2ms
0.3ms
0.4ms
0.5ms
Time
*differenciator
0.6ms
0.7ms
0.8ms
0.9ms
1.0ms
c1 1 2 0.1uf
r1 2 6 10k
c2 2 6 0.01uf
x1 0 2 7 4 6 ua741
vp 7 0 dc 12v
vn 0 4 dc 12v
vin 1 0 sin(0 1 50hz)
.lib nom.lib
.tran 0.1m 0.1 0 0.1m
.probe
.end
1.0V
0V
-1.0V
0s
10ms
V(1)
20ms
30ms
40ms
50ms
60ms
70ms
80ms
90ms
V(6)
Time
*differenciator
c1 1 2 5uf
r1 2 6 10k
c2 2 6 0.01uf
x1 0 2 7 4 6 ua741
vp 7 0 dc 12v
vn 0 4 dc 12v
vin 1 0 pulse(-1 1 1n 1 1 1n 2)
.lib nom.lib
.tran 0.1 5 0 0.1
.probe
.end
1.0V
0V
-1.0V
0s
0.5s
V(1)
1.0s
1.5s
2.0s
2.5s
V(6)
Time
3.0s
3.5s
4.0s
4.5s
5.0s
100ms
EXPERIMENT 3
Aim: To study KHN-Biquad filter.
* KHN BIQUAD
x1 1 2 10 11 3 ua741
x2 0 4 10 11 6 ua741
x3 0 7 10 11 9 ua741
v+ 10 0 DC 12
v- 0 11 DC 12
.lib eval.lib
rs 16 1 10k
rf 2 3 10k
r1 3 4 1k
c1 4 6 0.01uf
r2 6 7 1k
c2 7 9 0.01uf
rk1 2 9 10k
rk2 1 6 4.14k
v1 16 0 ac 0.1
.ac dec 10 1 200k
.probe
80mV
60mV
40mV
20mV
0V
1.0Hz
V(3)
3.0Hz
V(6)
V(9)
10Hz
30Hz
100Hz
300Hz
Frequency
1.0KHz
3.0KHz
10KHz
30KHz
100KHz
EXPERIMENT 4(a)
Aim: Create a macro model of OPAMP. Simulate a non-inverting
amplifier and its compensated version.
* macromodel for opamp
.subckt myopamp 3 2 6
r1 0 3 10Meg
r2 3 2 2Meg
r3 2 0 10Meg
c1 5 0 0.01uf
e1 4 0 3 2 2e5
e2 10 0 5 0 1
r4 4 5 10Meg
r5 10 6 75
.ends
*opamp inverting amplifier using macromodel
x1 0 2 5 myopamp
.lib C:\Users\SRIVATHSAN\Desktop\myopamp\myopamp.lib
r1 1 2 1k
rf 2 5 10k
v1 1 0 sin(0 1 1k)
.Tran 0.1us 5ms 0ms 0.01ms
.probe
.end
5.0V
0V
-5.0V
0s
V(5)
0.5ms
V(1)
1.0ms
1.5ms
2.0ms
2.5ms
Time
3.0ms
3.5ms
4.0ms
4.5ms
5.0ms
*opamp non-inverting amplifier using macromodel
x1 1 2 5 myopamp
.lib C:\Users\SRIVATHSAN\Desktop\myopamp\myopamp.lib
r1 0 2 1k
rf 2 5 5k
v1 1 0 sin(0 1 1k)
.Tran 0.1us 5ms 0ms 0.01ms
.probe
6.0V
4.0V
2.0V
0V
-2.0V
-4.0V
-6.0V
0s
V(5)
0.5ms
V(1)
1.0ms
1.5ms
2.0ms
2.5ms
3.0ms
3.5ms
4.0ms
4.5ms
5.0ms
Time
*opamp using macromodel uncompensated
x1 0 2 5 myopamp
.lib C:\Users\SRIVATHSAN\Desktop\myopamp\myopamp.lib
r1 1 2 1k
rf 2 5 10k
v1 1 0 ac 2v
.ac dec 1 10 2meg
.probe
.end
600mV
400mV
200mV
0V
1.0Hz
V(6)
3.0Hz
10Hz
30Hz
100Hz
300Hz
1.0KHz
3.0KHz
Frequency
10KHz
30KHz
100KHz
300KHz
1.0MHz
3.0MHz
10MHz
*myopamp_NI_comp
.lib
C:\Users\Srivathsan\Desktop\myopamp\myopa
mp.lib
R1 2 0 1K
R2 2 3 10K
R3 3 4 20K
R4 4 6 2.5K
X1 1 2 6 myopamp
X2 5 4 3 myopamp
Vin 1 0 AC 2V
.AC DEC 10 1 1MEG
.PROBE
.END
50
-50
-100
1.0Hz
10Hz
20*LOG10(V(6)/V(1))
100Hz
1.0KHz
10KHz
100KHz
Frequency
1.0MHz
10MHz
100MHz
1.0GHz
*myopamp_I_comp
.lib C:\Users\Srivathsan\Desktop\myopamp\
myopamp.lib
R1 2 0 5K
R2 2 5 5K
R3 4 0 20K
R4 3 4 20K
R5 4 5 10K
R6 7 8 5K
R7 7 6 5K
X1 1 7 6 myopamp
X2 4 1 8 myopamp
X3 2 1 3 myopamp
Vin 1 0 AC 2V
.AC DEC 10 1 100GHZ
.PROBE
.END
200
100
-100
1.0Hz
10Hz
20*LOG10(V(6)/V(1))
100Hz
1.0KHz
10KHz
100KHz
1.0MHz
Frequency
10MHz
100MHz
1.0GHz
10GHz
100GHz
EXPERIMENT 5
Aim: To simulate differential amplifier based on current mirror. Perform AC, DC
and transient analysis.
*bjt diff amp(DC)
.lib eval.lib
q1 4 1 2 q2n2222
q2 5 3 2 q2n2222
q3 8 8 9 q2n2222
q4 2 8 9 q2n2222
vc1 6 4 dc 0v
vc2 6 5 dc 0v
vd 10 0 ac 1v
e1 1 7 10 0 0.5
e2 7 3 10 0 0.5
vcm 7 0 dc 0v
r3 8 0 4.3k
rd 0 10 1
.dc vd -5 5 0.01
vcc 6 0 dc 5v
vcc2 0 9 dc 5v
.probe
.end
1.2mA
1.0mA
0.8mA
0.6mA
0.4mA
0.2mA
0A
-5.0V
I(vc1)
-4.0V
I(vc2)
-3.0V
-2.0V
-1.0V
0.0V
vd
*bjt diff amp(AC)
.lib eval.lib
q1 4 1 2 q2n2222
q2 5 3 2 q2n2222
q3 8 8 9 q2n2222
q4 2 8 9 q2n2222
rc1 6 4 1k
rc2 6 5 1k
vd 10 0 ac 1v
e1 1 7 10 0 0.5
e2 7 3 10 0 0.5
vcm 7 0 dc 0v
r3 8 0 4.3k
rd 0 10 1
.ac DEC 10 1 100k
vcc 6 0 dc 5v
vcc2 0 9 dc 5v
.probe
.end
1.0V
2.0V
3.0V
4.0V
5.0V
19.94902V
19.94900V
19.94898V
19.94896V
19.94894V
19.94892V
1.0Hz
3.0Hz
V(4)- V(5)
10Hz
30Hz
100Hz
300Hz
Frequency
*bjt diff amp(Transient)
.lib eval.lib
q1 4 1 2 q2n2222
q2 5 3 2 q2n2222
q3 8 8 9 q2n2222
q4 2 8 9 q2n2222
rc1 6 4 1k
rc2 6 5 1k
vd 10 0 sin(0 0.1 50)
e1 1 7 10 0 0.5
e2 7 3 10 0 0.5
vcm 7 0 dc 0v
r3 8 0 4.3k
rd 0 10 1
.tran 0.0001 0.1 1n 0.0001
vcc 6 0 dc 5v
vcc2 0 9 dc 5v
.probe
.end
1.0KHz
3.0KHz
10KHz
30KHz
100KHz
1.0V
0.5V
0V
-0.5V
-1.0V
0s
V(4)-
V(5)
10ms
V(10)
20ms
30ms
40ms
50ms
Time
60ms
70ms
80ms
90ms
100ms