0% found this document useful (0 votes)
134 views9 pages

Signal Processing First Reading Assignments: This Lecture

r334324234
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
134 views9 pages

Signal Processing First Reading Assignments: This Lecture

r334324234
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

1/28/2005 2003, J H McClellan &RW Schafer 1

Si gnal Pr oc essi ng Fi r st
Lec t ur e 5
Per i odi c Si gnal s, Har moni c s
& Ti me-Var yi ng Si nusoi ds
1/28/2005 2003, J H McClellan &RW Schafer 3
READI NG ASSI GNMENTS
This Lecture:
Chapter 3, Sections 3-2 and 3-3
Chapter 3, Sections 3-7 and 3-8
Next Lecture:
Fourier Series ANALYSIS Fourier Series ANALYSIS
Sections 3-4, 3-5 and 3-6
1/28/2005 2003, J H McClellan &RW Schafer 4
Pr obl em Sol vi ng Sk i l l s
Math Formula
Sum of Cosines
Amp, Freq, Phase
Recorded Signals
Speech
Music
No simple formula
Plot & Sketches
S(t) versus t
Spectrum
MATLAB
Numerical
Computation
Plotting list of
numbers
1/28/2005 2003, J H McClellan &RW Schafer 5
LECTURE OBJ ECTI VES
Signals with HARMONIC HARMONIC Frequencies
Add Sinusoids with f
k
=kf
0
FREQUENCY can change vs. TIME
Chirps:
Introduce Spectrogram Visualization (specgram.m)
(plotspec.m)
x(t)= cos(t
2
)

=
+ + =
N
k
k k
t kf A A t x
1
0 0
) 2 cos( ) (
1/28/2005 2003, J H McClellan &RW Schafer 6
SPECTRUM DI AGRAM
Recall Complex Amplitude vs. Freq
k k
a X =
2
1
0 100 250 100 250
f (in Hz)
3 /
7
j
e
3 /
7
j
e

2 /
4
j
e
2 /
4
j
e
10
) 2 / ) 250 ( 2 cos( 8
) 3 / ) 100 ( 2 cos( 14 10 ) (


+ +
+ =
t
t t x
k
j
k k
e A X

=

k
X
2
1
1/28/2005 2003, J H McClellan &RW Schafer 7
SPECTRUM f or PERI ODI C ?
Nearly Periodic in the Vowel Region
Period is (Approximately) T =0.0065 sec
1/28/2005 2003, J H McClellan &RW Schafer 8
PERI ODI C SI GNALS
Repeat every T secs
Definition
Example:
Speech can be quasi-periodic
) ( ) ( T t x t x + =
) 3 ( cos ) (
2
t t x =
? = T
3

= T
3
2
= T
1/28/2005 2003, J H McClellan &RW Schafer 9
Per i od of Compl ex Ex ponent i al
Definition: Period is T
k =integer
t j T t j
e e

=
+ ) (
? ) ( ) (
) (
t x T t x
e t x
t j
= +
=

1
2
=
k j
e

k T e
T j

2 1 = =
k k
T T
k
0
2 2

= =
1/28/2005 2003, J H McClellan &RW Schafer 10
{ }

=

=
+ + =
=
+ + =
N
k
t kf j
k
t kf j
k
j
k k
N
k
k k
e X e X X t x
e A X
t kf A A t x
k
1
2
2
1
2
2
1
0
1
0 0
0 0
) (
) 2 cos( ) (


Har moni c Si gnal Spec t r um
0
: have only can signal Periodic f k f
k
=
T
f
1
0
=
1/28/2005 2003, J H McClellan &RW Schafer 11
Def i ne FUNDAMENTAL FREQ
0
0
1
T
f =
(shortest) Period l fundamenta
(largest) Frequency l fundamenta
) 2 (
) 2 cos( ) (
0
0
0 0 0
1
0 0
=
=
= =
+ + =

=
T
f
f f k f
t kf A A t x
k
N
k
k k


1/28/2005 2003, J H McClellan &RW Schafer 12
What is the fundamental frequency?
Har moni c Si gnal (3 Fr eqs)
3rd
5th
10 Hz
1/28/2005 2003, J H McClellan &RW Schafer 13
POP QUI Z: FUNDAMENTAL
Heres another spectrum:
What is the fundamental frequency?
100 Hz ? 50 Hz ?
0 100 250 100 250
f (in Hz)
3 /
7
j
e
3 /
7
j
e

2 /
4
j
e
2 /
4
j
e
10
1/28/2005 2003, J H McClellan &RW Schafer 14
SPECIAL RELATIONSHIP
to get a PERIODIC SIGNAL
I RRATI ONAL SPECTRUM
1/28/2005 2003, J H McClellan &RW Schafer 15
Har moni c Si gnal (3 Fr eqs)
T=0.1
1/28/2005 2003, J H McClellan &RW Schafer 16
NON-Har moni c Si gnal
NOT
PERIODIC
1/28/2005 2003, J H McClellan &RW Schafer 17
FREQUENCY ANALYSI S
Now, a much HARDER problem Now, a much HARDER problem
Given a recording of a song, have the
computer write the music
Can a machine extract frequencies?
Yes, if we COMPUTE the spectrum for x(t)
During short intervals
1/28/2005 2003, J H McClellan &RW Schafer 18
Ti me-Var yi ng
FREQUENCI ES Di agr am
F
r
e
q
u
e
n
c
y

i
s

t
h
e

v
e
r
t
i
c
a
l

a
x
i
s
Time is the horizontal axis
A-440
1/28/2005 2003, J H McClellan &RW Schafer 19
SI MPLE TEST SI GNAL
C-major SCALE: stepped frequencies
Frequency is constant for each note
IDEAL
1/28/2005 2003, J H McClellan &RW Schafer 20
R-r at ed: ADULTS ONLY
SPECTROGRAM Tool
MATLAB function is specgram.m
SP-First has plotspec.m & spectgr.m
ANALYSIS program
Takes x(t) as input &
Produces spectrum values X
k
Breaks x(t) into SHORT TIME SEGMENTS
Then uses the FFT (Fast Fourier Transform)
1/28/2005 2003, J H McClellan &RW Schafer 21
SPECTROGRAM EXAMPLE
Two Constant Frequencies: Beats
) ) 12 ( 2 sin( ) ) 660 ( 2 cos( t t
1/28/2005 2003, J H McClellan &RW Schafer 22
( ) ( )
t j t j
j
t j t j
e e e e
) 12 ( 2 ) 12 ( 2
2
1
) 660 ( 2 ) 660 ( 2
2
1

+
AM Radi o Si gnal
Same as BEAT Notes
) ) 12 ( 2 sin( ) ) 660 ( 2 cos( t t
) ) 648 ( 2 cos( ) ) 672 ( 2 cos(
2 2
1
2 2
1
+ + t t
( )
t j t j t j t j
j
e e e e
) 648 ( 2 ) 648 ( 2 ) 672 ( 2 ) 672 ( 2
4
1

+
1/28/2005 2003, J H McClellan &RW Schafer 23
SPECTRUM of AM (Beat )
4 complex exponentials in AM:
What is the fundamental frequency?
648 Hz ? 24 Hz ?
0 648 672
f (in Hz)
672 648
2 /
4
1
j
e
2 /
4
1
j
e
2 /
4
1
j
e
2 /
4
1
j
e
1/28/2005 2003, J H McClellan &RW Schafer 24
STEPPED FREQUENCI ES
C-major SCALE: successive sinusoids
Frequency is constant for each note
IDEAL
1/28/2005 2003, J H McClellan &RW Schafer 25
SPECTROGRAM of C-Sc al e
ARTIFACTS at Transitions
Sinusoids ONLY
From SPECGRAM
ANALYSIS PROGRAM
1/28/2005 2003, J H McClellan &RW Schafer 26
Spec t r ogr am of LAB SONG
ARTIFACTS at Transitions
Sinusoids ONLY
Analysis Frame = 40ms
1/28/2005 2003, J H McClellan &RW Schafer 27
Ti me-Var yi ng Fr equenc y
Frequency can change vs. time
Continuously, not stepped
FREQUENCY MODULATION (FM) FREQUENCY MODULATION (FM)
CHIRP SIGNALS
Linear Frequency Modulation (LFM)
)) ( 2 cos( ) ( t v t f t x
c
+ =
VOICE
1/28/2005 2003, J H McClellan &RW Schafer 28
) 2 cos( ) (
0
2
+ + = t f t A t x
New Si gnal : Li near FM
Called Chirp Signals (LFM)
Quadratic phase
Freq will change LINEARLY vs. time
Example of Frequency Modulation (FM)
Define instantaneous frequency
QUADRATIC
1/28/2005 2003, J H McClellan &RW Schafer 29
I NSTANTANEOUS FREQ
Definition
For Sinusoid:
Derivative
of the Angle
) ( ) (
)) ( cos( ) (
t t
t A t x
dt
d
i


=
=
Makes sense
0
0
0
2 ) ( ) (
2 ) (
) 2 cos( ) (
f t t
t f t
t f A t x
dt
d
i



= =
+ =
+ =
1/28/2005 2003, J H McClellan &RW Schafer 30
I NSTANTANEOUS FREQ
of t he Chi r p
Chirp Signals have Quadratic phase
Freq will change LINEARLY vs. time


+ + =
+ + =
t t t
t t A t x
2
2
) (
) cos( ) (
+ = = t t t
dt
d
i
2 ) ( ) (
1/28/2005 2003, J H McClellan &RW Schafer 31
CHI RP SPECTROGRAM
1/28/2005 2003, J H McClellan &RW Schafer 32
CHI RP WAVEFORM
1/28/2005 2003, J H McClellan &RW Schafer 33
OTHER CHI RPS
(t) can be anything:
(t) could be speech or music:
FM radio broadcast
) ) cos( cos( ) ( + = t A t x
) sin( ) ( ) ( t t t
dt
d
i
= =
1/28/2005 2003, J H McClellan &RW Schafer 34
SI NE-WAVE FREQUENCY
MODULATI ON (FM)
Look at CD-ROM Demos in Ch 3

You might also like