Signal
Processing
First
Copyright Monash University 2009
Lecture5
PeriodicSignals,
Harmonics&
TimeVarying
Sinusoids
READING ASSIGNMENTS
ThisLecture:
Chapter3,Sections32and33
Chapter3,Sections37and38
NextLecture:
FourierSeriesANALYSIS
Sections34,35and36
Copyright Monash University 2009
Problem Solving Skills
MathFormula
SumofCosines
Amp,Freq,Phase
RecordedSignals
Speech
Music
Nosimpleformula
Copyright Monash University 2009
Plot&Sketches
s(t)versust
Spectrum
MATLAB
Numerical
Computation
Plottinglistof
numbers
3
LECTURE OBJECTIVES
SignalswithHARMONIC Frequencies
AddSinusoidswithfk =kf0
N
x (t ) A0 Ak cos(2 kf 0t k )
k 1
FREQUENCY can change vs. TIME
Chirps:
2
x(t) cos( t )
Introduce Spectrogram Visualization (specgram.m)
(plotspec.m)
Copyright Monash University 2009
SPECTRUM DIAGRAM
RecallComplexAmplitudevs.Freq
1
2
Xk
4e
j / 2
7e
250
j / 3
10
7e
j / 3
4e
X k Ak e j k
100
1
2
100
j / 2
250
x (t ) 10 14 cos(2 (100)t / 3)
8 cos(2 ( 250)t / 2)
Copyright Monash University 2009
Xk
f (in Hz)
SPECTRUM for PERIODIC ?
NearlyPeriodic intheVowelRegion
Periodis(Approximately)T=0.0065 sec
Copyright Monash University 2009
PERIODIC SIGNALS
PeriodicsignalrepeatseveryTsecs
x (t ) x (t T )
Period:=minimumT
Example:
x (t ) cos (3t )
2
T ?
T 2
3
T
3
Speechcanbequasiperiodic
Copyright Monash University 2009
Period of Complex Exponential
j t
x (t ) e
Definition: Period is T
x (t T ) x (t ) ?
j ( t T )
j t
e
e
e j 2 k 1
jT
e
1 T 2 k
2 k 2
k = integer
k 0k
T
Copyright Monash University 2009
Harmonic Signal Spectrum
Periodic signal can only have : f k k f 0
N
x (t ) A0 Ak cos(2 kf 0t k )
k 1
X k Ak e
N
x (t ) X 0
k 1
Copyright Monash University 2009
1
2
j k
X ke
j 2 kf 0t
1
2
1
f0
T
j 2 kf 0t
X ke
Define FUNDAMENTAL FREQ
N
x(t ) A0 Ak cos(2 kf 0t k )
k 1
fk k f0
(0 2 f 0 )
1
f0
T0
f 0 fundamental Frequency (smallest)
T0 fundamental Period (largest)
Copyright Monash University 2009
10
Harmonic Signal (3 Freqs)
3rd
What is the fundamental frequency?
Copyright Monash University 2009
5th
10 Hz!!!
11
POP QUIZ: FUNDAMENTAL
Heresanotherspectrum:
4e
j / 2
7e
250
j / 3
10
7e
j / 3
4e
100
100
j / 2
250
f (in Hz)
What is the fundamental frequency?
100 Hz ?
Copyright Monash University 2009
50 Hz ?
50 Hz !!!
Greatest
Common
Divisor!!!
12
IRRATIONAL SPECTRUM
SPECIAL RELATIONSHIP
to get a PERIODIC SIGNAL
Copyright Monash University 2009
13
Harmonic Signal (3 Freqs)
T=0.1
Copyright Monash University 2009
14
NON-Harmonic Signal
NOT
PERIODIC
Copyright Monash University 2009
15
FREQUENCY ANALYSIS
Now,amuchHARDERproblem
Givenarecordingofasong,havethe
computerwritethemusic
Can a machine extract frequencies?
Yes, if we COMPUTE the spectrum for x(t)
During short intervals
Copyright Monash University 2009
16
Frequency is the vertical axis
Time-Varying FREQUENCIES
Diagram
Copyright Monash University 2009
A-440
Time is the horizontal axis
17
SIMPLE TEST SIGNAL
CmajorSCALE:steppedfrequencies
Frequencyisconstantforeachnote
IDEAL
Copyright Monash University 2009
18
R-rated: ADULTS ONLY
SPECTROGRAMTool
MATLABfunctionisspecgram.m
SPFirsthasplotspec.m &spectgr.m
ANALYSIS program
Takesx(t)asinput&
ProducesspectrumvaluesXk
Breaksx(t)intoSHORTTIMESEGMENTS
ThenusestheFFT(FastFourierTransform)
Copyright Monash University 2009
19
SPECTROGRAM EXAMPLE
TwoConstant Frequencies:Beats
cos(2 (660)t ) sin(2 (12)t )
Copyright Monash University 2009
20
Amplitude Modulated
Radio Signal
SameasBEATNotes
1
2
1
4j
1
2
cos(2 (660)t ) sin(2 (12)t )
j 2 ( 660 ) t
j 2 ( 672 ) t
j 2 ( 660 ) t
e
1
2j
j 2 (12 ) t
j 2 (12 ) t
e j 2 ( 672 ) t e j 2 ( 648) t e j 2 ( 648) t
cos(2 (672)t 2 ) 12 cos(2 (648)t 2 )
600 12 f c f
Copyright Monash University 2009
21
SPECTRUM of AM (Beat)
4complexexponentialsinAM:
1
4
e j / 2
672
1
4
e j / 2
648
1
4
j / 2
648
1
4
e j / 2
672
f (in Hz)
What is the fundamental frequency?
648 Hz ?
Copyright Monash University 2009
24 Hz ?
22
STEPPED FREQUENCIES
CmajorSCALE:successivesinusoids
Frequencyisconstantforeachnote
IDEAL
Copyright Monash University 2009
23
SPECTROGRAM of C-Scale
Sinusoids ONLY
From SPECGRAM
ANALYSIS PROGRAM
ARTIFACTS at Transitions
Copyright Monash University 2009
24
Spectrogram of LAB SONG
Sinusoids ONLY
Analysis Frame = 40ms
ARTIFACTS at Transitions
Copyright Monash University 2009
25
Time-Varying Frequency
Frequencycanchangevs.time
Continuously,notstepped
FREQUENCYMODULATION(FM)
x (t ) cos(2 f c t v (t ))
VOICE
CHIRPSIGNALS
LinearFrequencyModulation(LFM)
Copyright Monash University 2009
26
New Signal: Linear FM
Called Chirp Signals(LFM)
QUADRATIC
Quadraticphase
x (t ) A cos( t 2 f 0 t )
2
FreqwillchangeLINEARLY vs.time
ExampleofFrequencyModulation(FM)
Defineinstantaneousfrequency
Copyright Monash University 2009
27
INSTANTANEOUS FREQ
Definition
x (t ) A cos( (t ))
d (t )
i (t ) dt
Derivative
of the Angle
ForSinusoid:
x (t ) A cos(2 f 0t )
(t ) 2 f 0t
i ( t )
Copyright Monash University 2009
d (t )
dt
Makes sense
2 f 0
28
INSTANTANEOUS FREQ
of the Chirp
Chirp SignalshaveQuadraticphase
FreqwillchangeLINEARLY vs.time
x (t ) A cos( t t )
2
(t ) t t
2
i ( t )
Copyright Monash University 2009
d (t )
dt
2 t
29
CHIRP SPECTROGRAM
Copyright Monash University 2009
30
CHIRP WAVEFORM
Copyright Monash University 2009
31
OTHER CHIRPS
(t)canbeanything:
x (t ) A cos( cos( t ) )
i (t )
(
t
)
dt
sin( t )
(t)couldbespeechormusic:
FMradiobroadcast
Copyright Monash University 2009
32
SINE-WAVE FREQUENCY
MODULATION (FM)
Look at CD-ROM Demos in Ch 3
Copyright Monash University 2009
33