0% found this document useful (0 votes)
29 views4 pages

English Chapter 2: Logic: Inference

The document summarizes 8 rules of logical inference: 1. Addition 2. Simplification 3. Modus Ponens 4. Modus Tollens 5. Disjunctive Syllogism 6. Hypothetical Syllogism 7. Constructive Dilemma 8. Destructive Dilemma Each rule is explained through a truth table that shows how the conclusion follows from the premises.

Uploaded by

Putri Fatmasari
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views4 pages

English Chapter 2: Logic: Inference

The document summarizes 8 rules of logical inference: 1. Addition 2. Simplification 3. Modus Ponens 4. Modus Tollens 5. Disjunctive Syllogism 6. Hypothetical Syllogism 7. Constructive Dilemma 8. Destructive Dilemma Each rule is explained through a truth table that shows how the conclusion follows from the premises.

Uploaded by

Putri Fatmasari
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

ENGLISH CHAPTER 2 : LOGIC

PUTRI FATMASARI
105361103618
2018B

INFERENCE

1. Addition
𝒑 → (𝒑 ∨ 𝒒)

𝑝 𝑞 (𝑝 ∨ 𝑞) 𝑝 → (𝑝 ∨ 𝑞)
T T T T
T F T T
F T T T
F F F T

2. Simplification
(𝒑 ∨ 𝒒 → 𝒑)

𝑝 𝑞 (𝑝 ∨ 𝑞) (𝑝 ∨ 𝑞 → 𝑝)
T T T T
T F T T
F T T F
F F F T
3. Modus Ponens

[𝒑 ∧ (𝒑 → 𝒒)] → 𝒒

𝑝 𝑞 (𝑝 → 𝑞) [𝑝 ∧ (𝑝 → 𝑞)] [𝑝 ∧ (𝑝 → 𝑞)] → 𝑞
T T T T T
T F F F T
F T T F T
F F T F T

4. Modus Tollens

[~𝒒 ∧ (𝒑 → 𝒒)] → ~𝒑

𝑝 𝑞 ~𝑝 ~𝑞 (𝑝 → 𝑞) [~𝑞 ∧ (𝑝 → 𝑞)] [~𝑞 ∧ (𝑝 → 𝑞)] → ~𝑝


T T F F T F T
T F F T F F T
F T T F T F T
F F T T T T T

5. Disjunctive Syllogism

[(𝒑 ∨ 𝒒) ∧ ~𝒑] → 𝒒)

𝑝 𝑞 ~𝑝 (𝑝 ∨ 𝑞) [(𝑝 ∨ 𝑞) ∧ ~𝑝] [(𝑝 ∨ 𝑞) ∧ ~𝑝] → 𝑞)


T T F T F T
T F F T F T
F T T T T T
F F T F F T
6. Hypothetical Syllogism

[(𝒑 → 𝒒) ∧ (𝒒 → 𝒓)] → (𝒑 → 𝒓)

𝑝 𝑞 𝑟 (𝑝 → 𝑞) (𝑞 → 𝑟) (𝑝 → 𝑟) [(𝑝 → 𝑞) ∧ (𝑞 → 𝑟)] [(𝑝 → 𝑞) ∧ (𝑞 → 𝑟)] → (𝑝 → 𝑟)


T T T T T T T T
T T F T F F F T
T F T F T T F T
T F F F T F F T
F T T T T T T T
F T F T F T F T
F F T T T T T T
F F F T T T T T

7. Constructive Dilemma

[[(𝒑 → 𝒒) ∧ (𝒓 → 𝒔)] ∧ (𝒑 ∨ 𝒓)] → (𝒒 ∨ 𝒔)

𝑝 𝑞 𝑟 𝑠 (𝑝 → 𝑞) (𝑟 → 𝑠) (𝑝 ∨ 𝑟) (𝑞 ∨ 𝑠) (𝑝 → 𝑞) ∧ (𝑟 → 𝑠) [[(𝑝 → 𝑞) ∧ (𝑟 → 𝑠)] ∧ (𝑝 ∨ 𝑟)] [[(𝑝 → 𝑞) ∧ (𝑟 → 𝑠)] ∧ (𝑝 ∨ 𝑟)] → (𝑞 ∨ 𝑠)


T T T T T T T T T T T
T T T F T F T T F F T
T T F T T T T T T T T
T T F F T T T T T T T
T F T T F T T T F F T
T F T F F F T F F F T
T F F T F T T T F F T
T F F F F T T F F F T
F T T T T T T T T T T
F T T F T F T T F F T
F T F T T T F T T F T
F T F F T T F T T F T
F F T T T T T T T T T
F F T F T F T F F F T
F F F T T T F T T F T
F F F F T T F F T F T
8. Destructive Dilemma

[[(𝒑 → 𝒒) ∧ (𝒓 → 𝒔)] ∧ (~𝒒 ∨ ~𝒔)] → (~𝒑 ∨ ~𝒓)

𝑝 𝑞 𝑟 𝑠 ~𝑝 ~𝑞 ~𝑟 ~𝑠 (𝑝 → 𝑞) (𝑟 → 𝑠) (~𝑞 ∨ ~𝑠) (~𝑝 ∨ ~𝑟) (𝑝 → 𝑞) ∧ (𝑟 → 𝑠) [[(𝑝 → 𝑞) ∧ (𝑟 → 𝑠)] ∧ (~𝑞 ∨ ~𝑠)] [[(𝑝 → 𝑞) ∧ (𝑟 → 𝑠)] ∧ (~𝑞 ∨ ~𝑠)] → (~𝑝 ∨ ~𝑟)
T T T T F F F F T T F F T F T
T T T F F F F T T F T F F F T
T T F T F F T F T T F T T F T
T T F F F F T T T T T T T T T
T F T T F T F F F T T F F F T
T F T F F T F T F F T F F F T
T F F T F T T F F T T T F F T
T F F F F T T T F T T T F F T
F T T T T F F F T T F T T F T
F T T F T F F T T F T T F F T
F T F T T F T F T T F T T F T
F T F F T F T T T T T T T T T
F F T T T T F F T T T T T T T
F F T F T T F T T F T T F F T
F F F T T T T F T T T T T T T
F F F F T T T T T T T T T T T

You might also like