1. (Easiest Way) Use known values for z alpha/2.
You don’t actually have to look up z alpha/2 in a z-table every time. For most statistical
tests, you’ll probably be using one of four confidence intervals (90%, 95%, 98% and 99%).
The z alpha/2 for each confidence level is always the same:
2. Use a Z-Table
Step 1: Find the alpha level. If you are given the alpha level in the question (for example, an
alpha level of 10%), skip to step 2. Subtract your confidence level from 100%. For example, if
you have a 95 percent confidence level, then 100% – 95% = 5%.
Step 2: Divide the amount you found in Step 1 by 2 to get the alpha level for a two-tailed
test:
.50/2 = 2.5 percent.
Step 3: Subtract Step 2 from 50%:
50% – 2.5% = 47.5%
Step 4: Convert Step 3 to a decimal and find that area in the center of the z-table.
The closest z-score to 47.5 percent (.475) is at z=1.96.
Critical values for t (two-tailed) Use these for the calculation of confidence intervals. For
example, use the 0.05 column for the 95% confidence interval.
df     0.10       0.05     0.025      0.01
  2    2.9200    4.3027     6.2054    9.9250
  3    2.3534    3.1824     4.1765    5.8408
  4    2.1318    2.7765     3.4954    4.6041
  5    2.0150    2.5706     3.1634    4.0321
  6    1.9432    2.4469     2.9687    3.7074
  7    1.8946    2.3646     2.8412    3.4995
  8    1.8595    2.3060     2.7515    3.3554
  9    1.8331    2.2622     2.6850    3.2498
 10    1.8125    2.2281     2.6338    3.1693
 11    1.7959    2.2010     2.5931    3.1058
 12    1.7823    2.1788     2.5600    3.0545
 13    1.7709    2.1604     2.5326    3.0123
 14    1.7613    2.1448     2.5096    2.9768
 15    1.7531    2.1315     2.4899    2.9467
 16    1.7459    2.1199     2.4729    2.9208
 17    1.7396    2.1098     2.4581    2.8982
 18    1.7341    2.1009     2.4450    2.8784
 19    1.7291    2.0930     2.4334    2.8609
 20    1.7247    2.0860     2.4231    2.8453
 21    1.7207    2.0796     2.4138    2.8314
 22    1.7171    2.0739     2.4055    2.8188
 23    1.7139    2.0687     2.3979    2.8073
 24    1.7109    2.0639     2.3910    2.7970
 25    1.7081    2.0595     2.3846    2.7874
 26    1.7056    2.0555     2.3788    2.7787
 27    1.7033    2.0518     2.3734    2.7707
 28    1.7011    2.0484     2.3685    2.7633
 29    1.6991    2.0452     2.3638    2.7564
 30    1.6973    2.0423     2.3596    2.7500
 31    1.6955    2.0395     2.3556    2.7440
 32    1.6939    2.0369     2.3518    2.7385
 33    1.6924    2.0345     2.3483    2.7333
 34    1.6909    2.0322     2.3451    2.7284
 35    1.6896    2.0301     2.3420    2.7238
 36    1.6883    2.0281     2.3391    2.7195
 37    1.6871    2.0262     2.3363    2.7154
 38    1.6860    2.0244     2.3337    2.7116
 39    1.6849    2.0227     2.3313    2.7079
 40    1.6839    2.0211     2.3289    2.7045
 41    1.6829    2.0195     2.3267    2.7012
 42    1.6820    2.0181     2.3246    2.6981
 43    1.6811    2.0167     2.3226    2.6951
44   1.6802   2.0154   2.3207   2.6923
45   1.6794   2.0141   2.3189   2.6896
46   1.6787   2.0129   2.3172   2.6870
47   1.6779   2.0117   2.3155   2.6846
48   1.6772   2.0106   2.3139   2.6822
49   1.6766   2.0096   2.3124   2.6800
50   1.6759   2.0086   2.3109   2.6778
51   1.6753   2.0076   2.3095   2.6757
52   1.6747   2.0066   2.3082   2.6737
53   1.6741   2.0057   2.3069   2.6718
54   1.6736   2.0049   2.3056   2.6700
55   1.6730   2.0040   2.3044   2.6682
56   1.6725   2.0032   2.3033   2.6665
57   1.6720   2.0025   2.3022   2.6649
58   1.6716   2.0017   2.3011   2.6633
59   1.6711   2.0010   2.3000   2.6618
60   1.6706   2.0003   2.2990   2.6603
61   1.6702   1.9996   2.2981   2.6589
62   1.6698   1.9990   2.2971   2.6575
63   1.6694   1.9983   2.2962   2.6561
64   1.6690   1.9977   2.2954   2.6549
65   1.6686   1.9971   2.2945   2.6536
66   1.6683   1.9966   2.2937   2.6524
67   1.6679   1.9960   2.2929   2.6512
68   1.6676   1.9955   2.2921   2.6501
69   1.6672   1.9949   2.2914   2.6490
70   1.6669   1.9944   2.2906   2.6479
71   1.6666   1.9939   2.2899   2.6469
72   1.6663   1.9935   2.2892   2.6458
73   1.6660   1.9930   2.2886   2.6449
74   1.6657   1.9925   2.2879   2.6439
75   1.6654   1.9921   2.2873   2.6430
76   1.6652   1.9917   2.2867   2.6421
77   1.6649   1.9913   2.2861   2.6412
78   1.6646   1.9908   2.2855   2.6403
79   1.6644   1.9905   2.2849   2.6395
80   1.6641   1.9901   2.2844   2.6387
81   1.6639   1.9897   2.2838   2.6379
82   1.6636   1.9893   2.2833   2.6371
83   1.6634   1.9890   2.2828   2.6364
84   1.6632   1.9886   2.2823   2.6356
85   1.6630   1.9883   2.2818   2.6349
86   1.6628   1.9879   2.2813   2.6342
87   1.6626   1.9876   2.2809   2.6335
88   1.6624   1.9873   2.2804   2.6329
89   1.6622   1.9870   2.2800   2.6322
 90   1.6620   1.9867   2.2795   2.6316
 91   1.6618   1.9864   2.2791   2.6309
 92   1.6616   1.9861   2.2787   2.6303
 93   1.6614   1.9858   2.2783   2.6297
 94   1.6612   1.9855   2.2779   2.6291
 95   1.6611   1.9852   2.2775   2.6286
 96   1.6609   1.9850   2.2771   2.6280
 97   1.6607   1.9847   2.2767   2.6275
 98   1.6606   1.9845   2.2764   2.6269
 99   1.6604   1.9842   2.2760   2.6264
100   1.6602   1.9840   2.2757   2.6259