7-Jul-08 RECUPERATOR
Inlet Cold Fluid
Outlet Cold Fluid 30
575 Deg C
Deg C ▐
▼
FLUE GASES FLUE GASES
▬► ▬►
850 HEAT EXCHANGER
Heat Exchanger 428
Deg C Deg C
▐ ▐
BASIS:
Kril
Air to be preheated 37590 Kg/Hr
82886 lb/hr
Air inlet Temperature = 30 °C
Air outlet Temperature = 575 °C
Heat required for heating of air = 5121637.5 Kcal/Hr
20322657.6 Btu/Hr
Flue gas mass flowrate 45260 Kg/Hr
99798 lb/hr
Flue gas inlet Temperature = 850 °C
To calculate Outlet temperature of Flue gas
Flue gas outlet Temperature = 428.499083 ° C
428 ° C
To Calculate ∆T(LMTD)
Hot Fluid °F Cold Fluid Difference
1562 Hgher Temp. 1067 495
803.2983486183 Lower Temp. 86 717.298349
758.7016513817 Diffrerence 981 -222.298349
∆T LMTD 599.2933775 F
Correction Factor , R 0.7733961788
S 0.6646341463
FROM GRAPH OF CORRECTION FACTOR V/S TEMP. DIFF.FACTOR
F┬ = 0.99 Pg. 828, (PROCESS HEAT TRANSFER)
Kern
Therefore, ∆T LMTD= 593.3004437 F
TUBE SIDE CALCULATION
1.5 NPS SS 304 L, SCH40 S
LET D○ = 48.26 mm 0.1583333333 ft 1.9 inch
Di = 40.9 mm 0.1341863517 ft 1.6102362 inch
thickness = 3.68 mm 0.0120734908 ft 0.14488189 inch
Inside heating surface per ft 0.4213451444 ft²
Inside transverse heating area = 0.0141346919 ft²
Assume mass velocity inside the tube = 3.5 pps sqft 12600 lb/ft² hr
Gas flow in Tubes = 82886 lb/hr 23.023875 lb/sec
Required cross section = 6.57825 ft²
No.of tube through which cold mass 465.3974795756
465 Tubes
Properties of cold air at average temperature 302.5 ° C
Density of Cold fluid = 0.616 Kg/m³ 0.03842795 lb/ft³
Viscosity of Cold Fluid = 0.0295 cP 0.07139 lb/hr -ft
Conductivity , K = 0.02623 Btu(ft)/(° F ft² 0.02623 Btu/°Ffthr
Specific Heat capacity Cp = 0.25 kcal/kg ° C 0.25 Btu/lb F
To calculate Velocity inside tubes
mass Velocity in tube will be = 1743091.7030568 lb/hr ft²
Total flow area 6.57825 ft²
G= 12600 lb/hr ft² 3.5 pps sqft
Velocity inside tube = 27.7596907816 m/s
28 m/s
Reynold's No. = D * V*ρ / μ = D *G /μ
Therefore ,Nre = 23683.261402102
Prantle No. Npr = Cp* μ / K 0.6804231796
( Npr )^1/3 = 0.8795483131
Select No. of row & column of Tubes 465 Tubes
Enter Rows 14
490 Tubes
Enter columns 35 -25 Diffence
Rows x Columns 14 X 35
Therefore actual velocity = 26.3658982114
26 m/s 86.506512 ft/s
Inside surface per foot of tube bundle 206.4591207349 ft²
FROM FIG. 20, Boyne Book
For G = 11967.3637605163 lb/ht ft²
3 pps sqft 16.22771875
he = 9.6 Btu/hr ft² ° F
FROM FIG. 21, Boyne Book
Ft for avg. temp. 1.15
576.5 F
Fd for tube ID = 0.9
1.6102362 inch
TUBE SIDE
To calculate Heat transfer coefficient
hi = he * Ft * Fd
Where hi = film co-efficient , Btu/hr ft²° F
he = base value from fig.22
ft= Temperature correction factor from fig.23
Fd = diameter correction factor from fig.23
Therefore, heat transfer coefficient = hi = 9.936 Btu/hr ft² ° F
SHELL SIDE :
To calculate Heat transfer coefficient
Flue gas properties At avg.Temp. 639.2495412829 ° C 639 ° C
Density of Hot fluid = 0.3922 kg/m³ 0.0245 lb/ft³
Viscosity of hot Fluid = 0.039000 cP 0.09 lb/hr ft
Conductivity , K = 0.05379 kcal/hr-m-°C 0.0311 Btu/hr ft F
Specific Heat capacity Cp = 0.26847 Kcal/ hr °C 0.2685 Btu/lb- °F
Select The clearance between tubes 38 mm 0.12467192 ft
and from walls 1.4960629921 inch
X Y
Tube Pitch 86.26 3.396062992 inch
Clearance betn Tubes 38 clearance 38 1.490196078 inch
tube dia 48.26 tube dia 48.26
no. of tubes 14 no. of tubes 35 490 Tubes
no.of spacing 13 no.of spacing 34
wall clearance 38 wall clearance 38
1245.64 mm 3057.1
1.24564 metres 3.0571
4.0869448 ft 10.0303451
Area of X*Y 3.808046 m²
Shell 40.99347 ft²
Tube length per pass 2.95 m 9.67895 ft
free Flow area = ((n-1)* clearance + 2* wall clearance )* tube length per pass
free flow area = 18.100399 ft²
Mass Velocity 5513.5968043511 lb/hr ft² 1.53155467 pps sqft
7.47642505 kg/m²s
Velocity shell side = 19.0788505436 m/s
Heat transfer coefficient , ho = 0.80*C * Ta(1/3)*Gs(0.60+0.08logd)
d0.53
Where ,
ho = outside film coefficient ,Btu/hr ft² °F
C = constant (usually 1.25) for air
Ta= average gas temperature ,Degree R
G =gas mass flow,pps/sqft
d= tube o.d., in.
C= 1.25
Ta = 1643 R
log d = 0.278753601
ho = 10.9475484237 Btu/hr ft² °F
Tube wall hw = k/x
where
k = Thermal conductivity of tube
x = wall thickness
k= 21 Btu/hr ft F
x= 0.0120734908 ft
hw = 1739.347826087 Btu/hr ft² °F
R1 = 1/ hi 0.1006441224
R2 = 1/ ho 0.0913446519
R3 =1/hw 0.0005749281
Rfi = fouling resistance,inside 0.001
Rfo = fouling resistance ,outside 0.001
Overall Heat transfer Co-efficient
Uo = 1/Rt
where Rt is total resistance
Rt = R1+ R2+ R3+ Rfi + Rfo
Rt = 0.1945637024
Uo = 5.1397048244 Btu/hr ft² °F
Therefore Heat Transfer Area
Q = Uo Ao (∆T )Lmtd(corrected)
Ao = Q /( Uo * (∆T )Lmtd corrected)
Therefore, Heat Transfer Area
Required = 6664.5011776069 Ft²
619.1524194833 m²
Tube Length per shell side pass = 2.95 m 9.67895 ft
Total No.of Tubes required 1384.960539815
1385 Tubes
Effective Length required 27.357069014 ft
8.3384346355 m
No.of passes shell side 1 1
No.of passes Tube side 2.8264500813 3
SUMMARY:
Total no.of Tubes = 1470 Tubes 3 pass
Length of Each Tube = 2.95 m
TO CALCULATE PRESSURE DROP :
pipe size NPS Do Sch 40 Di 1d bend 2R
thick
1.25 42.2 3.56 35.08 31.75 63.5
2.5 73.02 5.16 67.86 63.5 127
Viscosity
39 *10^-6
0.000039 kg/m-s
0.00039 g/cm-s
0.039 cP
Cp =
0.2500597086 kcal/kg
0.06276 w/mk 225.936 J/h
0.036262728 53.96131
125.8907