0% found this document useful (0 votes)
170 views55 pages

Contoh Perhitungan Evaporator

This document summarizes the specifications and calculations for an evaporator unit (EVAPORATOR-01). It is a double pipe evaporator used to evaporate water (H2O). Feed input to the evaporator is 1249.8725 kg/hour at 30°C. Steam at 284°F and 52.47 psi is used to provide the necessary heat of vaporization. Calculations are shown to determine the heat transfer area, dimensions of the unit, heat transfer coefficients and pressure drops.

Uploaded by

Heny Anggorowati
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
170 views55 pages

Contoh Perhitungan Evaporator

This document summarizes the specifications and calculations for an evaporator unit (EVAPORATOR-01). It is a double pipe evaporator used to evaporate water (H2O). Feed input to the evaporator is 1249.8725 kg/hour at 30°C. Steam at 284°F and 52.47 psi is used to provide the necessary heat of vaporization. Calculations are shown to determine the heat transfer area, dimensions of the unit, heat transfer coefficients and pressure drops.

Uploaded by

Heny Anggorowati
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 55

EVAPORATOR-01

Tugas : menguapkan H2O


jenis : double pipe evaporator

Umpan masuk evaporator

Tf = 30 oC =
P= 1 atm
Jumlah
Komponen BM
kg/jam kmol/jam
H2O 18.0153 12.4987 0.6938
R-COOCH3 310.6250 1237.3737 3.9835
Total 1249.8725 4.6773

Input
Komponen BM densitas (kg/L)
kg/jam

H2O 18.0153 1.0000 12.4987


R-COOCH3 310.6250 0.8800 1237.3737
Total 1249.8725

Umpan masuk evaporator = 1249.8725 kg/jam


2755.4993518265 lb/hr

hasil atas
Menentukan suhu Evaporator,sehingga produk yang keluar dapat teruapkan
Digunakan steam jenuh (Tabel 7, Kern)
T = 284 F
P = 52.47 psi 3.569
Viscositas campuran umpan :
1 xi

 i
=
µ=
=

data komponen masuk evaporator:


komponen massa x cp (Btu/lb oF)
C3H5OCl #REF! #REF! 0.000372
H2O #REF! #REF! 0.001001
C3H8O3 #REF! #REF! 0.000705
NaCl 12.4987 #REF! 0.000343
CO2 1237.3737 #REF! 0.005794
total #REF! #REF!

Neraca Panas Evaporator

Kebutuhan Pemanas
diambil T ref = 25 C
T Feed = 30 C 86

Qs = Err:509 Kkal/Jam
Err:509 Btu/Jam

Beban panas yang harus diberikan, Q didapat dari persamaan 9.5


Mc.Cabe and Smith.
Q  m s  s

dimana : ms Jumlah Steam


λs Kalor Penguapan Uap =
P operasi = 14.7000 psia
P design = 17.6400 psia

ms Err:509 lb/jam

Beda suhu rata-rata

t 2  t1 T1
∆T LMTD =  t  T2
ln  2 
 t1 
t1
t2
= 75.29610968 oF

Perhitungan suhu rata-rata masing-masing fluida

fluida panas (steam) T= 272.26 F


fluida dingin (larutan gliserol) t = 173.26 F

Luas Transfer Panas

Luas Transfer Panas : Q (Pers. 9.1 Mc.Cabe)


A
U D .TLMTD

dimana : A = Luas area transfer panas yang diperlukan (ft2)


UD = koefisien panas (Btu/ft2.hr.F)
Q = beban panas yang harus diberikan (Btu/hr)

Harga UD diperoleh dari tabel 8 Kern.


Untuk fluida panas berupa steam dan fluida dingin berupa medium organik akan diperoleh UD = 50

diambil UD = 50 Btu/ft2.hr.F

A = Err:509 ft2 (dipilih jenis double pipe evaporator karena

Dimensi Alat
dipilih evaporator double pipe dengan :
hairpins lenght = 12 ft 144
Inner Pipe, IPS = 3 in
Shell ID = 150 in

a. Shell : larutan umpan (gliserol)


Menghitung flow area
D= 155.375 in 12.9479

 .D 2
a s 
4

as = 131.6041 ft2
W= 1249.872 kg/jam 2755.50

Menghitung mass velocity


W
G s 
as

Gs = 20.9378 lb/jam.ft2

Menghitung Re
µ larutan adalah = #REF! lb/ft.jam

ID .G s
Re s 

Res = #REF!

dengan Re tersebut didapat nilai jH (Fig.28, Kern, 1950) =

Menghitung Pr
k larutan = #REF! btu/ft.jam.F

Cp larutan = #REF! btu/lb.F

c.
Pr 
k
1
1
 c.  3
(Pr)   
3

 k 
1
1
 c.  3
(Pr)   
3

 k 
Pr^(1/3) = #REF!

Menghitung ho

1
k  c .  3
ho  j H . .  . p
ID  k 

ho = #REF! btu/jam.ft2.oF

b. Inner pipe : steam


Menghitung flow area
De '.3.068
G a in
Re' Da = 0.2557

 .D
2
ap 
4

ap = 0.0513 ft2

W= Err:509 kg/jam Err:509

Menghitung mass velocity

W
G p 
ap

Gp = Err:509 lb/jam.ft2

Menghitung Re
µ steam pada 272,26 oF = 0.019 cp
0.04598 lb/ft.jam
D .G
Re p  a

Rep = Err:509

denganRe tersebut didapat nilai jH (Fig.24, Kern, 1950) =

Menghitung Pr

dari Tabel 5 (Kern, 1950) didapat k untuk steam 272,26 oF adalah =

dari Fig.2 (Kern, 1950) didapat C untuk steam 272,26 oF adalah =

c.
Pr 
k
1
1
 c.  3
(Pr)   
3

 k 
Pr^(1/3) = 0.8135

Menghitung hi

1
k  c .  3
hi  j H . .  . p
De  k 

hi = 2.4459 btu/jam.ft2.oF

Menghitung hio

ID
hio untuk steam = hio  hi.
2 btu/jam.ft2.oF OD
Menghitung Uc

h . h
Uc  io o
h io  h o

Uc = #REF! btu/jam.ft2.oF

Menghitung UD

1 1
  Rd
U D UC asumsi untuk Rd =

Rd = #REF!

Q  U D . A . T
Q
A 
U D . T

A= Err:509 ft2

dari tabel 11, external surface per lin feet untuk 3-in IPS =

panjang total = Err:509 lin ft


maka jumlah hairpin yang digunakan =

h= L total
n.L
Err:509 ≈ 4

Menghitung Pressure Drop (∆P)


shell
D= 12.9 ft

Re's = #REF!

Fig. 19 (Kern,1950)
f= 0.0035 s=
ρ= 0.1033 lb/ft3

2
∆Ps =
f .G S .ID S .L
5 , 22 .10 10 .D E .sg . S

∆Ps = 2.5603E-10 ft

inner pipe
untuk Re = Err:509

0,264
f  0,0035 
( DG /  ) 0 , 42
f= Err:509
ρ= 0.1033 lb/ft3

2
4 . f .G p L p
Fp 
2 . g . 2 .D

∆Fp = Err:509 ft

F p .
Pp 
144
F p .
Pp 
144

∆Pp = Err:509 psia

allowable pressure drop = 10 psia

Kesimpulan:
a. Jumlah steam yang dibutuhkan = Err:509 lb/jam
b. Dimensi evaporator :
Dimensi annulus:
OD = 3.5 in 0.0889
ID = 3.068 in 0.0779
panjang hairpin = 20 ft 6.0960
jumlah hairpin = 29 buah
Dimensi inner pipe:
OD = 2.38 in 0.0605
ID = 2.067 in 0.0525
c. Faktor pengotoran evaporator = #REF!
d. Pressure drop (∆P)
annulus #REF! psia
inner pipe Err:509 psia

Menentukan Tebal Dinding Evaporator

P = 1 atm
= 14.7 psia

P perancangan = 1,20 x P
= 17.64 psi
Tebal Shell

P.ri
ts  C
f .E  0.6P
Bahan yang digunakan carbon Stell SA-285 Grade C

IDs = 150 in
ri = 75 in
f = 12650
E = 0.8
C = 0.125 in
ts = 0.2559 in

diambil tebal standar = 0.3125 in

OD = ID + 2.ts
= 150.625 in

Tebal Head

0.885.P.ri
th 
f .E  0.1.P

th = 0.2407 in

diambil tebal standar= 0.25 in

dari tabel 5,7 Brownell didapat


icr = 9.375
r = 144

a = ID/2
= 77.6875 in

AB  a  icr

AB = 68.3125

BC  r  icr
BC = 134.625

  2

AC  BC  AB  2

AC = 116.005573007

b  r  AC
b = 27.9944269927

OA  t h  b  sf
sf untuk tebal 3/16 in adalah 1,5 - 2
maka diambil 2

OA = 30.2351 in
L awal = 3m
118.1103 in

L total = 178.5806 in
4.5359 m
86 oF

Input Output
uap cair
kmol/jam Liter/jam
kg/jam kmol/jam Liter/jam kg/jam
0.6938 12.4987 12.3750 0.6869 12.3750 0.1237
3.9835 1406.1065 1237.3737
4.6773 1418.6052 12.3750 12.3750 1237.4975
1249.8725 kg/jam

pat teruapkan
diambil suhu hasil atas (Keluar) = 126.957 C
= 260.5 F
atm
itas campuran umpan :
1 xi

 i
#REF! cp-1
#REF! cp
#REF! lb/ft.hr

x.cp k (Btu/ft. Jam. 0F) k.x ρ (kg/L) x.ρ


#REF! 0.0155 #REF! #REF! #REF!
#REF! -0.6162 #REF! #REF! #REF!
#REF! 0.2348 #REF! #REF! #REF!
#REF! 37.9419 #REF! 1 #REF!
#REF! 157.7775 #REF! 0.88 #REF!
#REF! #REF! #REF!

Tsteam = 140 C 284 F


F P steam = 52.467 psia 3.569 atm
921.7 Btu/lb (tabel 7 Kern)

Err:509 kg/jam

= 284.0 F Hot fluid Cold Fluid


= 260.5 F 284.00 Higher T 260.5
= 86.0 F 260.52 Lower T 86.0
= 260.5 F

9.1 Mc.Cabe)

ng diperlukan (ft2)
berikan (Btu/hr)

dium organik akan diperoleh UD = 50-100 Btu/j ft3 F

h jenis double pipe evaporator karena luas transfer panas < 200ft2)

in 3.6576 m

ft (Tabel 11, Kern, 1950, p.844)


lb/jam

16

data steam pada suhu 272,26 oF


Suhu (oF) k (btu/ft.jam.F)
212 0.0137
392 0.0187

P (psia)
392

272.26
0.0187 x

119.74 =
180
0.5987 =
-2.7673 =
x =

ft (Tabel 11, Kern, 1950, p.844)

lb/jam
50

0.0154 btu/ft.jam.F

0.18 btu/lb.F

ID
hio  hi.
OD ID 3.068 in 0.2557 ft
OD 3.5 in 0.2917 ft

o
h o

0.003

0.9170 ft2
1.1300

asumsi tinggi shell 3m


L= 9.84252 ft
Err:509 kg/jam

m
m
m

m
OD standar = 156 in 3.9624 m
ID = (OD-2ts) = 155.375 in

(Brownell,258)
in

in

in

in
t Komponen m, kg/jam x
cair C3H5OCl #REF! #REF!
kmol/jam Liter/jam H2O #REF! #REF!
0.0069 0.1237 TOTAL #REF! #REF!
3.9835 1406.1065
1406.2303

asumsi : berdasarkan titik didih air dalam larutan data steam pada suhu 284 oF (Kern, 1950)
Suhu (oF) P (psia)
281.01 50
287.07 55

P (psia)
287.07

284

55 x

3.07 =
6.06
15.35 =
-317.95 =
x =
23.48 ∆t2
174.52 ∆t1
-151.0452
u 272,26 oF data steam pada suhu 272,26 oF
Suhu (oF) ρ
267.25 0.0952562
281 0.1174398

P (psia)
281

272.26
212
0.0137 0.1174398 x

0.0187 - x 8.74 =
0.005 13.75
3.366 .- 180x 0.1938844 =
.- 180x -1.420913 =
0.01537389 btu/ft.jam.F x =

k= 0.015374 btu/ft.jam.F
µ (cP) x/cP Arus Masuk Arus Keluar
0.2861 #REF! Komponen kg/jam
kg/jam
0.1826 #REF! uap cair
0.4687 #REF! NaCl 12.499 12 0.124
CO2 1237.374 0.000 1237
12.375 1237.497
Total 1249.872
1249.872

a suhu 284 oF (Kern, 1950)


λ (Btu/lb)
924.6
921

281.01
50

55 - x
5
333.3 .- 6,06x
.- 6,06x
52.467 psia

P= 52.467 psia
a suhu 272,26 oF
267.25
0.095256

0.11744 - x
0.0221835728
1.614797 .- 13,75x
.- 13,75x
0.103339 btu/ft.jam.F

ρ= 0.103339 lb/ft3
Mencari titik didih larutan (Boiling Point)

Ttrial = 148.90098 oC 421.90098269 K


P= 1 atm 760 mmHg

Koefisien Antoine
Komponen
A B C D
C3H5OCl 24.764 -2.8846E+03 -5.6252E+100 -1.1011E-10
H2O 29.8805 -3.1522E+03 -7.3037E+00 2.4247E-09

jadi titik didik larutan umpan = 148.901 oC

Mencari titik didih tiap solution dalam larutan

dengan menggunakan rumus Boiling Point Rise (BPR) (Perry, 7th edition, p.11-111)
BPR = 104.9 N2^ 1.14

Jumlah BP
Komponen N2 BPR ( o F)
kmol/jam o
C
C3H5OCl 0.6938 0.1483 11.9118 116.11
H2O 3.9835 0.8517 87.3543 100
4.6773
TF TB TC Jumlah jumlah
xi
E K K K kg/jam kmol/jam
5.3331E-07 215.95 389.26 610 12.49872462 0.69378387 0.01
1.8090E-06 273.15 373.15 647.13 1237.3737374 3.98349694 0.99
1249.872462 1

edition, p.11-111)
BP water = 100 oC 212 oF

BP BP solution BP solution
o
F o
F o
C
241 252.910 122.728
212 299.354 148.530
Ki
Pi yi
Pi/P
0 0 0
3608.55 4.74809 4.700606
4.700606
NERACA PANAS EVAPORATOR

F .Cp f (TF  Tref )  m.  V .Hv  L.Cp L (TL  Tref )


H 1  Q  H 2  H 3
H 1  F .Cp F (TF  Tref )
Q  m.
H 2  V .Hv
H 3  L.Cp L (TL  Tref )

Menghitung Panas yang dibawa umpan masuk


T= 100 C 373 K
Tref = 25 C 298 K

jumlah ∫Cp.dT ∆H1


Komponen BM
(kg/jam) (kcal/kg) (kcal/jam)
C3H5OCl 92.525 12.499 0.0268 0.3348
H2O 18.016 1237.374 0.0748 92.5928
C3H8O3 92.094 Err:509 0.0519 Err:509
NaCl 58.44 Err:509 0.0260 Err:509
CO2 44.01 Err:509 0.2184 Err:509
TOTAL 305.0850 Err:509 0.3979 Err:509

ΔH1 = Err:509 kcal/jam

Menghitung Panas yang dikandung steam


suhu steam = 140 oC 284 oF
tekanan steam pada suhu 284 oF adalah = 52.432 psia
panas laten (λ) steam pada suhu 284 oF = 921.72 Btu/lb
512.067 kcal/kg
Qs = ms.λ
Qs = 512.067 .ms
Menghitung panas yang dibawa uap keluar
T= 126.957 oC Latent heat=Hvb [(Tc-T)/(Tc-Tb)]^0.38

jumlah TB TC Hvb
Komponen BM
(kg/jam) K K (kJ/kmol)
C3H5OCl 92.525 Err:509 389.26 610 4.569
H2O 18.016 Err:509 373.15 647.13 40.063
CO2 44.01 0.000 216.58 304.19 97.225
TOTAL 154.5510 Err:509

Menghitung Hv ∆H2 = V.Hv


Hv = Latent heat + (Cp (T-Tair))
Hv V ∆H2
(kcal/kmol) kmol/jam kcal/jam
2.033 Err:509 Err:509
9.695 Err:509 Err:509
35.141 0.000 0.000
∆H2 = Err:509

Menghitung panas yang dibawa larutan keluar evaporator

T= 126.957 C 399.957 K
Tref = 25 C 298 K
jumlah ∫Cp.dT ∆H3
Komponen BM
(kg/jam) (kcal/kg.K) (kcal/jam)
C3H5OCl 92.525 Err:509 0.0370 Err:509
H2O 18.016 Err:509 0.1020 Err:509
C3H8O3 92.094 Err:509 0.0710 Err:509
NaCl 58.44 0.124 0.0352 0.0044
TOTAL 261.0750 Err:509 0.2452 Err:509

ΔH3 = Err:509 kcal/jam

Menghitung panas yang dibawa kondensat


suhu kondensat 126.957 oC 260.523 oF
panas laten (λ) steam pada suhu 260,523 oF = 938.244 Btu/lb
521.247 kcal/kg
Qc = ms.λ
Qc = 521.247 .ms

jumlah panas keluar = ∆H2 + ∆H3 + Qc


Err:509 + 521.247 .ms
jumlah panas masuk = ΔH1 + Qs
Err:509 + 512.067 .ms

asumsi : tidak ada panas yang hilang ke sekeliling, maka dari neraca panas diperoleh
Panas masuk = Panas keluar

Err:509 + 512.067 .ms = Err:509


-9.180 .ms = Err:509
ms = Err:509

Jadi :
Qs = Err:509 kcal/jam Err:509
Qc = Err:509 kcal/jam

Masuk kcal/jam Keluar kcal/jam


ΔH1 Err:509 ∆H2 + ∆H3 Err:509
Qs Err:509 Qc Err:509
TOTAL Err:509 Total Err:509

out
in
Komponen kcal/jam
kcal/jam uap cair
C3H5OCl 0.335 Err:509 Err:509
H2O 92.593 Err:509 Err:509
C3H8O3 Err:509 0 Err:509
NaCl Err:509 0 0.004
CO2 Err:509 0.000 0
Panas steam Err:509
Panas kondensat Err:509
Total Err:509 Err:509
Ket :
F : jumlah umpan masuk dalam evaporatpr, kg/jam
V : jumlah uap di puncak evaporator, kg/jam
L : jumlah larutan hasil pemekatan di dasar evaporator, kg/jam
m : jumlah steam, kg/jam
CPF : spesifik heat umpan, kkal/kg oC
CPL : panas spesifik larutan, kkal/kg oC
TF : suhu umpan masuk, oC
TR : suhu reference, oC =25 oC
TL : suhu larutan keluar, oC
HV : panas laten penguapan pada suhu didih, kkal/kg
λ : panas laten steam, kkal/kg
DH1 : panas yang dibawa umpan masuk, kkal
∆H2 : panas yang dibawa uap keluar, kkal
∆H3 : panas yang dibawa larutan kaluar, kkal
Q : panas yang dibawa steam, kkal

Cp (kcal/jam) (liquid)
T= 25 C 298 K
T= 100 C 373 K
Komponen A B C D cp (j/mol)
C3H5OCl 52.634 5.7412E-01 -1.5783E-03 1.8687E-06 10373.1567
H2O 92.053 -3.9953E-02 -2.1103E-04 5.3469E-07 5643.0403
C3H8O3 132.145 8.6007E-01 -1.9745E-03 1.8068E-06 19995.5323
NaCl 95.016 -3.1081E-02 9.6789E-07 5.5116E-09 6368.1348
CO2 -3981.02 5.2511E+01 -2.2708E-01 3.2866E-04 40227.0231
Hvb [(Tc-T)/(Tc-Tb)]^0.38----> Coulson p.252 TB air = 100 oC
373.15 K
T= 400.107 K
Hvb Latent heat Cp ∆T Cp.∆T
kcal/kmol (kJ/kmol) kcal/kmol kcal/kmol.K K kcal/kmol
1.092 4.482 1.071 0.0357 26.957 0.962
9.571 38.517 9.202 0.0183 26.957 0.493
23.227 100.630 24.041 0.4118 26.957 11.100

data steam pada suhu 260,523 oF


Suhu (oF) P (psia) λ (Btu/lb)
260 35.43 938.6
265 38.53 935.2

P (psia)
265
260.523

38.53 x

4.477 = 38.53
5 3.1
+ 521.247 .ms 13.8787 = 192.65
-178.7713 = .- 5x
kg/jam x = 35.75426
kcal/kmol BM kcal/kg
2.4782 92.525 0.0268
1.3481 18.016 0.0748
4.7770 92.094 0.0519
1.5214 58.44 0.0260
9.6104 44.01 0.2184

data steam pada suhu 284 oF


Suhu (oF) P (psia) λ (Btu/lb)
280 49.2 924.6
285 53.24 921

P (psia)
285
284

280
53.24 x 49.2

1 = 53.24 - x
5 4.04
4.04 = 266.2 .- 5x
-262.16 = .- 5x
x = 52.432 psia

P= 52.432

λ (Btu/lb)
265
260.523

260 260
35.43 935.2 x 938.6

-x 4.477 = 935.2 - x
3.1 5 -3.4
.- 5x -15.2218 = 4676 .- 5x
-4691.22 = .- 5x
psia x = 938.2444 Btu/lb

P= 35.75426 psia λ= 938.24436 Btu/lb


λ (Btu/lb)
285
284

280
921 x 924.6

1 = 921 - x
5 -3.6
-3.6 = 4605 .- 5x
-4608.6 = .- 5x
x = 921.72 Btu/lb

psia λ= 921.72 Btu/lb


T= 126.957 C 400.107 K
P= 1 atm 760 mmHg
Koefisien Antoine
Komponen
A B C D
C3H5OCl 24.764 -2.8846E+03 -5.6252E+00 -1.1011E-10
H2O 29.8805 -3.1522E+03 -7.3037E+00 2.4247E-09
CO2 35.0187 -1.5119E+03 -1.1335E+01 9.3383E-03

Hvb=(8.32*B*Tb^2*Dz)/(Tb+C)^2----> Coulson p.249


∆z=[1-(Pr/(Tr)^3)]^0.5 ; Pr=P/Pc , Tr=Tb/Tc ---> Coulson p.252

Koefisien Antoine
Komponen BM
A B C
(mmHg,C) C3H5OCl 92.525 7.10839 1408.87 217.147
(mmHg,K) H2O 18.016 18.3036 3816.44 -46.13
(mmHg,K) CO2 44.01 22.5898 3103.39 -0.16

µ steam pada 272,26 oF = 0.019 cp


0.04598 lb/ft.jam

dari Tabel 5 (Kern, 1950) didapat k untuk steam 272,26 oF adalah = 0.0154

dari Fig.2 (Kern, 1950) didapat C untuk steam 272,26 oF adalah = 0.18
Pi
E mmHg
5.3331E-07 1004.7141
1.8090E-06 1932.810907
7.7626E-10 302508.5289

TB TC Pc Hvb
∆z
K K (mmHg) cal/mol kcal/mol
389.26 610 36753.022 0.945938192 1091.5014142395 1.091501
373.15 647.13 165426.1 0.9690505654 9571.11683841 9.571117
216.58 304.19 55369.553 3.7599505352 23227.361400407 23.22736

btu/ft.jam.F data steam pada suhu 272,26 oF


Suhu (oF) k (btu/ft.jam.F)
btu/lb.F 212 0.0137
392 0.0187

P (psia)
392

272.26

212
0.0187 x 0.0137

119.74 = 0.0187 - x
180 0.005
0.5987 = 3.366 .- 180x
-2.7673 = .- 180x
x = 0.015374 btu/ft.jam.F
k= 0.015374
data steam pada suhu 272,26 oF
Suhu (oF) ρ
267.25 0.095256
281 0.11744

P (psia)
281

272.26

267.25
0.117439812 x 0.095256

8.74 = 0.11744 - x
13.75 0.0221835728
0.193884426 = 1.614797 .- 13,75x
-1.42091299 = .- 13,75x
x = 0.103339 btu/ft.jam.F
btu/ft.jam.F ρ= 0.103339 lb/ft3

You might also like