Antidifferentiation
1.1 Antidifferentiation or Indefinite Integrals
Antidifferentiation is the process of getting the antiderivatives.
If F is an antiderivative of f, we write ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶.
The symbol ∫ , called the integral sign, denotes the operation of antidifferentiation.
The function f is called the integrand.
Standard Integration Formulas
5 Basic Integration Formulas
1) ∫ du = u + C Topics
2) ∫(u + v)dx = ∫ udx + ∫ vdx A. Indefinite Integrals
3) ∫ audx = a ∫ udx Powers
xn+1
4) ∫ x n dx = + C; n ≠ −1 Logartithms Functions
n+1
5) ∫
du
dx = ln|u| + C Exponential Functions
u
Trigonometric Functions
Logarithmic & Exponential Formulas Transformation by
au Trigonometric Functions
6) ∫ au du = +C
ln|a| Inverse Trigonometric Functions
7) ∫ eu du = eu + C Integration by parts
B. Integration by Substitution
Trigonometric Formulas
C. Integration of rational Fractions
8) ∫ cos udu = sin u + C D. Wallis’ Formulas
9) ∫ sin udu = − cos u + C E. Plane Areas Improper Integrals
10) ∫ sec 2 udu = tan u + C
11) ∫ csc 2 udu = − cot u + C Practice Problems with Answer
12) ∫ sec u tan udu = sec u + C
13) ∫ csc u cot udu = − csc u + C
14) ∫ tanudu = −In cos u + C = In sec u + C
15) ∫ cot udu = ln cos u + C = In sec u + C Hyperbolic Functions Formulas
16) ∫ sec udu = ln(sec u + tan u) + C
=- In (sec u – tan u) +C 1) ∫ cosh udu = sinh u + C
17) ∫ cscudu = In(csc u − cot u) + C 2) ∫ sinh udu = cosh u + C
=- In (csc u +cot u) + C 3) ∫ sech2 udu = tanhu + C
4) ∫ csc 2 hudu = −cothu + C
Additional Formulas
5) ∫ sech(u) tanh(u) = − sech(u) + C
du u 6) ∫ csch(u) coth(u) = − csch(u) + C
18) ∫ = Arcsin a + C
√a2 −u 2
du 1 u
19) ∫ a2 +u2 = a Arctan a + C
du 1 u
20) ∫ = Arcsec a + C
u√a2 −u2 a
du 1 𝑢−𝑎
21) ∫ u2 −a2 = 2a In 𝑢+𝑎 + 𝐶
𝑑𝑢 1 𝑢−𝑎
22) ∫ 𝑎2 −𝑢2 = 2a In 𝑢+𝑎 + 𝐶
The only way to do great work is to love what you do.
Prepared by: Colene
Gammad
𝑑𝑢
23) ∫ = In(u + √u2 ∓ a2 ) + 𝐶
√u2 ±𝑎2
24) ∫ udv = uv − ∫ vdu
Indefinite Integral
Integrate the following:
Powers, Exponential, Logarithmic, Trigonometric Functions
3𝑥
1. ∫ 𝑑𝑥
4𝑥+5
(𝑥 2 +1)2
2. ∫ 𝑑𝑥
𝑥+1
3
3. ∫ √16𝑛2 + 8𝑛 + 1 𝑑𝑛
4
4. ∫ 𝑥 2 (𝑥 −3 + 2) 𝑑𝑥
𝑥
5. ∫ √4 + √𝑥 𝑑𝑥
𝑥+2
6. ∫ 𝑑𝑥
𝑥+1
1+𝑒 𝑥
7. ∫ 𝑑𝑥
1−𝑒 𝑥
8. ∫ sin2 𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥
9. ∫ 𝑡𝑎𝑛𝑥 𝑑𝑥
1
10. ∫ 𝑑𝑥
1−𝑐𝑜𝑠𝑥
11. ∫ (𝑡𝑎𝑛2𝑥 + 𝑠𝑒𝑐2𝑥)2 𝑑𝑥
1−𝑐𝑜𝑠2𝑦
12. ∫ 𝑑𝑦
1+𝑐𝑜𝑠2𝑦
Transformation by Trigonometric Functions
Power of Sines and Cosines
Power of Tangent and Secant
Power of Cotangent and Cosecant
For Power of Sines and Cosines
Case I. When m is a positive odd integer and n is any number, we may write
sin𝑚 𝑣 cos 𝑛 𝑣 = (sin𝑚−1 𝑣 cosn 𝑣)𝑠𝑖𝑛𝑣
sin2 𝑥 = 1 −cos2 𝑥
Case II. When m is any number and n is a positive odd we may write
sin𝑚 𝑣 cos𝑛 𝑣 = (sin𝑚 𝑣 cos n−1 𝑣)𝑐𝑜𝑠𝑣
cos 2 𝑥 = 1 − sin2 𝑥
Case III. When m and n are both even integers (either both positive or one positive and one zero)
𝑛 𝑛
sin𝑚 𝑣 cos 𝑛 𝑣 = (sin2 𝑣) 2 𝑜𝑟(cos 2 𝑣) 2
1 − 𝑐𝑜𝑠2𝑣 1 + 𝑐𝑜𝑠2𝑣
sin2 𝑣 = , cos 2𝑣 =
2 2
13. ∫ sin3 4𝑥𝑐𝑜𝑠 2 4𝑥𝑑𝑥
Prepared by: Colene
Gammad
sin3 𝑥𝑑𝑥
14. ∫
cos6 𝑥
15. ∫ sin 𝑦𝑐𝑜𝑠 3 𝑦𝑑𝑦
3
16. ∫ cos 3 𝑥𝑑𝑥
17. ∫ sin4 4𝑥𝑑𝑥
For Power of Tangents and Secants
Case I. When m is any number and n is a positive even integer greater than 2, we may write
tan𝑚 𝑣 sec 𝑛 𝑣 = (tan𝑚 𝑣 sec n−2 𝑣) sec 2 𝑣
sec 2 𝑥 = 1 −tan2 𝑥
Case II. When m is any number and n is a positive even integer greater than 2, we may write
tan𝑚 𝑣 sec 𝑛 𝑣 = (tan𝑚−1 𝑣 sec n−1 𝑣) 𝑠𝑒𝑐 𝑣 tan 𝑣
tan2 𝑥 = sec 2 𝑥 − 1
Case III. When m is a positive odd (or even) integer and n is zero, we may write
tan𝑚 𝑣 sec 𝑛 𝑣 = tan𝑚−2 𝑣𝑡𝑎𝑛2 𝑣
tan2 𝑥 = sec 2 𝑥 − 1
18. ∫ tan3 𝑥𝑠𝑒𝑐 4 𝑥𝑑𝑥
19. ∫ tan3 𝑥𝑠𝑒𝑐 5 𝑥𝑑𝑥
20. ∫ tan3 𝑥𝑑𝑥
Trigonometric Substitutions/ Inverse Trigonometric Substitution / Additional
Formulas
3 Theorem needed to consider:
If the integrand contains a2 − 𝑢2 , use the substitution u=asinϴ
If the integrand contains u2 + 𝑎2 , use the substitution u=atanϴ
If the integrand contains u2 − 𝑎2 , use the substitution u=asecϴ
𝑑𝑥
21. ∫
𝑥√9+4𝑥 2
𝑥 2 𝑑𝑥
22. ∫
√2𝑥−𝑥 2
𝑑𝑡
23. ∫
√5−16𝑡 2
𝑦 2 +1𝑑𝑦
24. ∫
𝑦 2 +4
Integration by parts
∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢
L-Logarithmic
Failure is just a state of mind. No one is truly defeated until defeated is accepted as realty.
Prepared by: Colene
Gammad
I-Inverse
A-Algebraic
T-Trigonometric
E-Exponential
25.∫ 𝑡 2 𝑐𝑜𝑠𝑡𝑑𝑡
26. ∫ 𝑦lny dy
27. ∫ 𝑙𝑛𝑥𝑑𝑥
28. ∫ 𝑥 2 𝑒 −𝑥 𝑑𝑥
29. ∫ 𝐴𝑟𝑐𝑡𝑎𝑛𝑥𝑑𝑥
30. ∫ 𝑥𝑒 𝑥 𝑑𝑥
L.I.A.T.E. is one way of getting the answer easy!
Integration of Rational Fractions
Distinct Linear Fractions
In order to shed light you must endure burning
Repeated Linear Fractions
Distinct Quadratic Fractions
Repeated Quadratic Fractions
Distinct Linear Fractions
(2𝑥+11)𝑑𝑥
31. ∫
𝑥 2 +𝑥−6
3𝑥 2 +8𝑥−12
32. ∫ 𝑑𝑥
𝑥 3 +7𝑥 2 +12𝑥
3𝑡 2 𝑑𝑡
32.∫
𝑡 4 +5𝑡 2 +4
Repeated Linear Fractions
𝑑𝑥
33. ∫
𝑥(𝑥+2)2
Distinct Quadratic Factors
𝑥𝑑𝑥
34.∫
𝑥 2 +6𝑥+13
sec2 ϴ𝑑ϴ
35.∫
tan3 ϴ+4tanϴ
Prepared by: Colene
Gammad
Wallis’ Formula
𝝅
(𝒎−𝟏)(𝒎−𝟑)….(𝟐𝒐𝒓𝟏)∗(𝒏−𝟏)(𝒏−𝟑)….(𝟐𝒐𝒓𝟏)
∫𝟎 𝒔𝒊𝒏𝒎 𝒙𝒄𝒐𝒔𝒏 𝒙𝒅𝒙 =
𝟐
(𝒎+𝒏)(𝒎+𝒏−𝟐)….(𝟐𝒐𝒓𝟏)
(𝜶)
Where:
m and n are nonnegative integers
𝝅
𝛼 = if both m and n are even
𝟐
𝛼 = 1 if both one and both are odd.
𝝅
36. ∫0 sin4 ϴ𝑑ϴ
2
𝝅
37. ∫0 sin4 ϴ𝑐𝑜𝑠 3 ϴ𝑑ϴ
2
𝝅
38.∫0 sin2 ϴ𝑐𝑜𝑠 6 ϴ𝑑ϴ
2
𝝅
39.∫0 cos4 3ϴ𝑑ϴ
6
Plane Areas Improper Integrals
Steps:
Name of the curve
Plotting
Solve for the intersection
Get the area
2 methods in getting the area:
Horizontal Rectangle Strips
Vertical Rectangle Strips
Find the area of the region bounded by the curves
40. y=2x, xy=6, x=6, x-axis
41.y = √𝑥 2 + 5, 𝑥 − 𝑎𝑥𝑖𝑠, 𝑥 = 2(𝑓𝑖𝑟𝑠𝑡𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡)
42. x 2 = 4𝑦 and y 2 = −4𝑥
You were created to be successful to accomplish your goals, to leave your mark on this
generation. You have greatness in you. The key is to get it out.
Prepared by: Colene
Gammad