Integral Calculus
Differrential Calculus
-
given the function where are to find for the differential or derivative.
Integral Calculus
-
given the derivative of a function where are to find for the required
function.
du
 x 2 dx dx ( u2 ) =nua1 dx
d ( x3 ) =3 x 2 dx
1
2
2
d ( x ) = ( 3 ) x dx
3
 x 2 dx
d
( 13 x +c )=x dx
2
1 3
2
 x dx= x + c
3
*Two function having the same derivative differ only by constant.
y=x 35
'
y =3 x
y=x 3 +1000
y=3 x
Where: c = arbitrary constant.
Indefinite integral
 f ( x ) dx
*Since the process of integration is not completely determine because of an
addition arbitrary constant.
PROPERTIES OF INDEFINITE INTEGRAL
 dx=u+c 
definite of integral
 dw=w + z
 dx= x+ z
*Indefinite of the variable of integration.
2.)
(dw+  dx+  dx)dx= dw+ dx+  dx
* if it contains some of term that can be integrate separately.
x5
(
Ex.
1 3
x +4 x 4 +4 )dx= x 5 dx 1  x3 dx+ 4  x 4 dx +11 dx
7
7
GENERAL POWER FORMULA OF INTEGRATIONS
d ( un )=nun1 du
from:
n  n+ 1
d ( uu+1 ) =( n+1 ) un+11 du
 u du=
n
 un du=
n+1
d(u )
n+1
uu+ 1
+c
n+1
Examples:
un+ 1
x dx  u du=
+c
n+1
2
u=x ; n=2
du=dx
x 2+1
x3
+c= +c
2+1
3
un+1
 (43 x) dx   u du= n+1 +c
5
u=43 x , n=5
du=3 dx
unwanted factor
Thus,
( 13 ) ( 43 x ) (3) dx
5
43 x
1
  
3
6
(43 x)
+c
18
2
 ( a2x 4 ) dx
=
 ( a42a 2 x 4 + x 8 ) dx
5
x
4
2 x
= a x2 a 5 + 9 +c
1+u
1+u
1+u2
( 2)
( 2) du
ln 3
+c
u ln 2
ln
3
4.)
=
=
1+u2
1
1
2
2
ln 3 (1+u)2
+c
=
6
Fundamental Integration Formulas
1.)General Power Formula
 un du=
n+ 1
u
+c
n+1
2.)Logarithmic Function
a.)
du
u = ln u + c w/r: u>0
b.)
du
=ln (u ) +c w /r :u< 0
u
ln
c.) du = u w :u is not equal  zero
u +c r
Ex.)
1
7
+
3
3 w6
=
w/r: u=3w-6 ; du=3dw
w+ 5
1.)  3 w6
(3)
( )
1
dw
3
= 3  dw+7  3 w6
1
7
w+
3
3
2.)
cos d
 sin
2
5
ln (3w-6) + c
1
= 2 ln(sin2) + c
w/r: u= sin2,du=cos2 2 d
cos u
du w/r: u = sin u,du = cos u du
sin u
3.  cot u du=
= ln sin u + c
5 xdx
1
4.)  1+ 2 x 2 = 5( 4 )
4 xdx
 1+ 2 x 2 = 54 ln
3.)Exponential Function
a.)
 eu
du=
e u+ c
4
b.)
 a u du= lna(a)
+c
w/r: a>0
Ex.)
1
1. ( ) esin 3 x cos 3x dx
3
3
Let: u=sin 3x; du =(3)cos3xdx
1
 e sin3 x +c
3
dx
2.)
 105 x
=2
 ln x dx
1
=( 5 )
1 105 x
5x
10
dx=
(
)+ c
5 ln10
( 5)
x
= 2x
+c
3
4.)
 43 lnx dx=4 e lnx dx=4  x 3 dx
x4
4
= 4 4 + c= x + c
1+2 x
)+c
4.) Trigonometric Function
a.) cos u du=sin u du
b.) sin u du= -cos u du
2
c.)  sec udu=tan u du
2
d.)  csc udu=cot u du
e.) sec u tan u du=sec u+ c
f.)  csc u cot u du=-csc u + c
g.) cot u du = ln u + c
h.) sec u du =ln(sec u + tan u) + c
i.)  csc du = ln(csc u  cot u) + c
5.) Inverse Trigonometric Function
a.)
b.)
du
u
2
2 = Arcsin
a
a u
du
 a2 +u2
+c
1
u
= a Arctan a + c
Ex.
1. 
dx
 9x 2
(let:
a =9, a=3, u =x ,u=x )
x
=Arcsin 3 +c
2
x +3 2 +(  6)
dx
2.)
dx
dx
 x2 +6 x +15 = x2 +6 x +9+6 = 
1
= 6
x +3
6
6
. 6 Arctan  6 .  6 + 6
6 arctan ( x+3 )  6 +c
6
e2 x dx
3.)   44 e 4 x
2
2x
2x
2x
let: a =4, a=2 u =4 e ,u=2 e  du=4 e dx
e 2 x dx( 4)
 44 e 4 x
2x
1
2e
= 4 Arcsin 2 + c
1
2x
= 4 arcsin e +c
4.)
( 3 ) dy
dy
1
= 
2
9 y + 6 y+ 3 3 ( 3 y +1 ) +2
2
1 1 2
3 y +1 2
{ .
.
+c
}Arctan
3 2 2
 2 2
2 A
6
rctan
(3 y +1)  2
+c
2
6.)Integration By Parts
 udv=uv  vdu
Ex.)
=
 cos 5 u sin2 u d
 cos 4 u sin2 u cos 4 du
u
1sin
u
(
 2
2
cos  2=
12 sin
sin
( 2u) cos u du
=
(  2 u+sin 4 u )
 sin2 u cos u du2 sin 4 u cos u du+ sin5
w/r : u =sin u,du = cos u du
sin3 u 2 sin 5 u sin 7 u
+
=
3
5
7
2.)
+c
 cot 4 x dx
xx
csc
( x1) dx
= csc 2  dx 
2
cot x 
2
Let: u =cot x,du = csc xdx
cot 3 x
 csc 2 x dx +  dx
=
3
cot 3 x
+ cotx+ x+ c
=
3
3.)
 tan4 y sec2 y dy
Let: u= tan y,n=4;du=
sec 2 y dy
u cos u du
tan 5 y
=
5
4.)
+c
 y ln y dy
dy
Let: u= ln y, du= y ,
y2
 dv = ydy , v= y
y 2 ln y 1
  ydy
=
2
2
5.)
y2
y2
+c
2 - 4
 xe x dx ( let u=x , du=dx , v=e x )
x
x
= xe  e dx
x
x
= xe e +c
Integration By Substitution
a.)Algebraic Substitution
  e x 9
dx
>Change the variable of integration that seems to be causing trouble in the
process of integration by way of explicit substation.
yz
dydz
>Perform the integration using the appropriate method
>Return back to the original variable in expressing the final answer.
Ex.)
1.)
  e x9
dx
2 udu
2
u +9
= u( )
= 2
 u u+99
2
+9
(u2 +9)du
du
=2  (u 2+ 9) 18  u2+ 9
=2
 du18
du
u2 +9
1
u
=2u-18( 3  arctan 3 + c
=2
 e x 96 arctan  e 39
2.)
  1+ z
+c
dz
y
y (4 y)(1) dy
=
4
2
= 4  y dy4 y dy
4 y5
= 5
4 y3
- 3 +6s
5
4
4
= 5 (1 +  z  2 - 3 (1+
2
3
 z + c
b.)Trigonometric Substitution
  1+ z
dz
*if the integrand involves,
2
2
> a + x use : x = a tan
Ex.)
a
1.) dx
 2+a tan 
=a
2
sec d
a
cosd
= a3 
2
 2 2
1+ tan
3
2
sec
3
2
 2  3
x
= a 2  a2 + x 2 + c
> a x us e : x=a sin
2
2
> x a use : x=a sec 
Integration Of Rational Fraction
>quotient of two polynomials
>the numerator is of lower degree than the denominator
>the denominator is broken into real factors of partial fractions
*Distinct Linear Factors
*Repeated Linear Factors
*Quadratic Factors
DEFINITE INTEGRALS
f ( x ) dx  definite integral withthe limits
b
  a b 
a
a=lower limits
b= upper limits
Ex.)
1.)
1 2 1
( x 3 x + + 11)dx
2
3
4
2++11 x  42
4
3
2
=[ x  1 x + 1 x
4 2 3 3 
=[
1
(2)
4
TRANSFORMATION BY TRIGONOMETRIC FORMULAS
Type I:
 sin m y cos n xdx  either n or m is a positive add integer
If n is add
n1
u
sin cos xsinxdx  reduce
  power formla 
Use =
sin x=1sin x
If m is add
cos n1 sinm xcosxdx reduce
  power formla
Use =
cos 2 x=1sin 2 x
 tann xdx  cotn xdx  where n is aninteger
Type II:
2
use=tan x=sec x1
2
cot x=csc x 1
Type III:
 tanm x sec n xdx cot m x csc n xdx  where m is a positive even integer
use=sec 2 x=1 tan 2 x
csc 2 x=1+ cot 2 x
 Reduce to power formula
Type IV:
Use =
 sin m x cosn xdx  where n or m are botheven
1
sin 2 x= (1cos 2 x )
2
1
cos 2 x= ( 1+cos 2 x )
2
sin 2 x=2 sinx cos x
cos 2 x=cos 2 xsin 2 x
 2 cos2 x 1
 12 sin 2 x
INTEGRATION BY SUBSTITUTION
A Algebraic Substitution
B Trigonometric Substitution
ALGEBRAIC SUBSTITUTION
 change the variable of integration that seems to be causing trouble in
the process of integration by way of explicit substitution.
yz
zx
dydzdzdxdwdy
wy
> Perform the integration using the appropriate method.
> Perform back to the original variable in expressing the final answer.
NOTE: If the expressing contain an exponent equals to
exponent in the substitution of the variable.
Example:
1
  e xg dx
u  e x g
2 udu
u2 + g
u[]
u2=e x g
(u 2+ gg) du
= 2
u2 + g
u + g=e
(u 2+ g)du
du
= 2 ( u2+ g) 18  u2+ g
2udu=e x dx
2 du18 
2
= u u
du
2
u +g
dx=
a =g
= uu
= 2u-18
1
u
( ) arctan +3
3
3
a=3
2 e x g6 arctan  e 3g +3
x
Answer =
TRIGONOMETRIC SUBSTITUTION
 If the integral invovles,
a x x=asin
2udu
x
e
1
2 , include the
 a2x 2
x
=sin
a
a2x 2
cos=
a
cot=
a2x 2
a
 If the integrated involves,
csc=
a2 + x 2 x=atan
a2x 2
a
sin2 
=
= 2sin  cos 
x
a
2 2 2 2 2
a +x a +x
2 ax
= a2 + x 2
 If the integrated involves,
x
=sec
a
x
=cos
a
sin 
x 2 +a2
x
Example:
1 In the integral
we may write
a2x 2 x=asec
so that the integral becomes
2 In the integral
we may use
INTEGRATION BY RATIONAL FRACTIONS
 Quotient of two polynomials.
 Two degree of numerator must be of lower degree the degree of the
denominator.
If the denominator contains a quadratic expression according to this
2
form: a x + bx+ c
b2=4 ac
 a discriminant to determine behavior of the roots.
b24 ac <0
 If
roots are imaginary and unequal.
 That count for factored without distinct lines factored.
 Can also be integrated by still.
3 FORMS of PARTIAL FRACTION
A Distinct Linear Factors
B Repeated Factors
C Quadratic Factors
a n> leads to power formula
b n> leads to power formula
 If n=1 leads tologarithmic
du
=  u =luu+ c
A
a x +bx +c  arctangent 
A
(a x + bx+ c)
du
 a2 +u2
1
2
arctan
u
a
+c
n  1 lead by trigonometric substitution.
 By completing the square
DISTINCT LINEAR FACTORS
dx
Adx
Bdx
Cdx
 (xa)(x b)( xc ) = xa + xb + xc
=
dx
dx
dx
+
+
xa  xb  xc
 Logarithmic Integration Formula
Various Method of Solving the Constant: ABC
a Taking the original zero of the denominator as the assumption for the
values of the variable.
b Equate the coeff. of some power of x.
c Using the formula:
A=
f ( a)
g( a)
 f(a)=function of the numerator, g(a)=other factors of the
denominator
Example:
1
(3 y 24 y6)dy
 ( y 1)( y 3)( y+ 1) Distinct Linear factor
dy
dy
dy
a
+
b
+
c
=
y1
y3
y +1
2
(3 y 4 y 6)dy
= ( y1)( y3)( y +1)
2
= 3 y 4 y6
 y1 + y 3 + y +1
= (y-1)(y-3)(y+1)
= A(y-2)(y+1)+B(y-1)(y+1)+C(y-1)(y-2) 1.
y=1, y=2, y=-1
say y = 1:
3(1)-4(1)-6 = A(1-2) (-1+1)
-7 - -2a A =
7
2
say y = 2:
say y = -1:
3(2)-4(2)-6 = B(2-1) (2+1)
3(-1)-4(-1)-6 = C(-1-1) (-1-2)
12-14 = 3B B =
2
3
3+4-6 = C (-2)(-3)
1=6C C =
Using method B:
2
= 3 y 4 y6 = A(y-2)(y+1)+B(y-1)(y+1)+C(y-1)(y-2)
1
6
2
= 3 y 4 y6
y2
2
2
2
= A( y y-2)+B( y 1 )+C( y 3 y +4 )
: 3 = A+B+C 1
y : -4 = -A  3C 2
C : -6 = -2A B +2C 3
Equate: 1 and 2
Equate: 4 and 2
3= A+ B+C
6=2 AB+2 C
3=A 3 C
3=A +3 C
4=A3C
7=2 A
A =
7
2
From 4:
From 1:
3= A+3 C
7
3= +3 C
2
7
3 C=3+
2
3C =
3C =
3= A+ B+C
7
1
3= B+
2
6
3 7 1
B=  
1 2 6
6+7
2
1
2
C=
1
6
18211
6
4
6
2
3
Plane Areas
*enclosed by the given boundaries (a curve or a line)
A= yi  x
i=1
 Y 1  x +Y 2  x +  Y n  x
x  0
yvariable
dA=ydx
a
ydx=  f ( x ) dx
o
A=
Examples:
1 Find the area bounded by the parabola
y 2 =4ax
w/v(0,0)
Soln:
12=4a
; a=3
LR=12
; 2a=6
dA=Area of Rectangle (A=LxW/Thickness)
dA=  ydx
dA=(3-x)dy
y
=12x  x= 12
dA=2
6
y 2 =12x of the line x=3
=12(3)
 ( 3x ) dy
0
y2
3
dy
dA=2 
12
0
=36
dA=2
+ 6
Y=
[ ( )]
1 y3
3 y
2 3
[()
36
dA=2
1
(6)3
36
dA=2 [ (86) ]
y=k
horizontal
x=k
vertical
dA=24s.u
 ans.
x=3
contd
dA=ydx
3
A=2
 ydx
0
3
A=2
 2  3 x dx
0
A=4
A=4
 3  x dx
0
3 3
2
[]
x
3
2
[ ]
3
8 3
2
A= 3 (3)
1
8 2 2
A= 3 (3) (3)
8 2
A= 3 (3)
A=24s.u  ans.
2 Find the area bounded by the curve
x 2=3 y
and the line x-y=0.
y  y 2 ) dx
dA= ( H
3
A=
 ( y H  y 2 ) dx
0
A=
A=
x2
dx
3
3 3
x 1x
2 3 3
1 2 1 3
A= 2 ( 3 )  9 ( 3 )
9
A= 2 -3
3
A= 2 s.
x 2=3 y
x 2=3 x
x=3
x 2=3 y
y=
x2
3
Therefore:
y=3
SOLIDS OF REVOLUTION
 A solid is generated when an area is revolved about any reference axis
or line.
CIRCULAR DISK
CYLINDRICAL SHELL
dv=2 y xdy
b
V =2   yxdy
0
dv=2  ( b y ) xdy
b
V =2   ( b y ) xdy
0
CIRCULAR RING
 y2
 y
dv=
y2
V =  
0
Examples:
1 Find the volume of a sphere.
(V = 34  r )
3
[ ]
V =2  r 3
dv= x dy
V =( 2 )   ( x 2 ) dy
V =2 
r
0
[ ]
2 3
r
3
4 3
V =  r cu .units
3
V =2   ( r 2 y 2 ) dy
3 r
y
V =2  r y 
3
2
2 Find the volume of revolving the area bounded by the curve
and the line
y=3 x
r3
3
about the x-axis, y=axis & the line
y 2=6 x
y=2 .
To get the point of
intersection
2
y=3 x y =6 x
2
y =6 x
y 2=6
y
x=  xR
3
( 3y )
y=3 x
y ( y )=2 y
2
y =6 x
y=0
x=0
y=2
y 2
x= =
3 3
x=
y
xL
6
dV =2 y ( xRxL ) (dy )
2
V =2   y ( xRxL ) dy
0
y y
V =2   y 
dy
3 6
0
[ ( )( )]
1 y3 1
V =2 
3 3 6
( 2 ) 3 ( 2 )4
V =2 
9
24
y4
4
]
V =2 
V=
V=
6448
72
( 16 )
36
4
cu .units
9