0% found this document useful (0 votes)
259 views28 pages

Inverted T Retaining Wall Design

1. This document provides design data for an inverted T-shape retaining wall that is 15.8 meters high located along the Tambuo River. 2. The dimensions, soil properties, pressures, and safety factors are defined for stability analysis of the wall under normal and seismic conditions. 3. Stability will be calculated considering factors like overturning, sliding, foundation soil reaction, and allowable stresses.

Uploaded by

Danni Arman, ST
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
259 views28 pages

Inverted T Retaining Wall Design

1. This document provides design data for an inverted T-shape retaining wall that is 15.8 meters high located along the Tambuo River. 2. The dimensions, soil properties, pressures, and safety factors are defined for stability analysis of the wall under normal and seismic conditions. 3. Stability will be calculated considering factors like overturning, sliding, foundation soil reaction, and allowable stresses.

Uploaded by

Danni Arman, ST
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 28

Name of Structure : Inverted T-shape Type Retaining Wall (H=15.

8m)
q (t/m2) b11 b12 b13
Location : Tambuo River
Dimension (unit length)
H = 15.75 m B = 12.00 m L = 1.00 m
a
MENU
b11 = 1.41 m b12 = 0.50 m b13 = 0.09 m
b21 = 8.00 m b22 = 2.00 m b23 = 2.00 m
H=h1

h1 = 15.75 m h31 = 2.00 m h32 = 1.50 m


h4 = 0.00 m hw1 = 6.03 m hw2 = 3.70 m
Basically passive earth pressure are not considered.
hw1
h32 Therefore h4 = 0 q = 1.00 t/m2 Kh = 0.16
hw2
h4 Backfill soil gc = 2.40 t/m3 gw = 1.00 t/m3
h31
g soil = 1.80 t/m3
g sat = 2.00 t/m3 a = 0.000 o
(for stability analysis)
b21 b22 b23
B f = 30.0 o a = 6.566 o
(for structural analysis)
c = 0.00 t/m2 b = 0.000 o

Section of Retaining wall Foundation soil


g s' = 1.00 t/m3 Safety factor (normal) (seismic)
fB = 30.0 o Overturning |e| < B/6=2.63 B/3=4.00
cB = 0.00 t/m2 Sliding fs > 2.00 1.25
Friction coefficient Reaction of foundation soil
m = 0.50 qmax > qa=qu/3 qae=qu/2
Uplift coefficient Allowable stress
Um = 1.00 Compressive s ca = 60 90 kg/cm2
Cover of bar Tensile s sa = 1400 2100 kg/cm2
Wall Shear ta = 5.5 8.25 kg/cm2
d back = 7 cm Young's modulus ratio
d front = 10 cm 24 16
Footing
d upper = 10 cm
d lower = 10 cm
Stability2/28

Inverted T-shape Type Retaining Wall (H=15.8m)

1. Design Data
q (t/m2)
b11 b12 b13
1.1 Dimensions

B = 12.00 m H = 15.75 m
L = 1.00 m (unit length)

b11 = 1.41 m b21 = 8.00 m H=h1


b12 = 0.50 m b22 = 2.00 m
b13 = 0.09 m b23 = 2.00 m

h1 = 15.75 m h4 = 0.00 m hw1

h31 = 2.00 m hw1 = 6.03 m h32 hw2


h4
h32 = 1.50 m hw2 = 3.70 m h31

b2 b2 b2
1.2 Parameters
1 2 3
B
q = 1.00 t/m2 (for normal condition)
= 0.00 t/m2 (for seismic condition) Section of Retaining Wall
gc = 2.40 t/m3
gw = 1.00 t/m3
Backfill soil Foundation soil Safety factor
gsoil = 1.80 t/m3 gs ' = 1.00 t/m3 (=gsat-gw) Overturning
gsat = 2.00 t/m 3 cB = 0.00 t/m 2
normal |e|<B/6=2.00m
c = 0.00 t/m2 fB = 30.00 o
seismic |e|<B/3=4.00m
f = 30.00 o
m = 0.50 (Friction coefficient) Sliding
Um = 1.00 (Uplift coefficient) normal fs > 2.00
b = 0.000 o
seismic fs > 1.25
a = 0.000 o
(for stability analysis) Reaction of foundation soil
= 6.566 o
(for structural analysis) normal qmax<qa
d = 0.000 o
(for stability analysis in normal condition, d = b) qa=qu/3
= 20.00 o
(for structural analysis in normal condition, d = 2/3 f) seismic qmax<qae
= 22.54 o
(for stability analysis in seismic condition, see Section 2.3) qae=qu/2
= 15.00 o
(for structural analysis in seismic condition, d = 1/2 f)
F = 9.090 o
( = Arc tan(Kh) ) Kh = 0.16

2. Stability Calculation

2.1 Case 1 (Normal condition, with vertical live load)


1.41
q = 1.00 t/m2 0.50
0.09

qa1
9

Pa1

Pa2 10 7
15.75 12.25

qa2 11
8
1.50
Pa3 6
6.03 12 4 5
Pw1 Pa4
0.00 3.70
1 2 3 Pp1 2.00 Pw2
Pu1 O
qw1 qa4 qa3 qp1 qw2
qu2 Pu2
qu1
8.00 2.00 2.00

Acting Load in Case 1


Stability3/28

(1) Vertical Load

No. Description W X WxX


1 2.00 x 8.00 x 2.40 38.400 8.000 307.20
2 3.50 x 2.00 x 2.40 16.800 3.000 50.40
3 2.00 x 2.00 x 2.40 9.600 1.000 9.60
4 0.50 x 1.50 x 8.00 x 2.40 14.400 6.667 96.00
5 0.50 x 1.50 x 2.00 x 2.40 3.600 0.667 2.40
6 0.50 x 12.25 x 1.41 x 2.40 20.727 3.530 73.17
7 12.25 x 0.50 x 2.40 14.700 2.340 34.40
8 0.50 x 12.25 x 0.09 x 2.40 1.323 2.060 2.73
9 0.50 x 12.25 x 1.41 x 1.80 15.545 3.530 54.87
10 8.00 x 9.73 x 1.80 140.040 8.000 1,120.32
11 8.00 x 2.53 x 2.00 40.400 8.000 323.20
12 0.50 x 8.00 x 1.50 x 2.00 12.000 9.333 112.00
q 1.00 x 9.41 9.410 7.295 68.65
T o t a l(1 to q) 336.945 2,254.94
Pu1 6.03 x 12.00 x 0.50 x -1.00 -36.150 8.000 -289.20
Pu2 3.70 x 12.00 x 0.50 x -1.00 -22.200 4.000 -88.80
Total ( 1 to Pu2) 278.595 1,876.94

(2) Horizontal Load


Coefficient of Active earth pressure

Cos2(f -a)
Ka =
Sin(f+d) x Sinf 2
Cos2a x Cos(a+d) x 1+
Cos(a+d) x Cosa
(for stability analysis)
a = 0.000 o
d = 0.000 o

Cos (f -a)
2
= 0.750 Sin(f+d) = 0.500
Cos2a = 1.000 Sinf = 0.500
Cos(a+d) = 1.000 Cosa = 1.000

Ka = 0.333 for stability analysis

(for structural analysis)


a = 6.566 o
d = 20.000 o

Cos (f -a)
2
= 0.842 Sin(f+d) = 0.766
Cos2a = 0.987 Sinf = 0.500
Cos(a+d) = 0.894 Cosa = 0.993

Ka' = 0.348 for structural analysis

Coefficient of Passive earth pressure

Cos2(f+a)
Kp =
Sin(f+d) x Sinf 2
Cos2a x Cos(a -d) x 1-
Cos(a -d) x Cosa
a = 0.000 o
d = 0.000 o

Cos (f+a)
2
= 0.750 Sin(f+d) = 0.500
Cos2a = 1.000 Sinf = 0.500
Cos(a -d) = 1.000 Cosa = 1.000

Kp = 3.000

qa1 = Ka x q = 0.333 ton/m


qa2 = Ka x (h1- hw1) x gsoil = 5.835 ton/m
qa3 = qa1 + qa2 = 6.168 ton/m
qa4 = Ka x hw1 x (gsat - gw) = 2.008 ton/m
qw 1 = hw1 x gw = 6.025 ton/m
qw 2 = hw2 x gw = 3.700 ton/m
qp1 = Kp x h4 x (gsat - gw) = 0.000 ton/m
Stability4/28
Stability5/28

No. Description H Y HxY


Pa1 0.333 x 9.73 3.242 10.888 35.30
Pa2 5.835 x 9.73 x 0.50 28.373 9.267 262.92
Pa3 6.168 x 6.03 37.164 3.013 111.96
Pa4 2.008 x 6.03 x 0.50 6.050 2.008 12.15
Pw1 6.025 x 6.03 x 0.50 18.150 2.008 36.45
Pw2 -3.700 x 3.70 x 0.50 -6.845 1.233 -8.44
Pp1 0.000 x 0.00 x 0.50 0.000 0.000 0.00
Total 86.134 450.33

(3) Stability Calculation

a) Stability against overturning


a) -1 Without Uplift
B = 12.00 m
SWxX-SHxY 2,254.94 - 450.33
X = = = 5.356 m
SW 336.945

B 12.00
e = - X = - 5.356 = 0.644 m < B/6 = 2.000 m OK !
2 2
a) -2 With Uplift
B = 12.00 m
SWxX-SHxY 1,876.94 - 450.33
X = = = 5.121 m
SW 278.595

B 12.00
e = - X = - 5.121 = 0.879 m < B/6 = 2.000 m OK !
2 2

b) Stability against sliding


b)-1 Without Uplift
Sliding force : SH = 86.134 ton
Resistance : HR = m x S W = 0.50 x 336.945 = 168.473 ton
(friction coefficient : m = 0.5 )

HR 168.473
Fs = = = 1.956 < 2.00 Check !
SH 86.134
b)-2 With Uplift
Sliding force : SH = 86.134 ton
Resistance : HR = m x S W = 0.50 x 278.595 = 139.298 ton
(friction coefficient : m = 0.5 )
HR 139.298
Fs = = = 1.617 < 2.00 Check !
SH 86.134

c) Reaction of foundation soil

SW 6xe
q1,2 = x (1 + )
B B

336.945 6x 0.644
q1 = x (1 + ) = 37.120 t/m2 < qa = 40.000 t/m2 OK !
12.00 12.00

336.945 6x 0.644
q2 = x (1 - ) = 19.037 t/m2 < qa = 40.000 t/m2 OK !
12.00 12.00
Stability6/28

19.037 t/m2 - t/m2


37.120 t/m2
- t/m
2

in case, e > 0 in case, e < 0


(applicable) (not applicable)

Reaction of Foundation Soil in Case 1


Stability7/28

2.2 Case 2 (Normal condition, without vertical live load)


1.41
q = 1.00 t/m2 0.50
0.09

qa1
9

Pa1
Pa2 10 7
15.75 12.25

qa2 11
8
1.50
Pa3 6
6.03 12 4 5
Pw1 Pa4
0.00 3.70
1 2 3 Pp1 2.00 Pw2

qa4 qa3 Pu1 O qp1 qw2


qw1 Pu2
qu1 qu2
8.00 2.00 2.00
Acting Load in Case 2

(1) Vertical Load

No. Description W X WxX


1 2.00 x 8.00 x 2.40 38.400 8.000 307.20
2 3.50 x 2.00 x 2.40 16.800 3.000 50.40
3 2.00 x 2.00 x 2.40 9.600 1.000 9.60
4 0.50 x 1.50 x 8.00 x 2.40 14.400 6.667 96.00
5 0.50 x 1.50 x 2.00 x 2.40 3.600 0.667 2.40
6 0.50 x 12.25 x 1.41 x 2.40 20.727 3.530 73.17
7 12.25 x 0.50 x 2.40 14.700 2.340 34.40
8 0.50 x 12.25 x 0.09 x 2.40 1.323 2.060 2.73
9 0.50 x 12.25 x 1.41 x 1.80 15.545 3.530 54.87
10 8.00 x 9.73 x 1.80 140.040 8.000 1120.32
11 8.00 x 2.53 x 2.00 40.400 8.000 323.20
12 0.50 x 8.00 x 1.50 x 2.00 12.000 9.333 112.00
T o t a l (1 to 12) 327.535 2186.29
Pu1 6.03 x 12.00 x 0.50 x -1.00 -36.150 8.000 -289.20
Pu2 3.70 x 12.00 x 0.50 x -1.00 -22.200 4.000 -88.80
Total ( 1 to Pu2) 269.185 1808.29

(2) Horizontal Load

Coefficient of Active earth pressure

Ka = 0.333 (for stability analysis)


Ka ' = 0.348 (for structural analysis)

Coefficient of Passive earth pressure

Kp = 3.000

qa1 = Ka x q = 0.333 ton/m


qa2 = Ka x (h1- hw1) x gsoil = 5.835 ton/m
qa3 = qa1 + qa2 = 6.168 ton/m
qa4 = Ka x hw1 x (gsat - gw) = 2.008 ton/m
qw 1 = hw1 x gw = 6.025 ton/m
qw2 = hw2 x gw = 3.700 ton/m
qp1 = Kp x h4 x (gsat - gw) = 0.000 ton/m
Stability8/28

No. Description H Y HxY


Pa1 0.333 x 9.73 3.242 10.888 35.30
Pa2 5.835 x 9.73 x 0.50 28.373 9.267 262.92
Pa3 6.168 x 6.03 37.164 3.013 111.96
Pa4 2.008 x 6.03 x 0.50 6.050 2.008 12.15
Pw1 6.025 x 6.03 x 0.50 18.150 2.008 36.45
Pw2 -3.700 x 3.70 x 0.50 -6.845 1.233 -8.44
Pp1 0.000 x 0.00 x 0.50 0.000 0.000 0.00
Total 86.134 450.33

(3) Stability Calculation

a) Stability against overturning


a)-1 Without Uplift
B = 12.00 m
SWxX-SHxY 2,186.29 - 450.33
X = = = 5.300 m
SW 327.535
B 12.00
e = - X = - 5.300 = 0.700 m < B/6 = 2.000 m OK !
2 2
a)-2 With Uplift
B = 12.00 m
SWxX-SHxY 1,808.29 - 450.33
X = = = 5.045 m
SW 269.185
B 12.00
e = - X = - 5.045 = 0.955 m < B/6 = 2.000 m OK !
2 2

b) Stability against sliding


b)-1 without Uplift Pressure
Sliding force : SH = 86.134 ton
Resistance : HR = m x S W = 0.50 x 327.535 = 163.768 ton
(friction coefficient : m = 0.5 )

HR 163.768
Fs = = = 1.90 < 2.00 Check !
SH 86.134
b)-2 with Uplift Pressure
Sliding force : SH = 86.134 ton
Resistance : HR = m x S W = 0.50 x 269.185 = 134.593 ton
(friction coefficient : m = 0.5 )

HR 134.593
Fs = = = 1.56 < 2.00 Check !
SH 86.134

c) Reaction of foundation soil

SW 6xe
q1,2 = x (1 + )
B B
327.535 6x 0.700
q1 = x (1 + ) = 36.848 t/m2 < qa = 40.000 t/m2 OK !
12.00 12.00
327.535 6x 0.700
q2 = x (1 - ) = 17.741 t/m2 < qa = 40.000 t/m2 OK !
12.00 12.00
Stability9/28

17.741 t/m2 - t/m2


36.848 t/m2
- t/m
2

in case, e > 0 in case, e < 0


(applicable) (not applicable)

Reaction of Foundation Soil in Case 2


Stability10/28

2.3 Case 3 (Seismic condition)


1.41
0.50
0.09

10 7
15.75 Pa1 12.25

qa1 11
8
1.50
6
6.03 Pa2
12 4 5
Pw1
Pa3 0.00 3.70
1 2 3 Pp1 2.00 Pw2

qw1 qa3 Pu1


qa2 O qp1 qw2
qu1 qu2 Pu2
8.00 2.00 2.00
Acting Load in Case 3

(1) Vertical Load = Same as Case 2

(2) Horizontal Load

f = 30.00 o a = 0.000 o (for stability analysis) F = 9.090 o


b = 0.00 o
a = 6.566 o (for structural analysis) (F = Arc tan(Kh) )
q = 0.00 t/m (for seismic condition)
2
Kh = 0.16

Coefficient of Active earth pressure

Cos2(f-F-a)
Kae =
2
Sin(f+d) x Sin(f-b-F)
CosF x Cos2a x Cos(a+d+F) x 1
Cos(a+d+F) x Cos(a-b)
+
(for stability analysis)
a = 0.000 o
d = 22.54 o

tan d = Sin f Sin ( F + D - b )


1 - Sin f Cos ( F + D - b )
sin D= Sin ( F + b )
Sin f

Sin (F+ b ) == 0.158 Sin f = 0.500


Sin D = 0.316 then D = 18.42
Sin(F+D-b) = 0.462 Cos(F+D-b)= 0.887
tan d = 0.415

Cos2(f-F-a)= 0.873 Sin(f+d) = 0.794


CosF = 0.987 Sin(f-b-F) = 0.357
Cos a2
= 1.000 Cos(a-b) = 1.000
Cos(a+d+F) = 0.851

Kae = 0.418 (for stability analysis)


Stability11/28

(for structural analysis)

a = 6.566 o
d = 15.00 o

Cos (f-F-a)=
2
0.939 Sin(f+d) = 0.707
CosF = 0.987 Sin(f-b-F) = 0.357
Cos a
2
= 0.987 Cos(a-b) = 0.993
Cos(a+d+F)= 0.860

Kae = 0.470 (for structural analysis)

Coefficient of Passive earth pressure

Cos2(f-F+a)
Kpe =
2
Sin(f-d) x Sin(f+b-F)
CosF x Cos2a x Cos(a+d-F) x 1
Cos(a+d-F) x Cos(a-b)
-
a = 0.000 o
d = 22.54 o

Cos (f-F+a)=
2
0.873 Sin(f-d) = 0.130
CosF = 0.987 Sin(f+b-F) = 0.357
Cos2a = 1.000 Cos(a-b) = 1.000
Cos(a+d-F)= 0.973

Kpe = 1.488

qa1 = Kae x ( h1 - hw1) x gsoil = 7.317 ton/m


qa2 = qa2 = 7.317 ton/m
qa3 = Kae x hw1 x (gsat - gw) = 2.518 ton/m
qw 1 = hw1 x gw = 6.025 ton/m
qw 2 = hw2 x gw = 3.700 ton/m
qp1 = Kp x h4 x (gsat - gw) = 0.000 ton/m

No. Description H Y HxY


1 0.16 x 38.40 6.144 1.000 6.14
2 0.16 x 16.80 2.688 1.750 4.70
3 0.16 x 9.60 1.536 1.000 1.54
4 0.16 x 14.40 2.304 2.500 5.76
5 0.16 x 3.60 0.576 2.500 1.44
6 0.16 x 20.73 3.316 7.583 25.15
7 0.16 x 14.70 2.352 9.625 22.64
8 0.16 x 1.32 0.212 7.583 1.61
9 0.16 x 15.55 2.487 11.667 29.02
10 0.16 x 140.04 22.406 10.888 243.95
11 0.16 x 40.40 6.464 4.763 30.78
12 0.16 x 12.00 1.920 3.000 5.76
Pw1 0.50 x 6.03 x 6.03 18.150 2.008 36.45
Pw2 0.50 x -3.70 x 3.70 -6.845 1.233 -8.44
Pa1 0.50 x 7.32 x 9.73 35.579 9.267 329.70
pa2 7.32 x 6.03 44.085 3.013 132.81
Pa3 0.50 x 2.518 x 6.03 7.587 2.008 15.23
Pp1 0.000 x 3.70 x 0.50 0.000 0.000 0.00
Total 150.963 884.24
Stability12/28

(3) Stability Calculation

a) Stability against overturning


a)-1 Without Uplift
B = 12.00 m
SWxX-SHxY 2,186.29 - 884.24
X = = = 3.975 m
SW 327.535
B 12.00
e = - X = - 3.975 = 2.025 m < B/3 = 4.000 m OK !
2 2
a)-2 With Uplift
B = 12.00 m
SWxX-SHxY 1,808.29 - 884.24
X = = = 3.433 m
SW 269.185
B 12.00
e = - X = - 3.433 = 2.567 m < B/3 = 4.000 m OK !
2 2

b) Stability against sliding


b)-1 Without Uplift
Sliding force : SH = 150.963 ton
Resistance : HR = m x S W = 0.50 x 327.535 = 163.768 ton
(friction coefficient : m = 0.5 )
HR 163.768
Fs = = = 1.08 < 1.25 Check !
SH 150.963
b)-2 With Uplift
Sliding force : SH = 150.963 ton
Resistance : HR = m x S W = 0.50 x 269.185 = 134.593 ton
(friction coefficient : m = 0.5 )
HR 134.593
Fs = = = 0.89 < 1.25 Check !
SH 150.963
c) Reaction of foundation soil

c-1) in case, |e| < B/6 (not applicable)


SW 6xe
q1,2 = x (1 + )
B B

q1 = x ) = - t/m2 qae = - t/m2

q2 = x ) = - t/m2 qae = - t/m2

c-2) in case, B/6 < |e| < B/3 (applicable)

2xSW 2x 327.535
q1' = = = 54.932 t/m2 < qae = 60.000 t/m2 OK !
3 x (B/2-|e|) 3x 3.975
3 x |e| - B/2 = 0.075 m

- t/m2

- t/m2 54.932 t/m2


Stability13/28

in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3
(not applicable) (applicable)

- t/m2

- t/m2 - t/m2
in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3
(not applicable) (not applicable)

Reaction of Foundation Soil in Case 3


Stability14/28

2.4 Bearing Capacity of soil

(1) Design Data


fB = 30.00 o cB = 0.00 t/m2 gs' = 1.00 t/m3 (=gsat-gw)

B = 12.00 m z = 0.00 m L = 1.00 m (unit length)


f
(2) Ultimate Bearing Capacity of soil, (qu) ###
###
Calculation of ultimate bearing capacity will be obtained by applying the following ###
Terzaghi's formula : ###
###
qu = (a x c x Nc) + (gsoil' x z x Nq) + (b x gsoil x B x Ng) ###
###
Shape factor (Table 2.5 of KP-06) ###
a = 1.00 b = 0.50
Shape of footing : 1 (strip)
Shape of footing a b
1 strip 1.00 0.50
2 square 1.30 0.40
3 rectangular, B x L 1.11 0.40
(B < L) (= 1.09 + 0.21 B/L)
(B > L) (= 1.09 + 0.21 L/B)
4 circular, diameter = B 1.30 0.30

Bearing capacity factor (Figure 2.3 of KP-06, by Capper)


Nc = 36.0 Nq = 23.0 Ng = 20.0
f Nc Nq Ng
0 5.7 0.0 0.0
5 7.0 1.4 0.0
10 9.0 2.7 0.2
15 12.0 4.5 2.3
20 17.0 7.5 4.7
25 24.0 13.0 9.5
30 36.0 23.0 20.0
35 57.0 44.0 41.0
37 70.0 50.0 55.0
39 > 82.0 50.0 73.0

(a x c x Nc) = 0.000
(gsoil x z x Nq) = 0.000
(b x gsoil x B x Ng) = 120.000

qu = 120.000 t/m2

(3) Allowable Bearing Capacity of soil, (qa)

qa = qu / 3 = 40.000 t/m2 (safety factor = 3 , normal condition)

qae = qu / 2 = 60.000 t/m2 (safety factor = 2 , seismic condition)


Structure15/28

3. Structure Calculation

3.1 Normal Condition

(1) Wall 1.41


q = 1.00 t/m2 0.50
0.09

qa1

Pa1
12.25 Pa2

A A
qa2
2.53 Pw1 Pa4 Pw2 0.20
Pa3 B B
1.50
qw1 qa4 qa3 qw2
2.00 2.00

8.00 2.00 2.00

Load Diagram on Wall in Normal Condition


Ka = 0.348
a = 6.566 o

d = 20.00 o

cos (a+d) = 0.894


Kha = Ka x cos (a+d) = 0.311

a) Section A - A

h = 9.73 m
qa1 = ha q
K x = 0.311 ton/m
qa2 = Kha x h x gsoil = 5.443 ton/m

No. Description Ha Y (from A-A) Ha x Y


Pa1 0.311 x 9.73 3.024 4.863 14.702
Pa2 5.443 x 9.73 x 0.50 26.464 3.242 85.789
Total 29.488 100.491

Sa = 29.488 ton Ma = 100.491 ton m

b) Section B - B

h = 9.73 m hw1 = 2.53 m hw2 = 0.20 m


qa1 = Kha x q = 0.311 ton/m
qa2 = Kha x h x gsoil = 5.443 ton/m
qa3 = qa1 + qa2 = 5.753 ton/m
qa4 = Kha x hw2 x (gsat - gw) = 0.785 ton/m
qw1 = hw1 x gw = 2.525 ton/m
qw2 = hw2 x gw = 0.200 ton/m

No. Description Hb Y (from B-B) Ha x Y


Pa1 0.311 x 9.73 3.024 7.388 22.337
Pa2 5.443 x 9.73 x 0.50 26.464 5.767 152.611
Pa3 5.753 x 2.53 14.528 1.263 18.341
Pa4 0.785 x 2.53 x 0.50 0.991 0.842 0.834
Pw1 2.525 x 2.53 x 0.50 3.188 0.842 2.683
Pw2 -0.200 x 0.20 x 0.50 -0.020 0.067 (0.001)
Total 48.175 196.806

Sb = 48.175 ton Mb = 196.806 ton m


Structure16/28

(2) Footing
Case 1 (with vertical live load) Case 2 (without vertical live load)
q = 1.00 t/m2 q = 1.00 t/m2

9.73 9.73
4 4

2.53 2.53
D C D C
1.50 1.50
2.00 2.00
3 1 3 1

D C D C
8.00 2.00 2.00 8.00 2.00 2.00

5
4 4

3 3 1
1

in case, e > 0 in case, e > 0

6 6
2 2
19.037 t/m2 17.741 t/m2
31.092 t/m2 30.479 t/m2
34.106 t/m2 33.664 t/m2
37.120 t/m2 36.848 t/m2

in case, e < 0 in case, e < 0

2 2
6 6

- t/m2 - t/m2 - t/m2 -

- t/m2 - t/m2 - t/m2 -

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)


No. Description Hc X (from C-C) Hc x X
1 2.000 x 2.00 x 2.40 9.600 1.000 9.600
1.500 x 2.00 x 2.40 x 0.50 3.600 0.667 2.400
2 -34.106 x 2.00 -68.212 1.000 -68.212
-3.014 x 2.00 x 0.50 -3.014 1.333 -4.018
Total -58.026 -60.231

Case 2 (without vertical live load)


No. Description Hc X (from C-C) Hc x X
1 2.000 x 2.00 x 2.40 9.600 1.000 9.600
1.500 x 2.00 x 2.40 x 0.50 3.600 0.667 2.400
2 -33.664 x 2.00 -67.327 1.000 -67.327
-3.185 x 2.00 x 0.50 -3.185 1.333 -4.246
Total -57.312 -59.573

Case 1 Sc = -58.026 ton Mc = -60.231 ton m


Case 2 Sc = -57.312 ton Mc = -59.573 ton m
Structure17/28

b) Section D - D

Case 1 (with vertical live load)


No. Description Hd X (from D-D) Hd x Y
3 2.000 x 8.00 x 2.40 38.400 4.000 153.600
1.500 x 8.00 x 2.40 x 0.50 14.400 2.667 38.400
4 9.725 x 8.00 x 1.80 140.040 4.000 560.160
2.525 x 8.00 x 2.00 40.400 4.000 161.600
1.500 x 8.00 x 2.00 x 0.50 12.000 5.333 64.000
5 1.000 x 8.00 8.000 4.000 32.000
6 -19.037 x 8.00 -152.296 4.000 -609.184
-12.055 x 8.00 x 0.50 -48.221 2.667 -128.590
Total 52.723 271.986

Case 2 (without vertical live load)


No. Description Hd X (from D-D) Hd x Y
3 2.000 x 8.00 x 2.40 38.400 4.000 153.600
1.500 x 8.00 x 2.40 x 0.50 14.400 2.667 38.400
4 9.725 x 8.00 x 1.80 140.040 4.000 560.160
2.525 x 8.00 x 2.00 40.400 4.000 161.600
1.500 x 8.00 x 2.00 x 0.50 12.000 5.333 64.000
6 -17.741 x 8.00 -141.928 4.000 -567.712
-12.738 x 8.00 x 0.50 -50.952 2.667 -135.872
Total 52.360 274.176

Case 1 Sd = 52.723 ton Md = 271.986 ton m


case 2 Sd = 52.360 ton Md = 274.176 ton m
Structure18/28

3.2 Seismic Condition

(1) Wall 1.41


0.50
0.09

Pa1 1 2 3
12.25
13.75
A A

qa1
Pa2
2.53 Pw1 Pa3 Pw2 0.20
B B
1.50 qw2
2.00 qw1 qa3 qa2 2.00

8.00 2.00 2.00

Load diagram on Wall for Seismic case


Kae = 0.47
a = 6.566 o

d = 15.00 o

cos (a+d) = 0.930


Khea = Kae x cos (a+d) = 0.437 Kh = 0.16

a) Section A - A

h = 9.73 m
qa1 = Khae x h x gsoil = 7.651 t/m

No. Description Hae Y (from A-A) Hae x Y


1 0.500 x 9.725 x 1.119 x 2.400 x 0.160 2.090 3.242 6.775
2 9.725 x 0.500 x 2.400 x 0.160 1.867 4.863 9.079
3 0.500 x 9.725 x 0.071 x 2.400 x 0.160 0.133 3.242 0.432
Pa1 7.651 x 9.725 x 0.500 37.205 3.242 120.606
Total 41.296 136.893

Sae = 41.296 ton Mae = 136.893 ton m

b) Section B - B

h = 9.73 m hw1 = 2.53 m hw2 = 0.20 m


K
qa1 = hae x h x g soil = 8.227 t/m
qa2 = qa1 = 8.227 t/m
qa3 = Khae x hw1 x ( gsat - gw) = 1.104 t/m
qw1 = hw1 x gw = 2.525 ton/m
qw2 = hw2 x gw = 0.200 ton/m

No. Description Hbe Y (from B-B) Hbe x Y


Pa1 8.227 x 9.73 x 0.50 40.005 5.767 230.698
Pa2 8.227 x 2.53 20.774 1.263 26.227
Pa3 1.104 x 2.53 x 0.50 1.393 0.842 1.173
Pw1 2.525 x 2.53 x 0.50 3.188 0.842 2.683
Pw2 -0.200 x 0.20 x 0.50 -0.020 0.067 -0.001
1 0.500 x 12.25 x 1.41 x 2.40 x 0.16 3.316 4.083 13.542
2 12.250 x 0.50 x 2.40 x 0.16 2.352 6.125 14.406
3 0.500 x 12.25 x 0.09 x 2.40 x 0.16 0.212 4.083 0.864
Total 71.221 289.592

Sbe = 71.221 ton Mbe = 289.592 ton m


Structure19/28

(2) Footing
in case, e < B/6 in case, B/6 < e < B/3

9.73 9.73
4 4

2.53 2.53
D C D C
1.50 1.50
2.00 2.00
3 1 3 1

D C D C
8.00 2.00 2.00 8.00 2.00 2.00

4 4
3 1 3 1

in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

5 6
2 3 |e| - B/2 = 0.075 2
- t/m2 36.506 t/m2
- t/m2
- t/m2 45.719 t/m2
- t/m2 54.932 t/m2

in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3
2
2 6
6

- t/m2 - t/m2 - t/m2 -

- t/m2 - t/m2 - t/m2

Load Diagram on Footing in Seismic Case

a) Section C - C

No. Description Hce X (from C-C) Hce x X


1 2.000 x 2.00 x 2.40 9.600 1.000 9.600
1.500 x 2.00 x 2.40 x 0.50 3.600 0.667 2.400
2 -45.719 x 2.00 -91.438 1.000 -91.438
-9.213 x 2.00 x 0.50 -9.213 1.333 -12.284
Total -87.451 -91.722

Sce = -87.451 ton Mce = -91.722 ton m

b) Section D - D

No. Description Hde X (from D-D) Hde x X


3 2.000 x 8.00 x 2.40 38.400 4.000 153.600
1.500 x 8.00 x 2.40 x 0.50 14.400 2.667 38.400
4 12.250 x 8.00 x 1.84 180.440 4.000 721.760
1.500 x 8.00 x 2.00 x 0.50 12.000 5.333 64.000
5 0.000 x 0.00 0.000 0.000 0.000
-36.506 x 7.93 x 0.50 -144.656 2.642 -382.132
Total 100.584 595.628

Sde = 100.584 ton Mde = 595.628 ton m


Structure20/28

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

Description Bending Moment Shear Force


Normal Seismic Normal Seismic
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
Section A-A 100.491 100.491 136.893 29.488 29.488 41.296
Section B-B 196.806 196.806 289.592 48.175 48.175 71.221
Section C-C 60.231 59.573 91.722 58.026 57.312 87.451
Section D-D 271.986 274.176 595.628 52.723 52.360 100.584

(2) Design bending moment and shear force

Description Bending Moment Shear Force


Normal Seismic Normal Seismic
Section A-A 100.491 136.893 29.488 41.296
Section B-B 196.806 289.592 48.175 71.221
Section C-C 60.231 91.722 58.026 87.451
Section D-D 196.806 289.592 52.723 100.584
Notes: - Moment at Section C-C < Moment at Section B-B
- Moment at Section D-D < Moment at Section B-B
Structure21/28

t/m2

t/m2
Structure22/28

Hae x Y

Hbe x Y
Structure23/28

t/m2
Re-bar 24/28

Reinforcement Bar Arrangement and Stress


Normal Condition
Name of Structure : Inverted T-shape Type Retaining Wall (H=15.8m)
Location : Tambuo River

Wall (upper) Wall (lower) Footing (toe) Footing (heel)


Section A-A Section B-B Section C-C Section D-D
back front back front lower upper upper lower
Bending moment M kgfcm 10,049,125 19,680,551 6,023,078 19,680,551
Shearing force (joint) S kgf 29,488 48,175 58,026 52,723
Axial force N kgf 0 0 0 0

Height of member h cm 169.1 200.0 350.0 350.0


Covering depth d' cm 7.0 7.0 10.0 10.0
Effective height d cm 162.1 193.0 340.0 340.0
Effective width b cm 100.0 100.0 100.0 100.0
Young's modulus ratio n - 24 24 24 24

Required R-bar Asreq cm2 48.57 81.78 13.27 44.09

R-bar arrangement 32@250 12@250 32@125 16@250 16@125 12@250 22@125 16@250

Reinforcement As cm2 32.17 4.52 64.34 8.04 16.08 4.52 30.41 8.04
Perimeter of R-bar U cm 40.21 check 80.42 check 40.21 ok 55.29 ok

Dist. from neutral axis x cm 42.90 63.29 47.51 63.53

Compressive stress sc kgf/cm2 31.7 36.2 7.8 19.4


Allowable stress sca kgf/cm2 60.0 60.0 60.0 60.0
ok ok ok ok
Tensile stress ss kgf/cm2 2113.8 1779.4 1155.5 2029.9
Allowable stress ssa kgf/cm2 1400.0 1400.0 1400.0 1400.0
check check ok check
Shearing stress at joint t kgf/cm2 1.82 2.50 1.71 1.55
Allowable stress ta kgf/cm2 5.50 5.50 5.50 5.50
ok ok ok ok

Resisting Moment Mr kgfcm 5,837,628 14,135,676 4,767,971 9,957,474


Mr for compression Mrc kgfcm 7,613,731 14,135,676 17,348,426 24,343,475
x for Mrc cm 30.859 46.554 33.837 46.071
ss for Mrc kgf/cm2 2877.7 2170.7 6312.9 4545.0
Mr for tensile Mrs kgfcm 5,837,628 16,342,821 4,767,971 9,957,474
x for Mrs cm 37.799 60.042 37.498 52.868
sc for Mrs kgf/cm2 40.3 61.8 15.1 22.2

Distribution bar (>As/6 and >Asmin) 12@250 12@250 16@250 12@250 12@250 12@250 16@250 12@250
Reinforcement As cm2 4.52 4.52 8.04 4.52 4.52 4.52 8.04 4.52
check ok check ok ok ok ok ok

Minimum requirement of reinforcement bar As min = 4.5 cm2


Re-bar 25/28

Reinforcement Bar Arrangement and Stress


Seismic Condition
Name of Structure : Inverted T-shape Type Retaining Wall (H=15.8m)
Location : Tambuo River

Wall (upper) Wall (lower) Footing (toe) Footing (heel)


Section A-A Section B-B Section C-C Section D-D
back front back front lower upper upper lower
Bending moment M kgfcm 13,689,295 28,959,208 9,172,206 28,959,208
Shearing force (joint) S kgf 41,296 71,221 87,451 100,584
Axial force N kgf 0 0 0 0

Height of member h cm 169.1 200.0 350.0 350.0


Covering depth d' cm 7.0 7.0 10.0 10.0
Effective height d cm 162.1 193.0 340.0 340.0
Effective width b cm 100.0 100.0 100.0 100.0
Young's modulus ratio n - 16 16 16 16

Required R-bar Asreq cm2 43.44 78.74 13.36 42.78

R-bar arrangement 32@250 12@250 32@125 16@250 16@125 12@250 22@125 16@250

Reinforcement As cm2 32.17 4.52 64.34 8.04 16.08 4.52 30.41 8.04
Perimeter of R-bar U cm 40.21 check 80.42 check 40.21 ok 55.29 ok

Dist. from neutral axis x cm 36.02 53.58 39.33 52.86

Compressive stress sc kgf/cm2 50.6 61.7 14.3 34.0


Allowable stress sca kgf/cm2 90.0 90.0 90.0 90.0
ok ok ok ok
Tensile stress ss kgf/cm2 2835.5 2569.9 1745.0 2953.9
Allowable stress ssa kgf/cm2 2100.0 2100.0 2100.0 2100.0
check check ok check
Shearing stress at joint t kgf/cm2 2.55 3.69 2.57 2.96
Allowable stress ta kgf/cm2 8.25 8.25 8.25 8.25
ok ok ok ok

Resisting Moment Mr kgfcm 8,076,378 18,671,840 6,961,868 14,321,085


Mr for compression Mrc kgfcm 9,900,749 18,671,840 22,089,531 31,140,978
x for Mrc cm 26.181 39.910 28.241 38.633
ss for Mrc kgf/cm2 3662.2 2791.3 7903.2 5716.8
Mr for tensile Mrs kgfcm 8,076,378 21,780,133 6,961,868 14,321,085
x for Mrs cm 30.902 49.137 30.706 43.225
sc for Mrs kgf/cm2 65.6 94.7 26.4 38.1

Distribution bar (>As/6 and >Asmin) 12@250 12@250 16@250 12@250 12@250 12@250 16@250 12@250
Reinforcement As cm2 4.52 4.52 8.04 4.52 4.52 4.52 8.04 4.52
check ok check ok ok ok ok ok

Minimum requirement of reinforcement bar As min = 4.5 cm2


Reinforcement Bar Arrangement

1.41 0.50 0.09

D32@250
D12@250

D12@250
### D12@250

A A
D32@125 D16@250
D12@250
D16@250
D16@250 D12@250
6.03 D22@125 C D12@250
D
B B 1.50

2.00

D16@250 D C
D12@250 D16@125 D12@250

8.00 2.00 2.00

Section of Retaining wall


4. Wooden Pile (Not applicable for this Project)

4.1 Bearing Capacity of a Pile

(1) Design data

Diameter of wooden pile D = 15.0 cm


Length of pile L = 2.00 m
Area of pile section A = 1/4 x p x D2 = 0.018 m2
Perimeter of pile W = pxD = 0.471 m
SPT N-Value = 30
Ni : Average N value in a soil layer = 30
fi : friction of soil = 0.20 x Ni = 6.00 t/m2

(2) Ultimate vertical bearing capacity, (qu)


qu = (40 x N x A) + (W x fi x li)
= ( 40 x 30.0 x 0.018 )+( 0.471 x 6.00 x 2.0 )
= 21.206 + 5.655 = 26.861 ton/pile

(3) Ultimate vertical bearing capacity, (qu)

qa = qu/n = 26.861 / 3 = 8.954 ton/pile


(safety factor : n = 3)

4.2 Allowable horizontal bearing capacity

Horizontal bearing capacity depend on displacement of a pile

(1) Design data

Class of timber (pile) : III Class


E = 80,000 kg/cm2 (Young's modulus)
d = Allowable horizontal displacement = 0.01 m
N = SPT N-value is assumed as = 30

p x D4
I = = 2,485.0 cm4 (I : Moment of Inertia for a pile)
64

(2) Horizontal bearing capacity of one pile (Ha)


a = 0.20 E = 28 x N
Kh = a x E x D-3/4
= 0.20 x( 28 x 30.0 )x( 15.0 )-3/4 = 22.041 kg/cm3

4 Kh x D 4 22.041 x 15.0
b = = = 0.025 cm
4 EI 4 x 80,000 x 2,485.0

Kh x D 22.041 x 15.0
Ha = x d = x 1 = 13,020.22 kg
b 0.025
= 13.020 ton
(3) Allowable horizontal bearing capacity due to the stress of a pile itself

Ha = 2 x b x Ma

s = Allowable stress of timber III class = 75.00 kg/cm2

p x D3
W = = 331.34 cm3 ; (W : section modulus of a pile)
32
Ma = s x W = 75.00 x 331.34 = 24,850.5 kg cm

Ha = 2 x b x Ma
= 2 x 0.025 x 24,850.5 = 1,262.06 kg/pile = 1.262 ton/pile

Allowable horizontal bearing capacity acting on the pile top depend upon the allowable
stress of pile itself.

4.3 Spacing of Pile

(1) For horizontal load


Ha = 1.262 ton/pile ; (Ha : Horizontal load carried by pile)

Hr = H - Hf = H - V x tan(2f/3) = 150.963 - 122.638 = 28.325 ton/m


Ha 1.262
Spacing of pile = = = 0.04 m
Hr 28.325

Spacing of pile = 0.04 m (center to center) by horizontal force

(2) For vertical load

V = 336.945 ton/m : Vertical load carried by pile


qa = 8.954 ton/pile : Allowable vertical bearing capacity of a pile

qa 8.954
Spacing of pile = = = 0.03 m
V 336.945

Spacing of pile can be determined 0.75 m for a pile ( f 150, L = 2.00 m ),

Vp = -20.819 ton/m : Vertical load carried by pile

qa = 8.954 ton/pile : Allowable vertical bearing capacity of a pile

qa 8.954
Spacing of pile = = = -0.43 m
Vp -20.819

Spacing of pile can be determined 1.50 m for a pile ( f 150, L = 2.00 m ),

You might also like