0% found this document useful (0 votes)
187 views8 pages

HIT-HY 150 Injection Mortar With Rebar

This document provides information on HIT-HY 150 injection mortar for anchoring rebar in concrete, including: - Product features such as rapid curing and high loading capacity. - Materials used including concrete (C20/25) and rebar diameters from 8mm to 25mm. - Mean ultimate, characteristic, and design resistances for tension and shear loads on single anchors under various rebar diameters and concrete strengths. - Installation details like hole depth, nominal anchorage depth, filling volume, and working/curing times under different temperatures. - Required equipment, setting operations, anchor geometry, and mechanical properties of rebar. - A detailed design method according

Uploaded by

Nguyễn Anh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
187 views8 pages

HIT-HY 150 Injection Mortar With Rebar

This document provides information on HIT-HY 150 injection mortar for anchoring rebar in concrete, including: - Product features such as rapid curing and high loading capacity. - Materials used including concrete (C20/25) and rebar diameters from 8mm to 25mm. - Mean ultimate, characteristic, and design resistances for tension and shear loads on single anchors under various rebar diameters and concrete strengths. - Installation details like hole depth, nominal anchorage depth, filling volume, and working/curing times under different temperatures. - Required equipment, setting operations, anchor geometry, and mechanical properties of rebar. - A detailed design method according

Uploaded by

Nguyễn Anh
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

HIT-HY 150 injection mortar with rebar

Features:
- base material: concrete
- two-component hybrid mortar
- rapid curing
- no expansion forces in base material
- high loading capacity
- small edge distance and anchor spacing
- clean and simple application
Material:
- Type BSt 500 according to DIN 488 (See also HIT-HY 150 foil pack, mixer
Rebar: Euronorm 82-79.). For differing rebars, consult
your Hilti advisory service.
- Foil pack: 330 ml, 500 ml
Rebar section
Mortar:
- Jumbo cartridge: 1100ml
- MD2000, BD2000, P3000 F, MD2500, P3500 F,
Dispenser:
P5000 HY, HIT P-8000 D
Close edge distance / Hilti Anchor
Concrete Fire resistance
spacing programme

Basic loading data (for a single anchor): HIT-HY 150 with rebar section
All data on this page applies to For detailed design method, see pages 278 – 282.
• concrete: See table below.
• correct setting (See setting operations page 277)
• no edge distance and spacing influence
• steel failure

non-cracked concrete

Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25


Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRu,m 15.5 29.4 57.0 66.8 79.8 138.3 185.0
Shear, VRu,m 17.9 28.1 40.4 55.0 71.8 112.3 175.0

Characteristic resistance, Rk [kN]: concrete ≅ C20/25


Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRk 13.0 24.1 44.6 53.4 64.6 84.7 129.6
Shear, VRk 16.7 26.0 37.4 50.9 66.5 104.0 162.0

Following values according to the

Concrete Capacity Method

Design resistance, Rd [kN]: concrete, fck,cube = 25 N/mm2


Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRd 7.2 10.1 14.3 18.5 22.7 30.2 37.8
Shear, VRd 11.1 17.3 24.9 33.9 44.3 69.3 108.0

Recommended load, Lrec [kN]: concrete, fck,cube = 25 N/mm2

Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRec 5.1 7.2 10.2 13.2 16.2 21.6 27.0
Shear, VRec 7.9 12.4 17.8 24.2 31.6 49.5 77.1

213
HIT-HY 150 injection mortar with rebar
Setting details

hnom

d0

0/ d
h1
h min

Rebar diameter, ∅ [mm] 8 10 12 14 16 20 25


d0 [mm] Drill bit diameter 10 12 16 18 20 25 30
h1 [mm] Hole depth 82 93 115 130 150 175 215
hnom [mm] Nominal anchorage depth 80 90 110 125 145 170 210
hmin [mm] Min. thickness of base material 120 140 160 180 180 230 270

1)
ml 4 7 16 20 24 43 67
Filling volume
Trigger pulls~ 0.5 1 2 2.5 3 5.5 8.5
Drill bit TE-TX- 10/22 12/22 15/27 - - - -
Drill bit TE-T- - - - 18/32 20/32 25/52 30/57
Note: To ensure that optimal holding power is obtained, the first two trigger pulls of mortar after opening a 330 ml foil pack of Hilti
HIT-HY 150 must be thrown away, in case of using a 500 ml foil pack the first three trigger pulls must be thrown away.
One trigger pull is approx. 8 ml mortar when using the MD 2000.

Working time in which rod Curing time before anchor


Temperature of the can be inserted and can be fully loaded,
base material adjusted,
°C tgel tcure
-5 90 min. 6 hours
0 45 min. 3 hours
5 25 min. 1.5 hours
20 6 min. 50 min.
30 4 min. 40 min.
40 2 min. 30 min.
The foil pack temperature must be at least +5°C.

Installation equipment

Rotary hammer (TE1, TE 2,TE5, TE 6, TE6A, TE15, TE15-C, TE18-M, TE 35, TE 55 or TE 76), a drill bit,
the MD 2000 or BD 2000 (P3000 F, MD 2500, P 3500F, P5000 HY, HIT P-8000 D) dispenser, a blow-out pump
and a brush.

214
HIT-HY 150 injection mortar anchor

Setting operations

Drill hole. Clean hole. Insert foil pack into


holder.

Screw on mixer. Put cartridge into Throw away first two Inject mortar. Release dispenser.
dispenser. trigger pulls using a 330ml
cartridge*

Insert rebar before gel time. Wait for curing.

* Throw away first three trigger pulls using a 500ml cartridge

Anchor geometry and mechanical properties


d

anchorage depth addtional length


according to application

Rebar diameter, (mm) 8 10 12 14 16 20 25


d [mm] Nominal rebar diameter 8 10 12 14 16 20 25
As [mm²] Stressed cross-section 50.2 78.5 113.1 153.9 201.1 314.2 490.9
fuk [N/mm²] Nominal tensile strength 550
fyk [N/mm²] Yield strength 500

214
HIT-HY 150 injection mortar with rebar

Detailed design method - Hilti CC


(The Hilti CC method is a simplified version of ETAG Annex C.)

Caution: In view of the high loads transferable with HIT-HY 150, it must be verified by the user that the load
acting on the concrete structure, including the loads introduced by the anchor fastening, do not
cause failure, e.g. cracking, of the concrete structure.

TENSION N rec,c/s

The design tensile resistance of a single anchor s


c
is the lower of

h
NRd,c : concrete cone/pull-out resistance
NRd,s : steel resistance

NRd,c: Concrete cone/pull-out resistance

NRd,c = NRd
o
,c ⋅ f T ⋅ fB,N ⋅ f A,N ⋅ fR,N

N0Rd,c: Concrete cone/pull-out design resistance


• Concrete compressive strength, fck,cube(150) = 25 N/mm2
Rebar diameter, d (mm) 8 10 12 14 16 20 25
o 1)
N Rd,c [kN] 7.2 10.1 14.3 18.5 22.7 30.2 37.8
hnom [mm] Nominal anchorage depth 80 90 110 125 145 170 210
1) o o o
The design tensile resistance is calculated from the characteristic tensile resistance, N Rk,c , by NRd,c =N Rk,c /γMc,N, where the partial
safety factor, γMc,N , is 1.8.

fT: Influence of anchorage depth

hact
fT = Limits to actual anchorage, hact: hnom ≤ hact ≤2.0 hnom
hnom

fB,N: Influence of concrete strength


Concrete strength Cylinder compressive Cube compressive
designation strength, strength,
fB,N
(ENV 206) fck,cyl [N/mm²] fck,cube [N/mm²]
⎛f − 25 ⎞
fB, N = 1 + ⎜ ck, cube ⎟
C20/25 20 25 1
C25/30 25 30 1.02 ⎜ 212.5 ⎟
C30/37 30 37 1.06 ⎝ ⎠
C35/45 35 45 1.09
C40/50 40 50 1.12 Limits: 25 N/mm² ≤ fck,cube(150) ≤ 60 N/mm²
C45/55 45 55 1.14
C50/60 50 60 1.16
Concrete cylinder: Concrete cube:
Height 30cm, 15cm side length 15 cm
diameter
Concrete test specimen geometry

216
HIT-HY 150 injection mortar with rebar
fA,N: Influence of anchor spacing
Anchor Rebar size
spacing,
Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25
s [mm]
40 0.63
45 0.64 0.63
50 0.65 0.64
55 0.67 0.65 0.63
60 0.68 0.67 0.64
65 0.69 0.68 0.65 0.63
70 0.72 0.69 0.66 0.64
s
80 0.75 0.72 0.68 0.66 0.64 fA,N = 0.5 +
90 0.78 0.75 0.70 0.68 0.66 0.63 4 ⋅ hnom
100 0.83 0.78 0.73 0.70 0.67 0.65
120 0.89 0.83 0.77 0.74 0.71 0.68 0.64
140 0.94 0.89 0.82 0.78 0.74 0.71 0.67 Limits: smin ≤ s ≤ scr,N
160 1.00 0.94 0.86 0.82 0.78 0.74 0.69 smin = 0,5hnom
180 1.00 0.91 0.86 0.81 0.76 0.71 scr,N = 2,0hnom
200 0.95 0.90 0.84 0.79 0.74
220 1.00 0.94 0.88 0.82 0.76
250 1.00 0.93 0.87 0.80
280 0.98 0.91 0.83
310 0.96 0.87
340 1.00 0.90
390 0.96
420 1.00

fR,N: Influence of edge distance


Edge Rebar size
distance,
Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25
c [mm]
40 0.64
45 0.68 0.64 c
50 0.72 0.68 fR,N = 0.28 + 0.72
hnom
55 0.76 0.72 0.64
60 0.80 0.76 0.67
65 0.84 0.80 0.71 0.65 Limits cmin ≤ c ≤ ccr,N
70 0.92 0.84 0.74 0.68 cmin= 0,5 hnom
80 1.00 0.92 0.80 0.74 0.68
ccr,N= 1,0 hnom
90 1.00 0.87 0.80 0.73 0.66
100 0.93 0.86 0.78 0.70 Note: If more than 3 edges are smaller than ccr,N ,
110 1.00 0.91 0.83 0.75 0.66 consult your Hilti technical advisory service.
120 0.97 0.88 0.79 0.69
140 1.00 0.98 0.87 0.76
160 0.96 0.83
180 1.00 0.90
210 1.00

NRd,s: Steel design tensile resistance

Rebar diameter, d (mm) 8 10 12 14 16 20 25


1)
NRd,s [kN] rebar section 20.9 32.7 47.1 64.1 83.8 130.9 204.5
The design tensile resistance is calculated from the characteristic tensile resistance, NRk,s , by NRd,s= As ⋅ fuk/γMs,N, where the partial safety
1)

factor, γMs,N , for rebar sections, type BSt 500, is 1.32.

218
HIT-HY 150 injection mortar with rebar

NRd: System design tensile resistance

NRd = lower of NRd,c and NRd,s

Combined loading: Only if tensile load and shear load applied (See page 32 and section 4”Examples”).

Detailed design method – HILTI CC


(The Hilti CC method is a simplified version of ETAG Annex C.)
c2 >
1.5 V rec,c/s
c
s
c c2 >
1.5
c
SHEAR h>
1.5
c

The design shear resistance of a single


anchor is the lower of
VRd,c : concrete edge resistance
VRd,s : steel resistance Note: If the conditions for h and c2 are not met, consult
your Hilti technical advisory service.

VRd,c: Concrete edge design resistance


The lowest concrete edge resistance must be calculated. All near edges must be checked (not only the edge in
the direction of shear). The direction of shear is accounted for by the factor fβ,V.

VRd,c = VRd
0
,c ⋅ f B,V ⋅ f AR,V ⋅ f β,V

V0Rd,c: Concrete edge design resistance

• Concrete compressive strength, fck,cube(150) = 25 N/mm2


• at a minimum edge distance c min
Rebar diameter, d (mm) 8 10 12 14 16 20 25
o 1)
V Rd,c [kN] 2.6 3.4 5.0 6.7 7.3 12.4 18.5

cmin [mm] Min. edge distance 40 45 55 65 75 85 105


1) o o o
The design shear resistance is calculated from the characteristic shear resistance, V Rk,c , by V Rd,c =V Rk,c /γMc,V, where the partial
safety factor, γMc,V , is 1.5.

218
HIT-HY 150 injection mortar with rebar
fB,V: Influence of concrete strength
Concrete strength Cylinder compressive Cube compressive
designation strength, strength, fck,cube
(ENV 206) fck,cyl [N/mm²] fck,cube [N/mm²] fB,V fB,V =
25
C20/25 20 25 1
C25/30 25 30 1.1
C30/37 30 37 1.22 Limits:
C35/45 35 45 1.34 25 N/mm2 ≤ fck,cube(150) ≤ 60 N/mm2
C40/50 40 50 1.41
C45/55 45 55 1.48
C50/60 50 60 1.55
Concrete cylinder: Concrete cube:
Height 30cm, 15cm side length 15 cm
diameter
Concrete test specimen geometry

fAR,V: Influence of edge distance and spacing


fAR,V c/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Single-anchor with
edge influence, 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
s/cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 These results are for a two- 5.05 5.40 5.75 6.10 6.47 6.83
9.0 anchor fastening. 5.20 5.55 5.90 6.26 6.63 7.00
9.5 For fastenings with two or 5.69 6.05 6.42 6.79 7.17
10.0 more anchors, use the general 6.21 6.58 6.95 7.33
10.5 formulae for n anchors. 6.74 7.12 7.50
11.0 7.28 7.67
11.5 7.83
12.0 8.00

220
HIT-HY 150 injection mortar with rebar

fAR,V: Influence of edge distance and spacing

Formula for single-anchor fastening influenced


only by 1 edge

c c
f AR,V = ⋅
c min c min results
tabulated c 2,1
Formula for two-anchors fastening (edge plus below
1 spacing) only valid for s < 3c s n-1

3⋅c + s c s3
f AR,V = ⋅ s2
6 ⋅ c min c min s1
c 2 ,2 c
General formula for n-anchor fastening (edge plus
n-1 spacing) only valid when s1 and sn-1 are each < 3c and c2 > 1.5c

3 ⋅ c + s1 + s 2 + ... + sn −1 c h >1,5 c
fAR, V = ⋅
3 ⋅ n ⋅ c min c min

Note: It is assumed that only the row of anchors closest to


the free concrete edge carries the centric shear load.
fβ,V : Influence of loading direction
Angle, ß [°] fβ,V Formulae:
0 to 55 1 fβ, V = 1 for 0° ≤ ß ≤ 55°
60 1.1 V ... applied shear force
70 1.2 1 for 55° < ß ≤ 90°
fβ, V =
80 1.5 cos ß + 0,5 sin ß β
for 90° < ß ≤ 180°
90 to 180 2 f β, V = 2

VRd,s : Steel design shear resistance

Rebar diameter, d (mm) 8 10 12 14 16 20 25


1)
VRd,s [kN] 11.1 17.3 24.9 33.9 44.3 69.3 108.0
The design shear resistance is calculated from VRd,s= (0,6⋅As⋅fuk)/γMs,V. The partial safety factor, γMs,V , for rebar sections, type BSt 500, is
1)

1.5.

VRd : System design shear resistance

VRd = lower of VRd,c and VRd,s

Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).

220

You might also like