HIT-HY 150 injection mortar with rebar
Features:
- base material: concrete
- two-component hybrid mortar
- rapid curing
- no expansion forces in base material
- high loading capacity
- small edge distance and anchor spacing
- clean and simple application
Material:
- Type BSt 500 according to DIN 488 (See also HIT-HY 150 foil pack, mixer
Rebar: Euronorm 82-79.). For differing rebars, consult
your Hilti advisory service.
- Foil pack: 330 ml, 500 ml
Rebar section
Mortar:
- Jumbo cartridge: 1100ml
- MD2000, BD2000, P3000 F, MD2500, P3500 F,
Dispenser:
P5000 HY, HIT P-8000 D
Close edge distance / Hilti Anchor
Concrete Fire resistance
spacing programme
Basic loading data (for a single anchor): HIT-HY 150 with rebar section
All data on this page applies to For detailed design method, see pages 278 – 282.
• concrete: See table below.
• correct setting (See setting operations page 277)
• no edge distance and spacing influence
• steel failure
non-cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ≅ C20/25
Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRu,m 15.5 29.4 57.0 66.8 79.8 138.3 185.0
Shear, VRu,m 17.9 28.1 40.4 55.0 71.8 112.3 175.0
Characteristic resistance, Rk [kN]: concrete ≅ C20/25
Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRk 13.0 24.1 44.6 53.4 64.6 84.7 129.6
Shear, VRk 16.7 26.0 37.4 50.9 66.5 104.0 162.0
Following values according to the
Concrete Capacity Method
Design resistance, Rd [kN]: concrete, fck,cube = 25 N/mm2
Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRd 7.2 10.1 14.3 18.5 22.7 30.2 37.8
Shear, VRd 11.1 17.3 24.9 33.9 44.3 69.3 108.0
Recommended load, Lrec [kN]: concrete, fck,cube = 25 N/mm2
Rebar ∅ 8 10 12 14 16 20 25
Tensile, NRec 5.1 7.2 10.2 13.2 16.2 21.6 27.0
Shear, VRec 7.9 12.4 17.8 24.2 31.6 49.5 77.1
213
HIT-HY 150 injection mortar with rebar
Setting details
hnom
d0
0/ d
h1
h min
Rebar diameter, ∅ [mm] 8 10 12 14 16 20 25
d0 [mm] Drill bit diameter 10 12 16 18 20 25 30
h1 [mm] Hole depth 82 93 115 130 150 175 215
hnom [mm] Nominal anchorage depth 80 90 110 125 145 170 210
hmin [mm] Min. thickness of base material 120 140 160 180 180 230 270
1)
ml 4 7 16 20 24 43 67
Filling volume
Trigger pulls~ 0.5 1 2 2.5 3 5.5 8.5
Drill bit TE-TX- 10/22 12/22 15/27 - - - -
Drill bit TE-T- - - - 18/32 20/32 25/52 30/57
Note: To ensure that optimal holding power is obtained, the first two trigger pulls of mortar after opening a 330 ml foil pack of Hilti
HIT-HY 150 must be thrown away, in case of using a 500 ml foil pack the first three trigger pulls must be thrown away.
One trigger pull is approx. 8 ml mortar when using the MD 2000.
Working time in which rod Curing time before anchor
Temperature of the can be inserted and can be fully loaded,
base material adjusted,
°C tgel tcure
-5 90 min. 6 hours
0 45 min. 3 hours
5 25 min. 1.5 hours
20 6 min. 50 min.
30 4 min. 40 min.
40 2 min. 30 min.
The foil pack temperature must be at least +5°C.
Installation equipment
Rotary hammer (TE1, TE 2,TE5, TE 6, TE6A, TE15, TE15-C, TE18-M, TE 35, TE 55 or TE 76), a drill bit,
the MD 2000 or BD 2000 (P3000 F, MD 2500, P 3500F, P5000 HY, HIT P-8000 D) dispenser, a blow-out pump
and a brush.
214
HIT-HY 150 injection mortar anchor
Setting operations
Drill hole. Clean hole. Insert foil pack into
holder.
Screw on mixer. Put cartridge into Throw away first two Inject mortar. Release dispenser.
dispenser. trigger pulls using a 330ml
cartridge*
Insert rebar before gel time. Wait for curing.
* Throw away first three trigger pulls using a 500ml cartridge
Anchor geometry and mechanical properties
d
anchorage depth addtional length
according to application
Rebar diameter, (mm) 8 10 12 14 16 20 25
d [mm] Nominal rebar diameter 8 10 12 14 16 20 25
As [mm²] Stressed cross-section 50.2 78.5 113.1 153.9 201.1 314.2 490.9
fuk [N/mm²] Nominal tensile strength 550
fyk [N/mm²] Yield strength 500
214
HIT-HY 150 injection mortar with rebar
Detailed design method - Hilti CC
(The Hilti CC method is a simplified version of ETAG Annex C.)
Caution: In view of the high loads transferable with HIT-HY 150, it must be verified by the user that the load
acting on the concrete structure, including the loads introduced by the anchor fastening, do not
cause failure, e.g. cracking, of the concrete structure.
TENSION N rec,c/s
The design tensile resistance of a single anchor s
c
is the lower of
h
NRd,c : concrete cone/pull-out resistance
NRd,s : steel resistance
NRd,c: Concrete cone/pull-out resistance
NRd,c = NRd
o
,c ⋅ f T ⋅ fB,N ⋅ f A,N ⋅ fR,N
N0Rd,c: Concrete cone/pull-out design resistance
• Concrete compressive strength, fck,cube(150) = 25 N/mm2
Rebar diameter, d (mm) 8 10 12 14 16 20 25
o 1)
N Rd,c [kN] 7.2 10.1 14.3 18.5 22.7 30.2 37.8
hnom [mm] Nominal anchorage depth 80 90 110 125 145 170 210
1) o o o
The design tensile resistance is calculated from the characteristic tensile resistance, N Rk,c , by NRd,c =N Rk,c /γMc,N, where the partial
safety factor, γMc,N , is 1.8.
fT: Influence of anchorage depth
hact
fT = Limits to actual anchorage, hact: hnom ≤ hact ≤2.0 hnom
hnom
fB,N: Influence of concrete strength
Concrete strength Cylinder compressive Cube compressive
designation strength, strength,
fB,N
(ENV 206) fck,cyl [N/mm²] fck,cube [N/mm²]
⎛f − 25 ⎞
fB, N = 1 + ⎜ ck, cube ⎟
C20/25 20 25 1
C25/30 25 30 1.02 ⎜ 212.5 ⎟
C30/37 30 37 1.06 ⎝ ⎠
C35/45 35 45 1.09
C40/50 40 50 1.12 Limits: 25 N/mm² ≤ fck,cube(150) ≤ 60 N/mm²
C45/55 45 55 1.14
C50/60 50 60 1.16
Concrete cylinder: Concrete cube:
Height 30cm, 15cm side length 15 cm
diameter
Concrete test specimen geometry
216
HIT-HY 150 injection mortar with rebar
fA,N: Influence of anchor spacing
Anchor Rebar size
spacing,
Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25
s [mm]
40 0.63
45 0.64 0.63
50 0.65 0.64
55 0.67 0.65 0.63
60 0.68 0.67 0.64
65 0.69 0.68 0.65 0.63
70 0.72 0.69 0.66 0.64
s
80 0.75 0.72 0.68 0.66 0.64 fA,N = 0.5 +
90 0.78 0.75 0.70 0.68 0.66 0.63 4 ⋅ hnom
100 0.83 0.78 0.73 0.70 0.67 0.65
120 0.89 0.83 0.77 0.74 0.71 0.68 0.64
140 0.94 0.89 0.82 0.78 0.74 0.71 0.67 Limits: smin ≤ s ≤ scr,N
160 1.00 0.94 0.86 0.82 0.78 0.74 0.69 smin = 0,5hnom
180 1.00 0.91 0.86 0.81 0.76 0.71 scr,N = 2,0hnom
200 0.95 0.90 0.84 0.79 0.74
220 1.00 0.94 0.88 0.82 0.76
250 1.00 0.93 0.87 0.80
280 0.98 0.91 0.83
310 0.96 0.87
340 1.00 0.90
390 0.96
420 1.00
fR,N: Influence of edge distance
Edge Rebar size
distance,
Ø8 Ø10 Ø12 Ø14 Ø16 Ø20 Ø25
c [mm]
40 0.64
45 0.68 0.64 c
50 0.72 0.68 fR,N = 0.28 + 0.72
hnom
55 0.76 0.72 0.64
60 0.80 0.76 0.67
65 0.84 0.80 0.71 0.65 Limits cmin ≤ c ≤ ccr,N
70 0.92 0.84 0.74 0.68 cmin= 0,5 hnom
80 1.00 0.92 0.80 0.74 0.68
ccr,N= 1,0 hnom
90 1.00 0.87 0.80 0.73 0.66
100 0.93 0.86 0.78 0.70 Note: If more than 3 edges are smaller than ccr,N ,
110 1.00 0.91 0.83 0.75 0.66 consult your Hilti technical advisory service.
120 0.97 0.88 0.79 0.69
140 1.00 0.98 0.87 0.76
160 0.96 0.83
180 1.00 0.90
210 1.00
NRd,s: Steel design tensile resistance
Rebar diameter, d (mm) 8 10 12 14 16 20 25
1)
NRd,s [kN] rebar section 20.9 32.7 47.1 64.1 83.8 130.9 204.5
The design tensile resistance is calculated from the characteristic tensile resistance, NRk,s , by NRd,s= As ⋅ fuk/γMs,N, where the partial safety
1)
factor, γMs,N , for rebar sections, type BSt 500, is 1.32.
218
HIT-HY 150 injection mortar with rebar
NRd: System design tensile resistance
NRd = lower of NRd,c and NRd,s
Combined loading: Only if tensile load and shear load applied (See page 32 and section 4”Examples”).
Detailed design method – HILTI CC
(The Hilti CC method is a simplified version of ETAG Annex C.)
c2 >
1.5 V rec,c/s
c
s
c c2 >
1.5
c
SHEAR h>
1.5
c
The design shear resistance of a single
anchor is the lower of
VRd,c : concrete edge resistance
VRd,s : steel resistance Note: If the conditions for h and c2 are not met, consult
your Hilti technical advisory service.
VRd,c: Concrete edge design resistance
The lowest concrete edge resistance must be calculated. All near edges must be checked (not only the edge in
the direction of shear). The direction of shear is accounted for by the factor fβ,V.
VRd,c = VRd
0
,c ⋅ f B,V ⋅ f AR,V ⋅ f β,V
V0Rd,c: Concrete edge design resistance
• Concrete compressive strength, fck,cube(150) = 25 N/mm2
• at a minimum edge distance c min
Rebar diameter, d (mm) 8 10 12 14 16 20 25
o 1)
V Rd,c [kN] 2.6 3.4 5.0 6.7 7.3 12.4 18.5
cmin [mm] Min. edge distance 40 45 55 65 75 85 105
1) o o o
The design shear resistance is calculated from the characteristic shear resistance, V Rk,c , by V Rd,c =V Rk,c /γMc,V, where the partial
safety factor, γMc,V , is 1.5.
218
HIT-HY 150 injection mortar with rebar
fB,V: Influence of concrete strength
Concrete strength Cylinder compressive Cube compressive
designation strength, strength, fck,cube
(ENV 206) fck,cyl [N/mm²] fck,cube [N/mm²] fB,V fB,V =
25
C20/25 20 25 1
C25/30 25 30 1.1
C30/37 30 37 1.22 Limits:
C35/45 35 45 1.34 25 N/mm2 ≤ fck,cube(150) ≤ 60 N/mm2
C40/50 40 50 1.41
C45/55 45 55 1.48
C50/60 50 60 1.55
Concrete cylinder: Concrete cube:
Height 30cm, 15cm side length 15 cm
diameter
Concrete test specimen geometry
fAR,V: Influence of edge distance and spacing
fAR,V c/cmin
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
Single-anchor with
edge influence, 1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00
s/cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 3.44 3.73 4.03 4.33
1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 3.60 3.89 4.19 4.50
2.0 0.83 1.02 1.22 1.43 1.65 1.89 2.13 2.38 2.63 2.90 3.18 3.46 3.75 4.05 4.35 4.67
2.5 0.92 1.11 1.32 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 3.90 4.21 4.52 4.83
3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 4.06 4.36 4.68 5.00
3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.21 4.52 4.84 5.17
4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.36 4.68 5.00 5.33
4.5 1.96 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 4.52 4.84 5.17 5.50
5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 4.67 5.00 5.33 5.67
5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 4.82 5.15 5.49 5.83
6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65 4.98 5.31 5.65 6.00
6.5 3.24 3.54 3.84 4.16 4.47 4.80 5.13 5.47 5.82 6.17
7.0 3.67 3.98 4.29 4.62 4.95 5.29 5.63 5.98 6.33
7.5 4.11 4.43 4.76 5.10 5.44 5.79 6.14 6.50
8.0 4.57 4.91 5.25 5.59 5.95 6.30 6.67
8.5 These results are for a two- 5.05 5.40 5.75 6.10 6.47 6.83
9.0 anchor fastening. 5.20 5.55 5.90 6.26 6.63 7.00
9.5 For fastenings with two or 5.69 6.05 6.42 6.79 7.17
10.0 more anchors, use the general 6.21 6.58 6.95 7.33
10.5 formulae for n anchors. 6.74 7.12 7.50
11.0 7.28 7.67
11.5 7.83
12.0 8.00
220
HIT-HY 150 injection mortar with rebar
fAR,V: Influence of edge distance and spacing
Formula for single-anchor fastening influenced
only by 1 edge
c c
f AR,V = ⋅
c min c min results
tabulated c 2,1
Formula for two-anchors fastening (edge plus below
1 spacing) only valid for s < 3c s n-1
3⋅c + s c s3
f AR,V = ⋅ s2
6 ⋅ c min c min s1
c 2 ,2 c
General formula for n-anchor fastening (edge plus
n-1 spacing) only valid when s1 and sn-1 are each < 3c and c2 > 1.5c
3 ⋅ c + s1 + s 2 + ... + sn −1 c h >1,5 c
fAR, V = ⋅
3 ⋅ n ⋅ c min c min
Note: It is assumed that only the row of anchors closest to
the free concrete edge carries the centric shear load.
fβ,V : Influence of loading direction
Angle, ß [°] fβ,V Formulae:
0 to 55 1 fβ, V = 1 for 0° ≤ ß ≤ 55°
60 1.1 V ... applied shear force
70 1.2 1 for 55° < ß ≤ 90°
fβ, V =
80 1.5 cos ß + 0,5 sin ß β
for 90° < ß ≤ 180°
90 to 180 2 f β, V = 2
VRd,s : Steel design shear resistance
Rebar diameter, d (mm) 8 10 12 14 16 20 25
1)
VRd,s [kN] 11.1 17.3 24.9 33.9 44.3 69.3 108.0
The design shear resistance is calculated from VRd,s= (0,6⋅As⋅fuk)/γMs,V. The partial safety factor, γMs,V , for rebar sections, type BSt 500, is
1)
1.5.
VRd : System design shear resistance
VRd = lower of VRd,c and VRd,s
Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).
220