Read
Read
1.1 Sequence
A function f:N → S, where S is any nonempty set is called a Sequence
i.e., for each n ∈ N, ∃ a unique element f(n) ∈ S. The sequence is written as f(1), f(2),
f(3), ......f(n)...., and is denoted by {f(n)}, or <f(n)>, or (f(n)). If f(n) = an , the sequence is
written as a1 , a2 .....an and denoted by , {an } or < an > or ( an ) . Here f(n) or an are the
nth terms of the Sequence.
       Ex. 1.    1 , 4 , 9 , 16 ,......... n 2 ,.....(or) < n 2 >
                                       N                            S
                                                                    1
                                      2                             4
                                      3                             9
                                       .                            .
                                       .                            .
                                      n                             n2
                                      .                             .
                                      .                             .
                     1 1 1            1            ⎛ 1 ⎞
       Ex. 2.           , 3 , 3 ,..... 3 ....(or ) ⎜ 3 ⎟
                      3
                     1 2 3            n            ⎝n ⎠
                                                ( −1)
                                                        n −1
     Ex 4:    1 , –1, 1, –1, ......... or
                   n           1            2                  3    4    ......
                   an         -2        3/2              -4/3      5/4   ......
4                                                           Engineering Mathematics - I
                                                                                     3
         From the above figure (see also table) it can be seen that m = –2 and M =     .
                                                                                     2
         ∴ The sequence is bounded.
1.1.3 Limits of a Sequence
A Sequence < an > is said to tend to limit ‘l’ when, given any + ve number ' ∈ ',
however small, we can always find an integer ‘m’ such that an − l <∈, ∀n ≥ m , and we
write Lt an = l or an → l
     n →∞
                       n2 + 1             1
      Ex.   If an =           then < an >→ .
                      2n + 3
                         2
                                          2
           simply Σun = s.
    (b) Divergent series: If sn → ∞ or −∞ , the series said to be divergent.
    (c) Oscillatory Series: If sn does not tend to a unique limit either finite or infinite it
        is said to be an Oscillatory Series.
Note: Divergent or Oscillatory series are sometimes called non convergent series.
Proof: The given series is a geometric series with common ratio ‘x’
          1 − xn
   ∴ sn =             when x ≠ 1       [By actual division – verify]
           1− x
6                                                                              Engineering Mathematics - I
1.2.5 Theorem
If Σun is convergent, then Lt un = 0 .
                                 n →∞
     Proof :    sn = u1 + u2 + ...... + un
                sn −1 = u1 + u2 + ...... + un −1, , so that, un = sn − sn −1
Sequences and Series                                                                                     7
                 ∴ Lt un = Lt ( sn − sn −1 ) ;         Lt sn − Lt sn −1 = l − l = 0
                   n →∞   n →∞                         n →∞       n →∞
   Note: The converse of the above theorem need not be always true. This can be
   observed from the following examples.
                               1 1           1             1
   (i) Consider the series, 1 + + + ....... + + .... ; un = , Lt un = 0
                               2 3           n             n n →∞
                                                                        1
          But from p-series test (1.3.1) it is clear that Σ               is divergent.
                                                                        n
                                       1 1 1                1
  (ii)    Consider the series,            + 2 + 2 + ..... + 2 + ......
                                        2
                                       1 2 3               n
             1                                          1
          un =  , Lt u = 0, by p series test, clearly Σ 2 converges,
               2 n →∞ n
             n                                         n
   Note : If Lt un ≠ 0 the series is divergent;
                 n →∞
                               2n − 1
           Ex.          un =          , here Lt un = 1 ∴           Σun is divergent.
                                2n           n →∞
                            1         2   4   8
                        Σ     p
                                < 1 + p + p + p + ....
                            n        2   4   8
                           1         1         1           1
         i.e.,          Σ   p
                              < 1 + ( p −1) + 2( p −1) + 3( p −1) + ......
                          n        2         2          2
         The RHS of the above inequality is an infinite geometric series with common
                1
         ratio p −1 < 1( since p > 1) The sum of this geometric series is finite.
              2
                 ∞    1
         Hence Σ          is also finite.
                 n =1 n p
                        1         1    1
Case (iii) Let p<1,     Σp
                           = 1 + p + p + .....
                       n          2    3
                             1     1 1 1
         Since       p < 1, p > , p > , ...... and so on
                            2      2 3    3
                        1        1 1 1
         ∴          Σ p > 1 + + + + .......
                       n          2 3 4
         From the Case (ii), it follows that the series on the RHS of above inequality is
         divergent.
Sequences and Series                                                                       9
                            1
          ∴             Σ      is divergent , when P < 1
                            np
Note: This theorem is often helpful in discussing the nature of a given infinite series.
            2. u1 ≥ kvn ∀n
                          Σvn is divergent ⇒ Σkvn is divergent
               ∴          Σun is divergent
                           u                                                  u
            3. Since Lt n is finite, a + ve constant k can be found such that n > k , ∀n
                      n →∞ v                                                  vn
                            n
                                        Solved Examples
EXAMPLE 1
Test the convergence of the following series:
                                                                       ∞
                                                                 (c) Σ ⎡( n 4 + 1)     − n⎤
     3 4 5        6               4 5 6 7                                         14
(a) + +        +    + ..... (b)    + + + + .....
     1 8 27 64                    1 4 9 16                           n =1 ⎢
                                                                          ⎣               ⎥⎦
SOLUTION
(a)         Step 1: To find "un " the nth term of the given series. The numerators 3, 4, 5,
            6......of the terms, are in AP.
            nth term tn = 3 + ( n − 1) .1 = n + 2
                                                                           n+2
            Denominators are 13 , 23 ,33 , 43.....nth term = n3 ; ∴ un =
                                                                            n3
            Step 2: To choose the auxiliary series Σvn . In un , the highest degree of n in the
            numerator is 1 and that of denominator is 3.
Sequences and Series                                                                                     11
                                 1      1
      ∴ we take, vn =             3−1
                                      = 2
                                n      n
                           un       n+2 2          n+2       ⎛ 2⎞
      Step 3: Lt              = Lt       × n = Lt      = Lt ⎜1 + ⎟ = 1, which is non- zero and
                    n →∞   vn  n →∞  n 3      n →∞  n   n →∞
                                                             ⎝ n⎠
      finite.
                                        un
      Step 4: Conclusion: Lt               =1
                                   n →∞ v
                                         n
                                                                                                   1
      ∴ Σun and Σvn both converge or diverge (by comparison test). But Σvn = Σ                        is
                                                                                                   n2
      convergent by p-series test (p = 2 > 1); ∴ Σun is convergent.
      4 5 6 7
(b)    + + + + .....
      1 4 9 16
                                                                                    n+3
      Step 1: 4 , 5, 6, 7, .....in AP , tn = 4 + ( n − 1)1 = n + 3        ∴ un =
                                                                                     n2
                          1
      Step 2: Let Σvn =      be the auxiliary series
                          n
                   u       ⎛ n +3⎞            ⎛ 3⎞
      Step 3: Lt n = Lt ⎜ 2 ⎟ × n = Lt ⎜1 + ⎟ = 1 , which is non-zero and finite.
              n →∞ v
                    n
                      n →∞
                           ⎝ n ⎠         n →∞
                                              ⎝ n⎠
      Step 4: ∴ By comparison test, both Σun and Σvn converge are diverge together.
                   1
      But Σvn = Σ is divergent, by p-series test (p = 1); ∴ Σun is divergent.
                   n
                                                1
                                                      ⎡         1  ⎤
       ∞                          ⎧   ⎛     ⎞ ⎫         ⎛     ⎞
      Σ ⎡( n + 1)              ⎤
                            − n = ⎨n ⎜1 + 4 ⎟⎬ – n = n ⎜1 + 4 ⎟ – 1⎥
                                                      ⎢
                4      14
                                    4     1     4           1   4
(c)
        ⎣⎢
      n =1                     ⎦⎥ ⎩ ⎝ n ⎠⎭            ⎢⎝ n ⎠       ⎥
                                                      ⎣⎢           ⎦⎥
                                    ⎡          1⎛1 ⎞                      ⎤
                                    ⎢            ⎜    − 1⎟                ⎥      ⎡ 1                 ⎤
                                = n ⎢1 + 4 + ⎝
                                         1     4 4 ⎠ 1                                  3
                                                           . 8 + ..... − 1⎥ = n ⎢ 4 −         + .....⎥
                                    ⎢     n                 n             ⎥      ⎣   n    n          ⎦
                                                                                            8
                                        4           2!                             4   32
                                    ⎢⎣                                    ⎥⎦
                                   1       3            1 ⎡1       3           ⎤
                                = 3−          + .... = 3 ⎢ −            + .....⎥
                                  4n 32n 7             n ⎣ 4 32n 4             ⎦
                                                            1
             Here it will be convenient if we take vn = 3
                                                           n
12                                                                                                                   Engineering Mathematics - I
                    un      ⎛1   1            ⎞ 1
                Lt     = Lt ⎜ −       + ..... ⎟ = , which is non-zero and finite
               n →∞ v           32n
                            ⎝                 ⎠ 4
                        n →∞ 4      4
                     n
               ∴ By comparison test, Σun and Σvn both converge or both diverge. But by p-
                                                 1
               series test Σvn =                    is convergent. (p = 3 > 1); ∴ Σun is convergent.
                                                 n3
EXAMPLE 2
                3
                    3n 2 + 1
If u n =                             show that Σun is divergent
           4
               2n3 + 3n + 5
SOLUTION
As n increases, un approximates to
                                         1               2                 1
                      3
                          3n 2       3       3
                                                     n       3
                                                                       3       3
                                                                                           1
                                 =       1
                                                 ×       3
                                                                 =         1
                                                                                   .       1
                      4
                          2n3        2       4
                                                     n       4
                                                                       2       4
                                                                                       n    12
                                                                                                     1
                                                         1                    u  33
       ∴ If we take vn =                                               , Lt n = 1 which is finite.
                                                         1               n →∞ v
                                                     n    12                   n 2 4
                                                             1
       [(or) Hint: Take vn =                                 l1 − l2
                                                                        , where l1 and l2 are indices of ‘n’ of the largest terms
                                                     n
                                                                                                                                1         1
       in denominator and nominator respectively of un . Here vn =                                                              3 2
                                                                                                                                      =        1
                                                                                                                                                   ]
                                                                                                                                 −
                                                                                                                            n   4 3
                                                                                                                                          n   12
                                                                                                                                                           1
       By comparison test, Σvn and Σun converge or diverge together. But Σvn = Σ                                                                           1
                                                                                                                                                                 is
                                                                                                                                                       n    12
                                                                                                   1
       divergent by p – series test ( since p =                                                      <1)
                                                                                                  12
       ∴ Σun is divergent.
EXAMPLE 3
                                                                                                 1   2   3   4
Test for the convergence of the series.                                                            +   +   +   + ......
                                                                                                 2   3   4   5
SOLUTION
                       n                                                               1             1              u        1
Here, un =                ;                      Take vn =                                       =       = 1 , Lt n = Lt         = 1 (finite)
                     n +1                                                              1 1
                                                                                        −            n 0       n →∞ vn n →∞
                                                                                                                            1+
                                                                                                                               1
                                                                                   n   2 2
                                                                                                                               n
Sequences and Series                                                                      13
EXAMPLE 4
                  1 1           1
Show that 1 +      + + ....... + + ..... is convergent.
                  1 2           n
SOLUTION
                   1
                 un =  (neglecting 1st term )
                    n
                        1                  1             1
                 =             <                      = n −1
                   1.2.3......n 1.2.2.2.....n − 1times (2 )
                        1 1      1
∴            Σun < 1 + + 2 + 3 + ......
                        2 2      2
                                                           1
which is an infinite geometric series with common ratio < 1
                                                           2
                 1
∴            Σ n −1 is convergent. (1.2.3(a)). Hence Σun is convergent.
                2
EXAMPLE 5
                                               1     1     1
Test for the convergence of the series,           +     +      + .......
                                             1.2.3 2.3.4 3.4.5
SOLUTION
                1                           1               un
                                                             n3
un =                       ;   Take vn =               Lt      = Lt     = 1 (finite)
       n ( n + 1)( n + 2 )                  n3          3⎛
                                                       n →∞ v1 ⎞⎛ 2 ⎞
                                                                n →∞
                                                      n ⎜ 1 + ⎟⎜ 1 + ⎟
                                                             n
                                                         ⎝ n ⎠⎝ n ⎠
∴ By comparison test, Σun , and Σvn converge or diverge together. But by p-series test,
        1
Σvn = Σ 3 is convergent ( p = 3 > 1 ); ∴ Σun is convergent .
       n
EXAMPLE 6
                      ⎡⎛     1       1    1           ⎞ ⎛       1  1   1            ⎞⎤
                = n 2 ⎢⎜ 1 + 4 − 8 +           − .... ⎟ − ⎜1 − 4 − 8 −      − ..... ⎟ ⎥
                      ⎣⎝ 2n 8n 16n                    ⎠ ⎝ 2n 8n 16n                 ⎠⎦
                                            12                           12
                      ⎡1      1        ⎤ 1 ⎡        1         ⎤
                = n 2 ⎢ 4 + 12 + ....⎥ = 2 ⎢1 + 10 + ....⎥
                      ⎣ n 8n           ⎦ n ⎣ 8n               ⎦
                  1                 u
 Take       vn = 2 , hence Lt n = 1
                 n             n →∞ vn
                                                                                          1
∴ By comparison test, Σun and Σvn converge or diverge together. But Σvn =                    is
                                                                                          n2
convergent by p –series test (p = 2 > 1) ∴ Σun is convergent.
EXAMPLE 7
                   1     1     1
Test the series       +     +      + ..... for convergence.
                  1+ x 2 + x 3 + x
SOLUTION
                   1                   1                  un   n     1
          un =         ;   take vn =     ,       then        =    =
                  n+ x                 n                  vn n + x 1 + x
                                                                       n
             ⎛     ⎞
             ⎜ 1 ⎟               1
         Lt ⎜      ⎟ = 1; Σvn = Σ is divergent by p-series test (p =1 )
             ⎜1+ x ⎟             n
        n →∞
             ⎝   n⎠
∴ By comparison test, Σun is divergent.
EXAMPLE 8
            ∞
                   ⎛1⎞
Show that Σ sin ⎜ ⎟ is divergent.
           n =1
                   ⎝n⎠
SOLUTION
                    ⎛1⎞                      1
         un = sin ⎜ ⎟ ;        take vn =
                    ⎝n⎠                      n
                             ⎛1⎞
                         sin ⎜ ⎟
                u            ⎝ n ⎠ = Lt sin t (where t = 1 ) = 1
          Lt n = Lt
         n →∞ v      n →∞ ⎛ 1 ⎞      t →0 t               n
                 n
                           ⎜ ⎟
                           ⎝n⎠
                                                        1
∴ Σu , Σvn both converge or diverge . But Σvn = Σ         is divergent
      n
                                                        n
( p -series test, p = 1 ); ∴ Σun is divergent.
Sequences and Series                                                                                15
EXAMPLE 9
                         ⎛1⎞
Test the series Σ sin −1 ⎜ ⎟ for convergence.
                         ⎝n⎠
SOLUTION
                    1                              1
         un = sin −1 ;            Take        vn =
                    n                              n
                                     ⎛1⎞
                                   −1⎜ ⎟
               u      sin ⎝ n ⎠ ; =       ⎛ θ ⎞ ⎛                     1    ⎞
           Lt n = Lt                 Lt ⎜         ⎟ = 1⎜ Taking sin −1 = θ ⎟
          n →∞ v
                n
                  n →∞ ⎛ 1 ⎞        θ → 0
                                          ⎝ sin θ ⎠ ⎝                 n    ⎠
                        ⎜ ⎟
                         n
                        ⎝ ⎠
But Σvn is divergent. Hence Σun is divergent.
EXAMPLE 10
                                   1 22 33
Show that the series 1 +             + + + ..... is divergent.
                                   22 33 43
SOLUTION
                                                    1 2 2 33
Neglecting the first term, the series is               +   +    + ..... . Therefore
                                                   2 2 33 4 4
                  nn                    nn                   nn                       1
       un =                     =                n=                         =                   ;
              ( n + 1)
                         n +1
                                  ( )( )
                                   n + 1   n + 1      ⎛ 1⎞ n⎛ 1⎞
                                                                          n
                                                                                ⎛ 1 ⎞⎛ 1 ⎞
                                                                                              n
                                                    n ⎜1 + ⎟ .n ⎜1 + ⎟        n ⎜ 1 + ⎟⎜1 + ⎟
                                                      ⎝ n⎠ ⎝ n⎠                 ⎝ n ⎠⎝ n ⎠
                         1
      Take vn =
                         n
                  un               1                   1         1
      ∴         Lt   = Lt                 n
                                            = Lt          n
                                                              =
                  vn
                n →∞  n →∞
                           ⎛ 1 ⎞⎛ 1 ⎞         n →∞
                                                   ⎛ 1⎞          e
                           ⎜ 1 + ⎟⎜1 + ⎟           ⎜1 + ⎟ .1
                           ⎝ n ⎠⎝ n ⎠              ⎝ n⎠
                             1
which is finite and Σvn = Σ     is divergent by p –series test ( p = 1)
                             n
∴     Σun is divergent.
EXAMPLE 11
                                  1     3     5
Show that the series                 +     +      + .......∞ is convergent.        (JNTU 2000)
                                1.2.3 2.3.4 3.4.5
SOLUTION
                 1     3     5
                    +     +      + .......∞
               1.2.3 2.3.4 3.4.5
16                                                                             Engineering Mathematics - I
                                               ⎛    1⎞
                                               ⎜ 2− ⎟
                       2n − 1           1      ⎝    n⎠
nth term = un =                      = 2.
                 n ( n + 1)( n + 2 ) n ⎛ 1 ⎞ ⎛ 2 ⎞
                                           ⎜1 + ⎟ ⎜1 + ⎟
                                           ⎝ n ⎠⎝ n ⎠
                  1
Take       vn = 2
                 n
                                    ⎛     1⎞
                                    ⎜ 2− ⎟
                u          1        ⎝     n⎠       ⎛ 1 ⎞
            Lt n = Lt 2                           ÷⎜ 2 ⎟
           n →∞ v
                 n
                      n →∞ n
                                1+ 1 1+ 2
                                      n     (  n      )(
                                                   ⎝n ⎠            )
                u          2−0
            Lt n =                     = 2 which is finite and non-zero
           n →∞ v
                 n    (1 + 0 )(1 + 0 )
∴ By comparison test                  ∑u    n ∑ v converge or diverge together
                                                and        n
EXAMPLE 12
                                     ∞
                                                1
Test whether the series              ∑
                                     n =1   n + n +1
                                                           is convergent    (JNTU 1997, 1999, 2003)
SOLUTION
                              ∞
                                            1
The given series is           ∑
                          n + n +1
                              n =1
                         1
                 un =
                      n + n +1
                                            n +1 − n
                                                                       = n +1 − n
                          (                     )(                 )
                    =
                                n + n +1              n +1 − n
                         ⎪⎧⎛ 1 ⎞ 2 ⎪⎫
                                1
                                         ⎧⎛    1   1         ⎞ ⎫
                 un = n ⎨⎜1 + ⎟ − 1⎬ = n ⎨⎜1 +   − 2 + ..... ⎟ − 1⎬
                             n⎠          ⎩⎝ 2n 8n
                        ⎩⎪⎝        ⎭⎪                        ⎠ ⎭
                         ⎧1     1   ⎫ 1 ⎧1 1           ⎫
                 u n = n ⎨ – 2 + ...⎬ =   ⎨ –    + ....⎬
                         ⎩ 2 n 8n   ⎭   n ⎩ 2 8n       ⎭
Sequences and Series                                                                                                        17
                              1
Take              vn =
                               n
                       un        1 ⎧1 2          ⎫ ⎛ 1 ⎞ 1
                    Lt    = Lt      ⎨  − + ......⎬ ÷ ⎜ ⎟=
                  n →∞ v          n ⎩ 2 8n
                        n
                            n →∞
                                                 ⎭ ⎝ n⎠ 2
which is finite and non-zero .
Using comparison test   ∑    un and                               ∑v   n    converge or diverge together.
But
                         1
                  ∑v = ∑ n
                         n                                              (
                                                        is divergent since p = 1
                                                                                          2   )
∴                 ∑u     n    is also divergent.
EXAMPLE 13
                                     ∞
Test for convergence                ∑ ⎡⎣
                                    n =1
                                               3
                                                   n3 + 1 − n ⎤
                                                              ⎦
                                                                                    [JNTU 1996, 2003, 2003]
 th
n term
                         ⎡⎛     1⎞3 ⎤
                                    1       ⎡
                                            ⎢    1
                  un = n ⎢⎜ 1 + 3 ⎟ − 1⎥ = n 1 + 3 +
                                                     1 1 −1
                                                      3   3   1
                                                                           ⎤
                                                            . 6 + ..... − 1⎥
                                                                                      (           )
                         ⎢⎣⎝   n  ⎠    ⎥⎦   ⎢   3n      1.2  n             ⎥
                                            ⎣                              ⎦
                                  1     1            1 ⎛1 1           ⎞            1
                         =            − 5 + ...... = 2 ⎜ − 3 + ...... ⎟ ; Let vn = 2
                                 3n 9n
                                    2
                                                    n ⎝ 3 9n          ⎠           n
Then         Lt
             n →∞
                    un
                         vn     n →∞ 3  9n (
                              = Lt 1 − 1 3 + .... = 1 ≠ 0
                                                     3                 )
∴ By comparison test,                 ∑u           n    and   ∑v   n   both converge or diverge.
But   ∑v n    is convergent by p -series test ( since p = 2 > 1) ∴                                ∑u   n   is convergent.
EXAMPLE 14
                                      2 3     4
Show that the series,                 p
                                        + p + p + ....... is convergent for p > 2 and divergent for
                                     1 2     3
p≤2
SOLUTION
∴  ∑ u and ∑ v
        n                   n   both converge or diverge by comparison test.
But ∑ v = ∑ 1
            n               p −1       converges when p -1>1 ; i.e., p >2 and diverges when
              n
p − 1 ≤ 1 i.e p ≤ 2 ; Hence the result.
EXAMPLE 15
                                                      1
                          ⎛ 2n + 3 ⎞
                                   ∞                      2
Test for convergence ∑ ⎜ n         ⎟                                                                                  (JNTU 2003)
                     n =1 ⎝ 3 + 1 ⎠
SOLUTION
                        (               )
                                            1
            ⎡ 2n 1 + 3                      ⎤ 2
                                                                                                                                1
                                                                                                                ⎛           ⎞
                                                                                                            un ⎜ 1 +
                                                                                                                                    2
                                                                                         n                              3
            ⎢          2n                   ⎥                                2                                              n
                                                                                                                          2 ⎟
       un = ⎢                                                           vn = n ;                              =
                        (               )   ⎥ ;       Take
                                                                                                            vn ⎜ 1 +     1 n⎟
            ⎢⎣ 3 1 + 3n
                n    1                                                       3
                                            ⎥⎦                                                                  ⎝         3 ⎠
     un
 Lt
n →∞ v
        = 1 ≠ 0 ; ∴ By comparison test,                             ∑u   n   and         ∑v       n   behave the same way.
      n
                                   n                                3
                       ∞
                 ⎛2⎞ 2 2 2 ⎛2⎞ 2
But ∑ vn = ∑ ⎜ ⎟ =      + + ⎜ ⎟ + ....., which is a geometric series with
            n =1 ⎝ 3 ⎠ 3 3 ⎝3⎠
common ratio 2 (<1) ∴ ∑ vn is convergent. Hence ∑ un is convergent.
                  3
EXAMPLE 16
                                                         1       4        9
Test for convergence of the series,                          +       +         + ......                                 (JNTU 2003)
                                                       4.7.10 7.10.13 10.13.16
SOLUTION
                  4, 7, 10,..............is an A . P;                            tn = 4 + ( n − 1) 3 = 3n + 1
                  7, 10, 13,............is an A . P;                             tn = 7 + ( n − 1) 3 = 3n + 4
and               10 , 13 , 16 ,.............is an A. P;                         tn = 10 + ( n − 1) 3 = 3n + 7
                                    n2                                                                    n2
∴               un =                                =
                       ( 3n + 1)( 3n + 4 )( 3n + 7 ) 3n 1 + 1                (               3n   ) .3n (1 + 4 3n ) .3n (1 + 7 3n )
                                                  1
                            (                )(                )(                )
                  =                                                                  ;
                       27 n 1 + 1               1+ 4            1+ 7
                                        3n                3n             3n
Sequences and Series                                                                                                       19
                  1
Taking vn =         , we get
                  n
     un   1
 Lt
n →∞ v
        =
          27
             ≠ 0 ; ∴ By comparison test, both                          ∑u       n   and   ∑v     n   behave in the same
      n
EXAMPLE 17
                                2 n 2 − 5n + 1
Test for convergence         ∑ 4n 3 − 7 n 2 + 2                                                       (JNTU 2003)
SOLUTION
                                                      2 n 2 − 5n + 1
nth term of the given series = un =
                                                     4n3 − 7 n 2 + 2
              1
Let    vn =
              n2
                    ⎡ n 2− 5 + 1          ⎤       ⎡ 2− 5 + 1                                                  ⎤
          un        ⎢         n   n 2  n2 ⎥       ⎢       n     n2                                            ⎥   2
      Lt     = Lt . ⎢                 × ⎥ = Lt ⎢                                                              ⎥= 4 ≠0
     n →∞ v
           n
               n →∞
                    ⎢⎣ n 4 − n + n3
                        3   7   2
                                    (  1
                                          ⎥⎦
                                             n →∞       7
                                                         )
                                                  ⎢⎣ 4 − n + n3
                                                              2
                                                                                    (                     )   ⎥⎦
∴ By comparison test, ∑ un and ∑ vn both converge or diverge.
   But   ∑v   n    is convergent. [p series test – p = 2 > 1] ∴                         ∑u   n   is convergent .
EXAMPLE 18
                                                                 1
Test the series    ∑u   n   , whose nth term is
                                                          ( 4n   2
                                                                     − i)
SOLUTION
                                                     ⎡            ⎤
                    1                     un         ⎢
                                                     1    n2      ⎥ 1
   un =                               Lt    Let vn = 2 ,
                                             = Lt ⎢               ⎥= 4≠0
                                                                                                 (             )
                   ;
        ( 4n − i )
            2                        n →∞ v
                                           n
                                               n →∞ n        i
                                                    ⎢⎣ n 4 − n 2 ⎥⎦
                                                        2
                            ∑ 4n
                                        1
Note: Test the series
                             n =1
                                        2
                                            –1
20                                                                                             Engineering Mathematics - I
EXAMPLE 19
        ⎛1⎞                   ⎛1⎞
If un = ⎜ ⎟ .sin ⎜ ⎟ , show that
        ⎝n⎠                   ⎝n⎠
                                                                  ∑u   n   is convergent .
SOLUTION
           1
Let vn =
           n2
              , so that                  ∑v        n       is convergent by p –series test .
                       ⎛u
                    Lt ⎜ n
                                        ⎞
                                          = Lt
                                               sin 1        ( )
                                                      n = Lt ⎛ sin t ⎞
                                        ⎟ n →∞                 ⎜     ⎟
                   n →∞ v
                       ⎝ n              ⎠         1
                                                    n      ( )
                                                          t →0
                                                               ⎝ t ⎠
                                              ⎛ un     ⎞
where t = 1/n, Thus Lt ⎜                               ⎟ =1≠ 0
                    n →∞
                                              ⎝ vn     ⎠
∴ By comparison test,                         ∑u       n     is convergent.
EXAMPLE 20
                                                    1
Test for convergence                      ∑          n
                                                       tan( 1 )
                                                             n
SOLUTION
                                      ; Lt ⎡ n             ⎤ = 1 ≠ 0 ( as in above example)
                                            u
Take vn = 1
                      n
                          3
                              2        n →∞   ⎢⎣       vn ⎥⎦
Hence by comparison test,                              ∑u     n   converges as   ∑v   n   converges.
EXAMPLE 21
               ∞
                                      ⎛1⎞
Show that      ∑ sin
               n =1
                                  2
                                      ⎜ ⎟ is convergent.
                                      ⎝n⎠
SOLUTION
                                                                                                       ( ) ⎤⎥
                                                                                                                2
                                                                                              ⎡ sin 1
                                                                                  ⎛ un ⎞
                                                                                                                                    2
                 ⎛1⎞                                         1                                         n                ⎛ sin t ⎞
Let     un = sin ⎜ ⎟ ;    2
                                                   Take vn = 2 ,               Lt ⎜ ⎟ = Lt ⎢                    = Lt ⎜          ⎟
                                                                                         n →∞ ⎢               ⎥
                 ⎝n⎠                                        n                 n →∞ v
                                                                                  ⎝ n⎠             1              t → 0
                                                                                                                        ⎝ t ⎠
                                                                                              ⎣      n        ⎦
        t = 1 ; Lt ⎛⎜ n ⎞⎟ = 12 = 1 ≠ 0
                      u
where
             n n→∞ ⎝ vn ⎠
∴ By comparison test, ∑ un and ∑ vn behave the same way.
But   ∑v   n   is convergent by p- series test, since p = 2 > 1; ∴                             ∑u      n   is convergent.
Sequences and Series                                                                                                                           21
EXAMPLE 22
                  ∞
Show that        ∑
                 n=2
                           1
                                  log ( n n )
                                                       is divergent.
SOLUTION
                     un = 1 ; log 2 < 1 ⇒ 2 log 2 < 2 ⇒ 1           >1 ;
                    n log n                                 2 log 2    2
Similarly   1         > 1 ..... 1          > 1 ,n∈ N
              3log 3      3,       n log n     n
∴          ∑ 1           > ∑ 1 ; But ∑ 1 is divergent by p-series test.
                n log n        n             n
By comparison test, given series is divergent. [If ∑ vn is divergent and un ≥ vn ∀n then
∑u     n   is divergent.]
(Note : This problem can also be done using Cauchy’s integral Test.
EXAMPLE 23
                                                                       ∞
                                                                   ∑ (c + n) ( d + n)
                                                                                           −r           −s
Test the convergence of the series                                                                           , where c, d, r, s are all +ve.
                                                                   n =1
SOLUTION
                                                                                   1
The nth term of the series = un =                                                                   .
                                                               (c + n) ( d + n)
                                                                               r                s
                              1                        un                          nr +s                                1
Let             vn =          r +s
                                       Then               =                            r                s
                                                                                                             =         r          s
                          n                            vn       ⎛ c⎞         ⎛ d⎞                                ⎛ c⎞ ⎛ d⎞
                                                              n ⎜ 1 + ⎟ .n s ⎜1 + ⎟
                                                               r
                                                                                                                 ⎜1 + ⎟ ⎜1 + ⎟
                                                                ⎝ n⎠         ⎝ n⎠                                ⎝ n⎠ ⎝ n⎠
       un
 Lt       = 1 ≠ 0 , ∴ ∑ un and                            ∑v       n       both converge are diverge, by comparison test.
n →∞   vn
But by p-series test,                      ∑v  n   converges if (r + s) > 1 and diverges if (r + s) ≤ 1
∴     ∑u    n   converges if ( r + s ) > 1 and diverges if ( r + s ) ≤ 1.
EXAMPLE 24
                 ∞
                              (            ) is divergent.
                ∑n
                          − 1+ 1
                                       n
Show that
                 1
SOLUTION
           un = n
                      (
                     − 1+ 1
                                  n   )= 1                    Take             vn =
                                                                                            1        u        1
                                                                                              ; Lt n = Lt 1 = 1 ≠ 0
                                           1
                                            n.n    n                                        n   n →∞ vn n →∞
                                                                                                             n n
22                                                                                                             Engineering Mathematics - I
                                                                              1
                                1                              1
For let               Lt                 = y say; log y = Lt − .log n = − Lt n = 0
                    n →∞        1                         n →∞ n         n →∞ 1
                            n       n
                           ⎛∞⎞
∴                y = e0 = 1                          (⎜
                             ⎟ using L Hospitals rule)
                           ⎝∞⎠
By comparison test both ∑ un and ∑ vn       converge or diverge. But p-series test,
EXAMPLE 25
                                                                    (n + a)
                                                                                       r
                                                           ∞
Test for convergence the series                           ∑
                                                          n =1 ( n + b ) ( n + c )
                                                                        p          q
                                                                                                 , a, b, c , p, q, r, being +ve.
SOLUTION
                                                                    (    )                                                    (                )
                                                                                                                                                   r
                                                                                                                               1+ a
                                                                                  r
                      (n + a )           r                     nr 1 + a                                    1                               n
           un =                                  =                     n
                                                          (1 + b n ) n (1 + c n )
                                                                                                =                   .                                              ;
                  (n + b ) p (n + c )q                                                                                  (             )(                   )
                                                                        p                  q              p+ q −r                     p                        q
                                                     np                      q                        n                 1+ b               1+ c
                                                                                                                                  n                    n
                       1                     un
Take vn =             p+ q −r
                                ; Lt            =1≠ 0 ;
                  n                     n →∞ v
                                              n
EXAMPLE 26
Test the convergence of the following series whose nth terms are:
                          ( 3n + 4 )                                                                 1                                    ⎛ 1 ⎞ ⎛ n +1 ⎞
                                                                                                                                                                       n
                                                (1 + 1n ) = e = 1 ≠ 0
                                                                       n
                           1         ⎛u ⎞
   (c)    Hint : Take vn = 2 ; Lt ⎜ n ⎟ = Lt
                                                              (        )
                                                         n
                          n      n →∞ v
                                     ⎝ n ⎠ n→∞ 1 + 3         e3 e 2
                                                      n
                1
          vn = 2 is convergent (work out completely for yourself )
                n
                     1      1       1                  1       ⎛u ⎞
   (d)    un =            = n.             ; Take vn = n ; Lt ⎜ n ⎟ = 1 ≠ 0
                   3 +5
                    n   n
                           5 ⎡ ⎛3⎞ ⎤   n
                                                      5    n →∞ v
                                                               ⎝ n⎠
                               ⎢1 + ⎜ ⎟ ⎥
                               ⎣⎢ ⎝ 5 ⎠ ⎦⎥
          ∑u   n   and   ∑v  n   behave the same way. But          ∑v      n   is convergent since it is a
                                                        1
         geometric series with common ratio               <1
                                                        5
         ∴    ∑u    n    is convergent by comparison test .
          1     1
   (e)      n
              ≤ n , ∀n ∈ N , since                   n.3n ≥ 3n ;
         n.3   3
                    1      1
         ∴     ∑ n.3n ≤ ∑ 3n                                                                 …..(1)
         The series on the R.H .S of (1) is convergent since it is geometric series with
               1
          r=     <1.
               3
                                         1
         ∴ By comparison test       ∑ n.3    n
                                                 is convergent.
EXAMPLE 27
Test the convergence of the following series.
               1+ 2      1+ 2 + 3       1+ 2 + 3 + 4
   (a)   1+           + 2           + 2              + ...............
              1 + 2 1 + 2 + 3 1 + 22 + 32 + 42
               2    2        2    2
            12 + 22 12 + 22 + 32 12 + 22 + 32 + 42
   (b)   1 + 3 3 + 3 3 3 + 3 3 3 3 + ..............
            1 +2 1 +2 +3 1 +2 +3 +4
24                                                                                   Engineering Mathematics - I
SOLUTION
                                                           n
                                                               ( n + 1)
                      1 + 2 + 3 + .... + n            2             3
     (a)         un = 2                     =                  =
                     1 + 22 + 32 + .....n 2
                                           n ( n + 1)
                                                      ( 2n + 1) ( 2n + 1)
                                                          6
                           1        un        ⎛   3 n   ⎞ 3
                 Take vn =   ; Lt      = Lt ⎜           ⎟ = ≠0
                           n   n →∞ v    n →∞ 2n + 1
                                     n        ⎝         ⎠ 2
                 ∑u    n    and     ∑v  n   behave alike by comparison test.
                 But    ∑v      n   is diverges by p-series test. Hence        ∑u    n   is divergent.
                                                  n ( n + 1)
                                                               ( 2n + 1)
                           1 + 2 + .... + n
                            2       2         2
                                                                  6            2 ( 2n + 1)
     (b)         un =                         =                            =
                            13 + 23 + .....n3             ( n + 1)
                                                                     2
                                                                               3n ( n + 1)
                                                     n2
                                               4
                                 1
                 Hint : Take vn = and proceed as in (a) and show that
                                 n
                                                                                             ∑u   n   is divergent.
                                                   Exercise 1.1
1. Test for convergence the infinite series whose nth term is:
                         1
           (a)                                                                               [Ans : divergent]
                       n− n
                           n +1 − n
           (b)                                                                               [Ans : convergent]
                              n
           (c)             n2 + 1 − n                                                        [Ans : divergent]
                         n
           (d)                                                                               [Ans : convergent]
                       n −1
                        2
                       2n 3 + 5
           (h)                                                                               [Ans : convergent]
                       4n 5 + 1
Sequences and Series                                                                                                 25
                       ∑ (8                     )
                        ∞         1
          (g)                         n
                                          − 1 ....................                                   [Ans : divergent]
                        1
                        ∞
                          3n3 + 8
          (h)          ∑1 5n5 + 9 ........................                                           [Ans : convergent]
                        1   2   3
          (i)             +   +    + ...........                                                     [Ans : divergent]
                       1.3 3.5 5.7
Then the series               ∑u          n   is (i) convergent if k < 1 and (ii) divergent if k > 1.
Proof :
                    un +1
Case (i) Lt               = k ( < 1)
                n →∞ u
                       n
                From the definition of a limit, it follows that
                                                                un +1
                 ∃m > 0 and l ( 0 < l < 1) ∋                          < l∀n ≥ m
                                                                 un
26                                                                                 Engineering Mathematics - I
                       um +1      u
        i.e.,                < l , m + 2 < l ,..........
                        um         um +1
                                                            ⎡ u        u             ⎤
        ∴        um + um +1 + um + 2 + ...... ........ = um ⎢1 + m +1 + m + 2 + .....⎥
                                                            ⎣    um     um           ⎦
                                           um 1    um           um 1
                                    um 1                2
                                                            .          .....
                                            um     um   1        um
                 < um (1 + l + l 2 + ...) = um .
                                                    1
                                                        ( l < 1)
                                                   1− l
                                                            ∞
                    1
        But um .
                   1− l
                        is a finite quantity ∴              ∑u
                                                            n=m
                                                                   n   is convergent
             un +1
Case (ii) Lt       = k >1
         n →∞ u
                n
        There may be some finite number of terms in the beginning which do not satisfy
                               un +1
        the condition                ≥ 1 . In such a case we can find a number ‘m’
                                un
             un +1
         ∋         ≥ 1, ∀n ≥ m
              un
        Omitting the first ‘m’ terms, if we write the series as u1 + u2 + u3 + ........., we
        have
                 u2     u      u
                    ≥ 1, 3 ≥ 1, 4 ≥ 1 .......... and so on
                 u1     u2     u3
                                            ⎛ u u u                ⎞
        ∴        u1 + u2 + ...... + un = u1 ⎜1 + 2 + 3 . 2 + ..... ⎟ (to n terms)
                                            ⎝ u1 u2 u1             ⎠
                 ≥ u1 (1 + 1 + 1.1 +.......to n terms)
                 = nu1
                         n
                  Lt
                 n →∞
                        ∑u
                        n =1
                               n   ≥ Lt n.u1 which → ∞ ; ∴
                                    n →∞
                                                                       ∑u      n   is divergent .
Sequences and Series                                                                                            27
                                                                                                     ∞
                                                                                                            1
Note: 1 The ratio test fails when k = 1. As an example, consider the series,                         ∑n
                                                                                                     n =1
                                                                                                            p
                                                                               p
                                                       p        ⎛ 1 ⎞
                                  un +1       ⎛ n ⎞             ⎜      ⎟ =1
           Here                Lt       = Lt ⎜       ⎟   =  Lt
                                          n →∞ n + 1       n →∞ ⎜
                              n →∞ u
                                              ⎝      ⎠            1+ 1 ⎟
                                     n
                                                                ⎝     n⎠
           i.e.,    k = 1 for all values of p,
           But the series is convergent if p > 1 and divergent if p ≤ 1 , which shows that
           when k = 1, the series may converge or diverge and hence the test fails .
Note: 2     Ratio test can also be stated as follows:
                                                                       un
           If   ∑u       n    is series of +ve terms and if Lt
                                                                 n →∞ u
                                                                             = k , then   ∑u   n   is convergent
                                                                        n +1
                                                 Solved Examples
Test for convergence of Series
EXAMPLE 28
         x   x2   x3
(a)        +    +    + .................                                                           (JNTU 2003)
        1.2 2.3 3.4
SOLUTION
           xn                      x n +1                  un +1          x n +1      n ( n + 1)      1
un =              ; un +1 =                   ;                  =                  .            =        x.
       n ( n + 1)           ( n + 1)( n + 2 )               un     ( n + 1)( n + 2 ) x      n
                                                                                                   ⎛ 2⎞
                                                                                                   ⎜1 + ⎟
                                                                                                   ⎝ n⎠
                        un +1
Therefore           Lt        =x
                    n →∞ u
                           n
∴ By ratio test          ∑u       n   is convergent When |x| < 1 and divergent when | x | > 1;
                                 1                    1     u
When x = 1, un =                          ; Take vn = 2 ; Lt n = 1
                             n (1 + 1 n )
                              2
                                                     n n→∞ vn
∴ By comparison test                  ∑u   n   is convergent.
Hence   ∑u      n   is convergent when x ≤ 1 and divergent when x > 1 .
28                                                                                    Engineering Mathematics - I
(b) 1 + 3x + 5 x 2 + 7 x 3 + .......
SOLUTION
                                                                             un +1       ⎛ 2n + 1 ⎞
      un = ( 2n − 1) x n −1 ;      un +1 = ( 2n + 1) x n ;               Lt        = Lt ⎜         ⎟x = x
                                                                         n →∞ u      n →∞ 2n − 1
                                                                                n        ⎝        ⎠
∴ By ratio test         ∑u   n   is convergent when x < 1 and divergent when x > 1
When x = 1: un = 2n − 1; Lt un = ∞ ; ∴
                                    n →∞
                                                            ∑u       n    is divergent.
           ∞
                xn
(c)       ∑
          n =1 n + 1
                2
                     ...........
SOLUTION
                         xn                          x n +1
               un =            ;       un +1 =                       .
                        n2 + 1                   ( n + 1)       +1
                                                            2
                                                                                      (        )
                                                      ⎡ 2            ⎤
            un +1 ⎛ n + 1 ⎞        2
                                        un +1         ⎢ n  1 +  1 2 ⎥
                 =⎜ 2                         = Lt ⎢             n   ⎥ ( x) = x
Hence                         ⎟ x , nLt
             un ⎝ n + 2n + 2 ⎠       →∞ u
                                          n
                                                n →∞
                                                     ⎢ n2 1 + + 2 ⎞ ⎥
                                                         ⎛    2
                                                     ⎢⎣ ⎜⎝ n n 2 ⎟⎠ ⎥⎦
∴ By ratio test, ∑ un is convergent when x < 1 and divergent when x > 1 When
            1                 1
x = 1: un =      ; Take vn = 2
         n +1       2
                             n
∴ By comparison test, ∑ un is convergent when x ≤ 1 and divergent when x > 1
EXAMPLE 29
                         ∞
                             ⎛ n2 − 1 ⎞ n
Test the series         ∑ ⎜ 2 ⎟x , x > 0 for convergence.
                        n →∞ ⎝ n + 1 ⎠
SOLUTION
                         ⎛ n2 − 1 ⎞ n      ⎡ ( n + 1)2 − 1 ⎤ n +1
                    un = ⎜ 2 ⎟ x ; un +1 = ⎢               ⎥x
                         ⎝ n +1 ⎠          ⎢⎣ ( n + 1) + 1 ⎥⎦
                                                      2
Sequences and Series                                                                                               29
                   un +1         ⎡⎛ n 2 + 2n ⎞ ( n 2 + 1) ⎤
                Lt       = Lt ⎢⎜ 2             ⎟ 2         ⎥ .x
               n →∞ u
                      n
                           n →∞
                                ⎢⎣⎝ n + 2n + 2 ⎠ ( n − 1) ⎥⎦
                                    ⎡
                             = Lt ⎢ 4
                                                          (
                                        n 4 (1 + 2 n ) 1 + 1 n 2     ⎤
                                                                     ⎥=x
                                                                           )
                                    ⎣     (
                               n →∞ ⎢ n 1 + 2 n + 2 n 2    1 –)(
                                                               1 n 2
                                                                     ⎥⎦        )
∴ By ratio test,   ∑       un is convergent when x < 1 and divergent when x > 1 when x = 1,
                          n2 − 1           1
               un =              Take vn = 0
                          n +1
                           2
                                          n
Applying p-series and comparison test, it can be seen that                         ∑u   n   is divergent when x = 1.
∴   ∑u   n   is convergent when x < 1 and divergent x ≥ 1
EXAMPLE 30
                               2 p 3p 4 p
Show that the series 1 +          + +     + ..... , is convergent for all values of p.
                                2   3  4
SOLUTION
                                 ( n + 1)
                                                p
                    np
               un =    ; un +1 =
                     n              n +1
                   un +1        ⎡ ( n + 1) p n ⎤       ⎧⎪ 1 ⎛ n + 1 ⎞ p ⎫⎪
                Lt       = Lt ⎢             × p ⎥ = Lt ⎨      ⎜     ⎟ ⎬
               n →∞ u
                      n
                           n →∞
                                ⎢⎣ n + 1 n ⎥⎦ n→∞ ⎩⎪ ( n + 1) ⎝ n ⎠ ⎭⎪
                                                                   p
                                       1          ⎛ 1⎞
                            = Lt            × Lt ⎜1 + ⎟ = 0 < 1 ;
                              n →∞ ( n + 1)  n →∞
                                                  ⎝ n⎠
               ∑u     n    is convergent for all ‘ p ‘ .
EXAMPLE 31
Test the convergence of the following series
                1 1      1   1
                 p
                   + p + p + p + ............
               1 3 5        7
SOLUTION
                             1                                1
               un =                   ;       un +1 =
                      ( 2n − 1)                         ( 2n + 1)
                                  p                                    p
30                                                                            Engineering Mathematics - I
                un +1 ( 2n − 1)     2 p.n p (1 − 1 2n )
                                     p                           p
                                                                            un +1
                     =            =                       ;              Lt       =1
                       ( 2n + 1) 2 p n p (1 + 1 2n )
                                p                       p
                 un                                                     n →∞ u
                                                                               n
                                               ⎝ 2n ⎠
which is non – zero and finite
∴ By comparison test,    ∑ un and          ∑v       n   both converge or both diverge.
                                          1
But by p – series test, ∑ v      n   =   ∑n   p
                                                  converges when p > 1 and diverges
when p ≤ 1
∴    ∑u   n   is convergent if p > 1 and divergent if p ≤ 1 .
EXAMPLE 32
                                              ∞
                                                  (n + 1)x n ; x > 0
Test the convergence of the series        ∑n =1         n3
SOLUTION
                un =
                       ( n + 1) x n ; u ( n + 2 ) x n+1
                                            ( n + 1)
                                       n +1
                            n3                       3
                          n + 2 n +1                  ⎛ n + 2 ⎞⎛ n ⎞
                                                                               3
                un +1                         n3
                      =              x               =⎜                    .x
                                         ( n + 1) x ⎝ n + 1 ⎟⎠ ⎜⎝ n + 1 ⎟⎠
                                   .   .
                 un     ( n + 1)                   n
                                 3
                                 ⎛    2⎞
                    un +1        ⎜ 1+ n ⎟   1
                 Lt       = Lt ⎜        ⎟          .x = x
                n →∞ u                1          3
                       n
                            n →∞
                                 ⎜ 1+ ⎟ 1+⎛  1 ⎞
                                 ⎝ n ⎠ ⎜⎝ n ⎟⎠
∴ By ratio test,    ∑u    n   converges when x < 1 and diverges when x > 1 .
                       n +1
When x = 1, un =
                        n3
        1
Take vn =  ; By comparison test ∑ un is convergent ( give proof )
       n2
∴ ∑ un is convergent if x ≤ 1 and divergent if x > 1.
Sequences and Series                                                                                                31
EXAMPLE 33
Test the convergence of the series                                                             (JNTU 2002)
                  ∞
                      ⎛n   2
                                      1 ⎞           2.5.8 2.5.8.11            1 1.2 1.2.3
        (i)   ∑⎜ 2         n
                                +      2 ⎟
                                      n ⎠
                                           (ii) 1 +      +         + ... (iii) +   +      +
              n −1    ⎝                             1.5.9 1.5.9.13            3 3.5 3.5.7
SOLUTION
              ∞
               ⎛ n2 1 ⎞                        ∞
                                                   n2 ∞ 1                       n2         1
  (i)     ∑    ⎜ n+ 2⎟ =
          n −1 ⎝ 2  n ⎠
                                              ∑
                                              n =1 2
                                                     n
                                                       +∑ 2
                                                        n =1 n
                                                                     Let un =
                                                                                2 n
                                                                                    ; vn = 2
                                                                                          n
                        ( n + 1)                     ( n + 1) . 2n
                                        2                    2                                         2
                                             u                              u           1 ⎛ 1⎞ 1
          un +1       =                     ; n +1 =                     Lt n +1 = Lt . ⎜1 + ⎟ = < 1
                               2n +1          un        2n +1 n 2       n →∞ u
                                                                               n
                                                                                   n →∞ 2
                                                                                          ⎝ n⎠  2
                                                                                     2.5.8 2.5.8.11
 (ii)    Neglecting the first term, the series can be taken as,                           +         +
                                                                                     1.5.9 1.5.9.13
         Here, 1st term has 3 fractions ,2nd term has 4 fractions and so on .
         ∴ nth term contains ( n + 2 ) fractions
         2. 5. 8.......are in A. P.
         ∴ ( n + 2)
                                 th
                                       term = 2 + ( n + 1 ) 3 = 3n + 5 ;
         ∴ 1. 5. 9,.......are in A. P.
         ∴ ( n + 2 ) term = 1 + ( n + 1 ) 4 = 4n + 5
                    th
                                2.5.8..... ( 3n + 5 )
         ∴            un =
                                1.5.9..... ( 4n + 5 )
                                      2.5.8..... ( 3n + 5 )( 3n + 8 )
                      un +1 =
                                      1.5.9..... ( 4n + 5 )( 4n + 9 )
                                                                            ⎛   8⎞
                                                                           n⎜3+ ⎟
                      un +1
                                =
                                  ( 3n + 8) ;                   u
                                                             Lt n +1 = Lt ⎝
                                                                                n⎠ 3
                                                                                   = <1
                       un         ( 4n + 9 )                n →∞ u
                                                                   n
                                                                       n →∞ ⎛   9⎞ 4
                                                                           n⎜4 + ⎟
                                                                            ⎝   n⎠
         ∴ By ratio test,                    ∑u    n   is convergent.
32                                                                          Engineering Mathematics - I
EXAMPLE 34
                              ∞
                                   1.3.5.... ( 2n − 1) n −1
Test for convergence         ∑n =1    2.4.6....2n
                                                      .x ( x > 0 )               (JNTU 2001)
SOLUTION
                                                 1.3.5.... ( 2n − 1) n −1
The given series of +ve terms has un =                              .x
                                                    2.4.6....2n
                   1.3.5.... ( 2n + 1) n
and      un +1 =                        x
                   2.4.6.... ( 2n + 2 )
          un +1
         Lt     = Lt ⎜
                      ⎛ 2n + 1 ⎞
                                 x    Lt
                                          2n 1 + 1     (
                                                   2n .x = x     )
                               ⎟
                                                       (         )
                                   =
     n →∞ u       n →∞ 2n + 2
            n         ⎝        ⎠     n →∞
                                          2n 1 + 2
                                                   2n
∴ By ratio test, ∑ un is converges when x < 1 and diverges when x > 1 when x = 1, the
test fails.
          1.3.5.... ( 2n − 1)
Then un =                     < 1 and Lt un ≠ 0
            2.4.6.....2n              n →∞
EXAMPLE 35
                               2   6 2             ⎛ 2n − 2 ⎞ n −1
Test for the convergence of 1 + x + x + ........ + ⎜ n      ⎟ x + ..... ( x > 0 )
                               5   9               ⎝ 2 +1 ⎠
                                                                                                           (JNTU 2003)
SOLUTION
                                    ⎛ 2n − 2 ⎞ n −1
Omitting 1st term, un = ⎜                    ⎟ x , ( n ≥ 2 ) and ' un ' are all +ve.
                                    ⎝ 2 +1 ⎠
                                       n
                                    =
                                      (2  n +1
                                                 − 2)           ⎛ un +1 ⎞
                                                                          =
                                                                                 ⎛ 2n +1 − 2 ⎞ ⎛ 2n + 1 ⎞
                                                                                             ⎟×⎜ n
                                                       n
                            un +1                    x   ;  Lt  ⎜       ⎟   Lt . ⎜ n +1                 ⎟ .x
                                      (2   n +1
                                                + 1)       n →∞
                                                                ⎝ un ⎠ n→∞ ⎝ 2 + 1 ⎠ ⎝ 2 − 2 ⎠
                        = Lt
                               ⎡ 2n +1 1 − 1
                               ⎢             2 n         (
                                                   2n 1 + 1 n ⎤
                                                            2 .x ⎥ = x ;  ) (              )
                                                        (                  ) (             )
                                                 .
                          n →∞ ⎢ n +1                            ⎥
                               ⎢⎣ 2 1 + 2n +1 2 1 − 2n ⎥⎦
                                          1         n     2
EXAMPLE 36
                                                              ( 3 − 4i )
                                                                           n
                                                         ∞
Using ratio test show that the series                   ∑
                                                        n=0          n!
                                                                               converges                 (JNTU 2000)
SOLUTION
          ( 3 − 4i )                            ( 3 − 4i )
                       n                                      n +1
                                                                                     ⎛ un +1 ⎞       ⎛ 3 − 4i ⎞
   un   =                       ;     un +1   =                                 ; Lt ⎜       ⎟ = nLt ⎜        ⎟ = 0 <1
                           n!                                        (n + 1)!
                                                                                     ⎝ un ⎠ →∞ ⎝ n + 1 ⎠
                                                                                  n →∞
EXAMPLE 37
                                                  2      3 2 4 3
Discuss the nature of the series,                    x+     x +     x + ........∞ ( x > 0 )                (JNTU 2003)
                                                 3.4    4.5     5.6
SOLUTION
Since x > 0 , the series is of +ve terms ;
34                                                                          Engineering Mathematics - I
                      un =
                                   ( n + 1) x n > u = ( n + 2 ) x n+1
                              ( n + 2 )( n + 3)    n +1
                                                        ( n + 3)( n + 4 )
                                                         ⎡                                     ⎤
                        un +1 ⎡ ( n + 2 ) .x ⎤           ⎢ n (1 + 2 n ) .x
                                           2                   2       2
                                                                                               ⎥
                    Lt       =⎢                   ⎥ = Lt ⎢                                     ⎥ = x;
                   n →∞ u
                          n   ⎢
                              ⎣ ( n + 1)( n + 4 )                      (
                                                  ⎥⎦ n→∞ ⎢ n 2 1 + 5 + 4 2
                                                         ⎣          n    n                 )   ⎥⎦
Therefore by ratio test, ∑ un converges if x < 1 and diverges if x >1
EXAMPLE 38
                                               3.6.9.....3n.5n
Discuss the nature of the series       ∑ 4.7.10.....( 3n + 1)( 3n + 2 )                   (JNTU 2003)
SOLUTION
                           3.6.9.....3n          5n
      Here,        un =                                  ;
                        4.7.10..... ( 3n + 1) ( 3n + 2 )
                                  3.6.9.....3n ( 3n + 3) 5n +1
                   un +1 =                                             ;
                             4.7.10..... ( 3n + 1)( 3n + 4 )( 3n + 5 )
                     Lt
                        un +1
                              = Lt
                                    ( 3n + 2 )( 3n + 3) .5
                    n →∞ u      n →∞ ( 3n + 4 )( 3n + 5 )
                           n
                          = Lt
                                 ⎡ 5.9n 2 1 + 2
                                 ⎢              3n (1+ 3
                                                         3n  )(       ) ⎤⎥ = 5 > 1
                            n →∞ ⎢
                                 ⎣
                                    9n 1 + 4
                                      2
                                               (
                                              3n
                                                   1+ 5
                                                        3n  )(       ) ⎥⎦
         ∴ By ratio test, ∑ un is divergent.
Sequences and Series                                                               35
EXAMPLE 39
                                        ∞
Test for convergence the series        ∑n
                                        n =1
                                               1− n
SOLUTION
                un = n1− n ; un +1 = ( n + 1) ;
                                                      −n
                    u n +1 (n + 1)– n
                                                                   n
                                           nn       1⎛ n ⎞
                          =           =            = ⎜      ⎟
                     un      n 1– n
                                        n(n + 1) n
                                                    n ⎝ n +1⎠
                                                               n
                    u            1 ⎛ 1 ⎞⎟       1
                 Lt n +1 = Lt . ⎜           = 0. = 0 < 1
                            n →∞ n ⎜
                n →∞ u
                                     1+ 1 ⎟     e
                       n
                                   ⎝     n⎠
   ∴ By ratio test ∑ un , is convergent
EXAMPLE 40
                ∞
                    2n3
Test the series ∑       , for convergence.
                n =1 n
SOLUTION
                                   2 ( n + 1)
                                                           3
                     2n3
                un =     ; un +1 =
                      n                n +1
                                                                   (   )
                                                                           2
                   un +1 2 ( n + 1)
                                    3
                                        n ( n + 1)
                                                   2
                                                       1+ 1
                         =            × 3=           =      n                  ;
                    un       n +1      2n     n 3
                                                         n
                       u
                  Lt n +1 = 0 < 1 ;
                 n →∞ u
                         n
EXAMPLE 41
                                        2n n !
Test convergence of the series         ∑ nn
SOLUTION
                      2n n !            2n +1 ( n + 1) !
             un =            ; u      =                  ;
                                         ( n + 1)
                                 n +1             n +1
                       nn
36                                                                                     Engineering Mathematics - I
                un +1 2 ( n + 1) ! n n
                       n +1                                                 n
                                            ⎛ n ⎞
                     =               . n = 2⎜      ⎟
                       ( n + 1)
                                n +1
                 un                   2 n!  ⎝ n +1 ⎠
                   un +1           1                             2
                Lt       = 2 Lt                              =     < 1 (since 2 < e < 3)
                                      (              )
               n →∞ u                                    n
                      n
                            n →∞
                                 1+ 1                            e
                                                 n
      ∴ By ratio test,       ∑u   n   is convergent.
EXAMPLE 42
Test the convergence of the series           ∑u          n   where un is
                n2 + 1                                       x n −1
                                                                                                                        2
                                                                                                ⎛ 1.2.3....n        ⎞
      (a)                                  (b)                            , ( a > 0)   (c)      ⎜                   ⎟
                3n + 1                                   ( 2n + 1)                              ⎝ 4.7.10.....3n + 3 ⎠
                                                                      a
                 1 + 2n                                  ⎛ 3n3 + 7 n 2 ⎞ n
      (d)                                  (e)           ⎜             ⎟x
                  1 + 3n                                 ⎝  5 n 9
                                                                  + 11 ⎠
SOLUTION
                    ⎛ un +1 ⎞      ⎡ ( n + 1)2 + 1 3n + 1 ⎤
      (a)       Lt ⎜        ⎟ = Lt ⎢ n +1         × 2 ⎥
               n →∞
                    ⎝ un ⎠ n→∞ ⎢⎣ 3 + 1            n + 1 ⎥⎦
                                     ⎡ n 2 ⎛1 + 2 + 2 ⎞ 3 n ⎛1 +                       1    ⎞⎟ ⎤
                                  Lt ⎢ ⎜⎝        n       ⎟
                                                      n2 ⎠
                                                                   ⎜
                                                                   ⎝                     3n ⎠ ⎥
                             =       ⎢                     .                                     ⎥
                               n → ∞ ⎢ n 2 ⎛1 + 1 ⎞           n +1 ⎛                           ⎞
                                                             3 ⎜1 +                       n +1 ⎟ ⎥
                                              ⎜       ⎟                                1
                                     ⎣        ⎝    n2 ⎠            ⎝                     3 ⎠⎦
                                 1
                             =     <1
                                 3
            ∴ By ratio test,     ∑u    n    is convergent.
                                     ⎡ xn            ( 2n + 1) ⎤
                                                               a
                     ⎛ un +1 ⎞
      (b)        Lt ⎜        ⎟ = Lt ⎢              ×             ⎥
                     ⎝ un ⎠ n →∞ ⎣⎢ ( 2n + 3)           x n −1 ⎥⎦
                n →∞                             a
                                = Lt
                                       ⎡ 2a n a 1 + 1 a ⎤
                                       ⎢                 (
                                                      2n . x ⎥ = x    )
                                       ⎢                      ⎥
                                                         (            )
                                  n →∞                    a
                                       ⎢⎣ 2 n 1 + 2n
                                           a a      3
                                                              ⎥⎦
                                                                              1                                         1
           When x = 1, the test fails; Then, un =                                             ; Taking vn =                we have,
                                                                        ( 2n + 1)
                                                                                          a
                                                                                                                        na
                                               a
               ⎛u    ⎞       ⎛ n ⎞            1                                           1
            Lt ⎜ n   ⎟ = nLt ⎜      ⎟ = nLt                                           =      ≠ 0 and finite ( since a > 0 ).
                          →∞ 2n + 1
                                                                (             )
                                                                                  a
           n →∞ v
               ⎝ n   ⎠       ⎝      ⎠    →∞
                                            2+ 1                                          2a
                                                                          n
           ∴ By comparison test,           ∑u          n    and     ∑v    n   have same property
(iv) x = 1, a ≤ 1 , ∑ u n is divergent.
                                   1.2.3....n ( n + 1)          4.7.10.... ( 3n + 3) ⎤
                                                                                                                             2
                  u          ⎡
     (c)       Lt n +1 = Lt ⎢                                 ×                      ⎥
              n →∞ u     n →∞ 4.7.10.... ( 3n + 3 )( 3n + 6 )       1.2.3....n
                     n       ⎣                                                       ⎦
                                 ⎡ ( n + 1) ⎤
                                                       2
                                                  1
                            = Lt ⎢            ⎥  = <1 ;
                             n →∞ 3 ( n + 2 )
                                 ⎣⎢           ⎦⎥  9
              ∴ By ratio test,        ∑u   n       is convergent
                               ⎡ (1 + 2n +1 ) (1 + 3n ) ⎤
                                                                              1
                                                                                  2
                  un +1
     (d)       Lt       = Lt ⎢               ×          ⎥
                               ⎢⎣ (1 + 3 ) (1 + 2 ) ⎥⎦
              n →∞ u      n →∞          n +1        n
                     n
                                                                                                 1
                                    ⎡ n +1 ⎛    1 ⎞ n⎛         1 ⎞⎤                                  2
                                    ⎢ 2 ⎜1 + 2n +1 ⎟ 3 ⎜1 + 3n ⎟ ⎥                                        ⎛2⎞
                                                                                                                1
                             = Lt ⎢        ⎝         ⎠× ⎝        ⎠⎥                                      =⎜ ⎟
                                                                                                                    2
                                                                                                                        <1
                                           ⎛
                                    ⎢ 3n +1 1 +      ⎞    ⎛      ⎞                                        ⎝3⎠
                                                       2n ⎜1 + n ⎟ ⎥
                               n →∞             1              1
                                    ⎢⎣     ⎜         ⎟
                                                          ⎝ 2 ⎠ ⎥⎦
                                                n +
                                           ⎝ 3 ⎠
                                                   1
                             = Lt ⎢
                                    ⎡ 3
                                                (
                                                 3
                                    ⎢ 3n 1 + n + 7 n 1 + n
                                             1          2      1 )               (               )
                                                                                                     2
                                                                                                         ×
                                                                                                              (      5 n )
                                                                                                                 5n9 1 + 11   ⎤
                                                                                                                              ⎥
                                                                                                                           × x⎥
                                                                                                                                  9
                                                                                                                     3n )
                                                             (           )                                 3n (1 + 7
                               n →∞                    9
                                          5n 9 1 + 1      + 11
                                                                                                                   3
                                    ⎢                n                                                                        ⎥
                                    ⎣                                                                                         ⎦
                                                                                                                                 3
                               ⎡ 3⎧
                                                    (
                                            1 + 7 1 + 1 ⎫⎬ 5n9 1 + 11)             ⎤
                                                                                         (               )               (             )
                                               3              2
                               ⎢  3n ⎨ 1 +                                         ⎥
                                     ⎩       n      3n      n   ⎭×          5n × x ⎥ = x
                                                                               9
                       = Lt ⎢
                          n →∞
                               ⎢
                               ⎢⎣
                                          ⎧
                                     5n 9 ⎨ 1 + 1
                                          ⎩       n
                                                     9  11 ⎫
                                                       + 9⎬
                                                        5 n ⎭
                                                             (              3)
                                                                   3n3 1 + 7 3
                                                                             n
                                                                                   ⎥
                                                                                   ⎥⎦
                                                                                                                         (             )
            ∴ By ratio test, ∑ un converges when x < 1 and diverges when x > 1.
                         un =
                                   3n3 1 + 7( = 6
                                                 3 1 + 3n
                                                         7
                                                        3n   )                       (                   )
                                        (                        )               (                           )
            Then
                              5n9 1 + 11 9      5n 1 + 11
                                        5n                 5n9
                              1                        u    3
            Taking       vn = 6 , we observe that Lt n = ≠ 0
                              n                   n →∞ vn 5
      ∴ By comparison test and p series test, we conclude that                                                         ∑u    n   is convergent.
      ∴     ∑u   n   is convergent when x ≤ 1 and divergent when x > 1.
                                                    Exercise – 1.2
1. Test the convergency or divergency of the series whose general term is :
               xn
      (a)            ...............................                                         [Ans : x < 1cgt , x ≥ 1dgt ]
                n
      (b)      nx n −1 ...........................                                           [Ans : x < 1cgt , x ≥ 1dgt ]
               ⎛ 2n − 2 ⎞ n −1
      (c)      ⎜ n      ⎟ x ..............                                                   [Ans : x < 1cgt , x ≥ 1dgt ]
               ⎝ 2 +1 ⎠
               ⎛ n2 + 1 ⎞ n
      (d)      ⎜ 2 ⎟ x ...................                                                   [Ans : x < 1cgt , x ≥ 1dgt ]
               ⎝ n −1 ⎠
                 n
      (e)                   ........................                                         [Ans: cgt.]
                nn
Sequences and Series                                                                                          39
                 4n. n
      (f)                      ..........................          [Ans: dgt.]
                  nn
                 ( n + 1)
                    3         n
             ⎡ vn      ⎤      ⎡⎛ n + 1 ⎞ p ⎤      ⎡⎛ 1 ⎞ p ⎤
            n⎢      − 1⎥ = n ⎢⎜        ⎟ − 1⎥ = n ⎢⎜1 + ⎟ − 1⎥
             ⎣ vn +1 ⎦        ⎢⎣⎝ n ⎠        ⎥⎦   ⎢⎣⎝ n ⎠           ⎥⎦
                             ⎡⎛      p p ( p − 1) 1            ⎞ ⎤
                         = n ⎢⎜ 1 + +               . 2 + .... ⎟ − 1⎥
                             ⎢⎣⎝ n              2    n         ⎠ ⎥⎦
                                  p ( p − 1) 1                          ⎧v      ⎫
                         = p+               . + ..........         Lt n ⎨ n − 1⎬ = p
                                       2      n                   n →∞
                                                                        ⎩ vn +1 ⎭
40                                                                       Engineering Mathematics - I
                          ⎧ un      ⎫
Case (i) In this case, Lt n ⎨    − 1⎬ = k > 1
                     n →∞
                          ⎩ un +1 ⎭
          We choose a number ‘p’ ∋ k > p > 1 ; Comparing the series                  ∑u   n   with
                                      Solved Examples
EXAMPLE 43
Test for convergence the series
                 1 x3 1.3 x5 1.3.5 x 7
               x+ . +    . +      . + .....                                     (JNTU 2006, 2008)
                 2 3 2.4 5 2.4.6 7
SOLUTION
Neglecting the first tem ,the series can be taken as ,
                     1 x3 1.3 x5 1.3.5 x 7
                      . +    . +      . + .....
                     2 3 2.4 5 2.4.6 7
                     1.3.5....are in A.P. nth term = 1 + ( n − 1) 2 = 2n − 1
                                                      1.3.5.... ( 2n − 1) x 2 n +1
      ∴              un ( nth term of the series) =                      .
                                                        2.4.6.... ( 2n ) 2n + 1
Sequences and Series                                                                   41
                          1.3.5.... ( 2n − 1)( 2n + 1) x 2 n +3
                  un +1 =                             .
                           2.4.6.... ( 2n )( 2n + 2 ) 2n + 3
                  un +1 1.3.5.... ( 2n + 1) x 2 n +3       2.4.6....2n ( 2n + 1)
                       =                     .         .                   .
                   un    2.4.6.... ( 2n + 2 ) ( 2n + 3) 1.3.5.... ( 2n − 1) x 2 n +1
                              ( 2n + 1) x 2
                                      2
                     =
                           ( 2n + 2 )( 2n + 3)
                                                        2
                                           ⎛     1 ⎞
                                      4n ⎜ 1 + ⎟
                                            2
                     u                     ⎝ 2n ⎠
     ∴            Lt n +1 = Lt                           x2 = x2
                 n →∞ u     n →∞      ⎛      2 ⎞ ⎛   3 ⎞
                        n
                                 4n 2 ⎜ 1 + ⎟ ⎜ 1 + ⎟
                                      ⎝ 2n ⎠ ⎝ 2n ⎠
∴ By ratio test, ∑ un converges if x < 1 and diverges if x > 1
If x = 1 the test fails.
Then              x2 = 1      and
                                       un
                                            =
                                              ( 2n + 2 )( 2n + 3)
                                      un +1       ( 2n + 1)
                                                            2
                   un
                        −1 =
                             ( 2n + 2 )( 2n + 3) − 1 = 6n + 5
                  un +1          ( 2n + 1)            ( 2n + 1)
                                           2                    2
                       ⎧⎪ ⎛ un       ⎞ ⎫⎪        ⎛ 6n 2 + 5n ⎞
                   Lt ⎨n ⎜        − 1⎟ ⎬ = Lt ⎜ 2              ⎟
                                             n →∞ 4n + 4n + 1
                        ⎩⎪ ⎝ un +1 ⎠ ⎭⎪          ⎝             ⎠
                  n →∞
                                                       ⎛    5⎞
                                                    n2 ⎜ 6 + ⎟
                                         = Lt          ⎝    n⎠    3
                                                                 = >1
                                           n →∞     ⎛     4 1 ⎞ 2
                                                 n2 ⎜ 4 + + 2 ⎟
                                                    ⎝     n n ⎠
By Raabe’s test, ∑ un converges. Hence the given series is convergent when x ≤ 1 an
divergent when x > 1 .
EXAMPLE 44
Test for the convergence of the series                                  (JNTU 2007)
                  3    3.6 2     3.6.9 3
             1+     x+      x +         x + .....; x > 0
                  7    7.10     7.10.13
42                                                                                   Engineering Mathematics - I
SOLUTION
Neglecting the first term,
                        3.6.9....3n
              un =                     .x n
                     7.10.13....3n + 4
                            3.6.9....3n ( 3n + 3)
              un +1 =                                    .x n +1
                        7.10.13.... ( 3n + 4 )( 3n + 7 )
             un +1 3n + 3           u
                  =        .x ; Lt n +1 = x
              un    3n + 7      n →∞ u
                                       n
                   ⎧⎪ ⎛ u      ⎞ ⎫⎪     ⎛ 4n ⎞ 4
               Lt ⎨n ⎜ n − 1⎟ ⎬ = Lt ⎜          ⎟ = >1
                                    n →∞ 3n + 3
                    ⎩⎪ ⎝ un +1 ⎠ ⎭⎪     ⎝       ⎠ 3
              n →∞
EXAMPLE 45
                                                             12.52.92.... ( 4n − 3)
                                                                                         2
                                                      ∞
Examine the convergence of the series                 ∑
                                                      n =1    42.82.122.... ( 4n )
                                                                                     2
SOLUTION
                 12.52.92.... ( 4n − 3)                             12.52.92.... ( 4n − 3) ( 4n + 1)
                                              2                                                  2     2
          un =                                    ;       un +1 =
                   42.82.122.... ( 4n )                              42.82.122.... ( 4n ) ( 4n + 4 )
                                          2                                                  2         2
                           ( 4n + 1) = 1 (verify)
                                              2
               u
            Lt n +1 = Lt
           n →∞ u
                           ( 4n + 4 )
                      n →∞            2
                  n
∴ The ratio test fails. Hence by Raabe’s test,                   ∑u   n   is convergent. (give proof)
Sequences and Series                                                                                            43
EXAMPLE 46
                                             ( n)
                                                       2
SOLUTION
                        ( n)                           ( n + 1)
                               2                                   2
                 un   =              n
                                   .x ; un +1        =                 .x n +1
                         2n                                2n + 2
                              ( n + 1)
                                             2
                 un +1
                       =                     x;
                  un     ( 2n + 1)( 2n + 2 )
                                                           (           )
                                                                           2
                     un +1              n2 1 + 1              x
                  Lt       = Lt                  n       .x =
                 n →∞ u
                        n
                             n →∞
                                  4n 2 1 + 1
                                             2n  (
                                                 1+ 2
                                                      2n
                                                              4  )(               )
                                                                x
∴ By ratio test,      ∑u   n       converges when
                                                                4
                                                                  < 1 , i. e ; x < 4; and diverges when x >4;
                  un         −2n − 2           −1                                   ⎡ ⎛ u       ⎞ ⎤ −1
                       −1 =              =            ;                         Lt ⎢ n ⎜ n − 1⎟ ⎥ =    <1
                 un +1      4 ( n + 1)
                                       2
                                           2 ( n + 1)                          n →∞
                                                                                    ⎣  ⎝ u n +1 ⎠ ⎦ 2
∴ By ratio test,      ∑u   n       is divergent
Hence   ∑u   n   is convergent when x < 4 and divergent when x > 4
EXAMPLE 47
                                                               4.7.... ( 3n + 1) n
Test for convergence of the series                     ∑         1.2.3....n
                                                                                x            (JNTU 1996)
SOLUTION
                        4.7.... ( 3n + 1) n          4.7.... ( 3n + 1)( 3n + 4 ) n +1
                 un =                    x ; un +1 =                            x
                          1.2.3....n                    1.2.3....n ( n + 1) .
                     un +1        ⎡ ( 3n + 4 ) ⎤
                 Lt        = Lt ⎢             .x ⎥ = 3 x
                 n →∞ u
                        n
                             n →∞
                                  ⎣  ( n + 1)    ⎦
44                                                                            Engineering Mathematics - I
                                                                      1                    1
∴ By ratio test     ∑u   n    converges if 3 x < 1 i.e., x <
                                                                      3
                                                                        and diverges if x > ;
                                                                                           3
     1
If x = , the test fails
     3
                 1 ⎡u        ⎤   ⎡ (n + 1)3 ⎤       ⎡ −1 ⎤          1
When        x = , n ⎢ n – 1⎥ = n ⎢         – 1⎥ = n ⎢        ⎥ =−
                 3 ⎣ u n +1 ⎦ ⎣ 3n + 4 ⎦            ⎣ 3n + 4 ⎦    ⎛   4⎞
                                                                  ⎜3+ ⎟
                                                                  ⎝   n⎠
                   ⎡u      ⎤   1
             Lt n ⎢ n − 1⎥ = − < 1
            n →∞
                   ⎣ un +1 ⎦   3
∴ By Raabe’s test,      ∑u       n    is divergent.
                                                1                        1
∴    ∑u   n   is convergent when x <
                                                3
                                                  and divergent when x ≥
                                                                         3
EXAMPLE 48
                                     3x 4 x 2 5 x3
Test for convergence 2 +                +    +     + ........... ( x > 0 )                 (JNTU 2003)
                                      2   3    4
SOLUTION
                  Lt
                     un +1
                           = Lt
                                  n2 1 + 2       (
                                           n .x = x         )
                 n →∞ u
                                                (          )
                             n →∞ 2         2
                        n        n 1+ 1
                                          n
∴ By ratio test, ∑ un is convergent if x < 1 and divergent if x > 1
If x = 1, the test fails.
                    ⎡ un      ⎤        ⎡ ( n + 1)2    ⎤        ⎡      1     ⎤
Then           Lt n ⎢      − 1⎥ = Lt n ⎢           − 1⎥ = Lt n ⎢            ⎥ = 0 <1
                    ⎣ un +1 ⎦ n→∞ ⎢⎣ n ( n + 2 ) ⎥⎦            ⎣ n ( n + 2) ⎦
              n →∞                                        n →∞
EXAMPLE 49
                                        3 3.6 3.6.9
Find the nature of the series            +   +       + ......∞                             (JNTU 2003)
                                        4 4.7 4.7.10
Sequences and Series                                                                             45
SOLUTION
                         3.6.9.....3n                    3.6.9.....3n ( 3n + 3)
              un =                          ; un +1 =
                      4.7.10..... ( 3n + 1)           4.7.10..... ( 3n + 1)( 3n + 4 )
               un +1 3n + 3
                    =        ; Lt
                                    un +1
                                          = Lt
                                                 3n 1 + 3 (
                                                          3n = 1     )
                un    3n + 4   n →∞  un     n →∞
                                                 3n 1 + 4 (
                                                          3n         )
Ratio test fails.
                ⎡ ⎧u          ⎫⎤         ⎡ ⎛ 3n + 4 ⎞ ⎤
∴           Lt ⎢ n ⎨ n − 1⎬⎥ = Lt ⎢ n ⎜            − 1⎟ ⎥
           n →∞
                ⎣ ⎩ un +1 ⎭⎦
                                    n →∞
                                         ⎣ ⎝ 3n + 3 ⎠ ⎦
                           n                 n        1
               = Lt              = Lt              = <1
                 n →∞ 3 ( n + 1)   n →∞
                                        3n 1 + 1(n
                                                      3       )
∴ By Raabe’s test ∑ un is divergent.
EXAMPLE 50
If p, q > 0 and the series
                    1 p 1.3. p ( p + 1) 1.3.5 p ( p + 1)( p + 2 )
              1+       +               +                          + ....
                    2 q 2.4.q ( q + 1) 2.4.6 q ( q + 1)( q + 2 )
is convergent , find the relation to be satisfied by p and q.
SOLUTION
                      1.3.5..... ( 2n − 1) p ( p + 1) ..... ( p + n − 1)
              un =                                                       [neglecting 1st term]
                         2.4.6.....2n q ( q + 1) ..... ( q + n − 1)
                        1.3.5..... ( 2n − 1)( 2n + 1) p ( p + 1) ..... ( p + n − 1)( p + n )
              un +1 =
                          2.4.6.....2n ( 2n + 2 ) q ( q + 1) ..... ( q + n − 1)( q + n )
               un +1 ( 2n + 1) ( p + n )
                    =                      ;
                un    ( 2n + 2 ) ( q + n )
                Lt
                   un +1
                         = Lt ⎢
                                ⎡
                                       (
                                ⎢ 2 n 1 + 2n
                                         1       )
                                               n 1+ p (
                                                      n           ) ⎤⎥⎥ = 1
                                       (         )    (           ) ⎥⎦
                                             .
               n →∞ u                               q
                                ⎢ 2 n 1 + 2n n 1 + n
                           n →∞          1
                      n
                                ⎣
∴ ratio test fails.
Let us apply Raabe’s test
46                                                                       Engineering Mathematics - I
                        ⎡ ⎛ u     ⎞⎤        ⎡ ⎧⎪ ( q + n )( 2n + 2 ) ⎫⎪⎤
                    Lt ⎢ n ⎜ n − 1⎟ ⎥ = Lt ⎢ n ⎨                     − 1⎬⎥
                   n →∞     u
                        ⎣ ⎝ n +1 ⎠ ⎦
                                       n →∞
                                               ⎪
                                            ⎣⎢ ⎩ ( p + n )( 2 n + 1)    ⎭⎪⎦⎥
                       ⎡ ⎧                               ⎫⎤
                       ⎢ ⎪ 2q ( n + 1) − p ( 2n + 1) + n ⎪⎥
                   Lt ⎢ n ⎨
                                  (            )(
                                                         ⎬⎥
                  n →∞
                       ⎢ ⎪ n2 1 + p
                       ⎣ ⎩              n
                                             2+ 1
                                                   n ⎭⎦   )
                                                         ⎪⎥
            Lt ⎢          n  (        ) (
                ⎡ 2q 1 + 1 − p 2 + 1 + 1 ⎤
                                       n              )
                                             ⎥ = 2q − 2 p + 1
           n →∞ ⎢             2              ⎥         2
                ⎣                            ⎦
                                           2q − 2 p + 1
Since ∑ un is convergent, by Raabe’s test,              >1
                                                2
           ⇒ q − p > 1 , is the required relation.
                         2
                                                Exercise 1.3
                                      ∞
1. Test whether the series            ∑u
                                      1
                                           n   is convergent or divergent where
                           22.42.62..... ( 2n − 2 )
                                                      2
              1.3.5..... ( 2n − 1)   xn
     (iii)   ∑ 2.4.6.....2n ( 2n + 2 ) ( x > 0 ) [Ans : cgt if x ≤ 1 dgt if , x > 1]
                                   .
Sequences and Series                                                                                                                                                           47
                     ( 1)          ( 2)                            ( 3)
                            2                           2                 2
                                                            x2                x3
   (iv)           1+            x+                               +                 + ...... ( x > 0 )
                       2                               4              6
                                                                                                     [Ans : cgt if x < 4 and dgt if , x ≥ 4 ]
      ∑u                                                                                                                         ∑u
                                                                                             1
Let           n    be a series of +ve terms and let Lt un                                        n
                                                                                                     = l . Then                            n   is convergent when
                                                                                    n →∞
                                                                                                                                       1
                                                                  ∑ 1 n , in which Ltu
                                                                                                                       1
         2.         Consider the series                                                                            n
                                                                                                                           n
                                                                                                                               = Lt 1 = 1
                                                                                                     n →∞                        n →∞ n n
                                                                                                           1
                    In both the examples given above,                                       Ltu
                                                                                            n →∞
                                                                                                       n
                                                                                                               n
                                                                                                                   = 1 . But series (1) is convergent
                    (p-series test)
                    And series (2) is divergent. Hence when the limit=1, the test fails.
48                                                                                                                 Engineering Mathematics - I
                                                            Solved Examples
EXAMPLE 51
Test for convergence the infinite series whose nth terms are:
             1                        1                                   1
     (i)                  (ii)                          (iii)                                                      (JNTU 1996, 1998, 2001)
            n2n                    (log n) n                         ⎡ 1⎤
                                                                                  n2
                                                                     ⎢⎣1 + n ⎥⎦
SOLUTION
                         1            1                  1
                   un =      , un n = 2 ; Lt un n = Lt 2 = 0 < 1;
                                1              1
           (i)            2n
                        n            n    n →∞      n →∞ n
                         1                1                      1
                   un =        ; un n =       ; Lt un n = Lt         = 0 < 1;
                                  1                  1
           (ii)              n
                     (log n)            log n   n →∞      n →∞ log n
                   ∴ By root test , ∑ un is convergent.
                                    1                   1             1                              1                  1             1
           (iii)    un =                       ; un         n
                                                                =             n        Ltu       n
                                                                                                         n
                                                                                                             = Lt             n
                                                                                                                                  =     < 1;
                                 ⎛ 1⎞
                                          n2
                                                                    ⎛ 1⎞               n →∞                   n →∞   ⎛ 1⎞             e
                                 ⎜1 + ⎟                             ⎜1 + ⎟                                           ⎜1 + ⎟
                                 ⎝ n⎠                               ⎝ n⎠                                             ⎝ n⎠
                    ∴ By root test             ∑u           n   is convergent.
EXAMPLE 52
Find whether the following series are convergent or divergent.
                                                                                                                   ⎡⎣( n + 1) x ⎤⎦
                                                                                                                                      n
       ∞                                                                                                       ∞
           1                              1 1 1
(i) ∑ n                          (ii) 1 + 2 + 3 + 4 + .....                                    (iii)          ∑
    n =1 3 − 1                           2 3 4                                                                n =1       n n +1
SOLUTION
                                                                                       1
                                                         ⎛             ⎞                   n
                         1        ⎛ 1 ⎞
                                                1
                                                    n    ⎜      1      ⎟
       (i)          un       n
                                 =⎜ n ⎟                 =⎜             ⎟
                                  ⎝ 3 −1 ⎠               ⎜ 3n ⎛1 − 1 ⎞ ⎟
                                                         ⎜ ⎜ 3n ⎟ ⎟
                                                         ⎝ ⎝         ⎠⎠
Sequences and Series                                                                                                                49
                                                                     1
                                      ⎛                       ⎞          n
                                      ⎜     1                 ⎟                      1
                                                                                                               ∑u
                       1
               Lt un       n
                               = Lt ⎜                         ⎟                  =     < 1 ; By root test,          n   is convergent.
              n →∞               n →∞
                                      ⎜ n⎛     1             ⎞⎟                      3
                                      ⎜ 3 ⎜1 − 3n            ⎟⎟
                                      ⎝ ⎝                    ⎠⎠
                                                                         1
                    1                  ⎛ 1 ⎞                                 n
                                                                                                               ∑u
                             1
     (ii)      un = n ; Lt un n = Lt ⎜ n ⎟                                           = 0 < 1 ; By root test,        n   is convergent.
                   n   n →∞       n →∞
                                       ⎝n ⎠
                    ⎡( n + 1) x ⎤⎦
                                             n
     (iii)     un = ⎣
                         n n +1
                                                                         1
                       1
                                      ⎡ {( n + 1) x}n ⎤                      n
               Lt un       n
                               = Lt ⎢                 ⎥
               n →∞              n →∞ ⎢      n n +1   ⎥
                                      ⎣               ⎦
                                                        1
                   ⎡ ⎧ ( n + 1) x ⎫n 1 ⎤ n         ⎛ n +1⎞ 1
               Lt ⎢ ⎨             ⎬ . ⎥ = nLt      ⎜     ⎟ x. 1
              n →∞
                   ⎢⎣ ⎩ n ⎭ n ⎥⎦                →∞
                                                   ⎝ n ⎠ n n
                   ⎛ 1⎞ 1                     1               ⎛             1    ⎞
               Lt ⎜ 1 + ⎟ x. 1 = Lt x. 1 = x                  ⎜ since Lt x. 1 = 1⎟
              n →∞
                   ⎝ n⎠ n n             n →∞
                                             n n              ⎝       n →∞
                                                                           n n   ⎠
            ∴ ∑ un is convergent if x < 1 and divergent if x > 1 and when x = 1 the
              test fails.
                                  ( n + 1)
                                                   n
                                                                                       1
              Then un           =           n +1
                                                       ; Take        vn =
                                        n                                              n
                   un ( n + 1)        ( n + 1) = ⎛1 + 1 ⎞ ;
                                                   n                             n              n
                                                                                                          un
                      =     n +1
                                 .n =            ⎜      ⎟                                             Lt     = e >1
                   vn     n               nn     ⎝ n⎠                                                n →∞ v
                                                                                                           n
EXAMPLE 53
                           2
                      nn
     If un =                   n2
                                    , show that             ∑u   n   is convergent.
                 ( n + 1)
50                                                                                                Engineering Mathematics - I
                                                           1
                                    ⎡       n2         ⎤       n
                                                                                                                 n
                                          n                                           nn              ⎛ n ⎞
                             = Lt ⎢                    ⎥
                     1
            Lt un        n
                                                                   ; = Lt =                     = Lt ⎜       ⎟
                               n →∞ ⎢                  ⎥                                          n →∞ n + 1
                                                                                 ( n + 1)
                                                                                            n
                                                                                                      ⎝      ⎠
                                                 n2
                                      (        )
            n →∞                                                      n →∞
                                    ⎣   n +  1         ⎦
                                                 n
                           ⎛      ⎞
                           ⎜ 1 ⎟ 1
                    = Lt ⎜        ⎟ = <1; ∴
                                     e
                                                                      ∑u     n       converges by root test .
                           ⎜ 1+ 1 ⎟
                      n →∞
                           ⎝ n⎠
EXAMPLE 54
                                                                                 2          3
                                        1 ⎛2⎞ ⎛3⎞
Establish the convergence of the series  + ⎜ ⎟ + ⎜ ⎟ + ........
                                        3 ⎝5⎠ ⎝7⎠
SOLUTION
                               n
            ⎛ n ⎞                                                            1             ⎛ n ⎞ 1
      un = ⎜         ⎟ .........(verify);                            Lt un       n
                                                                                     = Lt ⎜         ⎟ = <1
            ⎝ 2n + 1 ⎠                                              n →∞               n →∞ 2 n + 1
                                                                                           ⎝        ⎠ 2
By root test, ∑ un is convergent.
EXAMPLE 55
                                               ∞
                                                        n n
Test for the convergence of                    ∑
                                               n =1   n +1
                                                           .x
SOLUTION
                                           1                                               1
                 ⎛      ⎞2                     ⎛     ⎞2
                 ⎜ 1 ⎟ n              1        ⎜  1 ⎟
            un = ⎜      ⎟  .x ; Lt un n = Lt ⎜       ⎟ .x = x
                     1
                 ⎜ 1+ ⎟
                                n →∞      n →∞     1
                                               ⎜ 1+ ⎟
                 ⎝ n⎠                          ⎝ n⎠
∴ By root test, ∑ un is convergent if x < 1 and divergent if x > 1 .
                                     n                1
When x = 1 : un =                       , taking vn = 0 and applying comparison test , it can be
                                   n +1              n
seen that is divergent
∑  un is convergent if x < 1 and divergent if x ≥ 1 .
EXAMPLE 56
             ∑(                    )
              ∞      1                 n
Show that           n n − 1 converges.
             n =1
Sequences and Series                                                                                                               51
SOLUTION
                    (                  )
                             1             n
             un = n              n
                                     −1
              Lt un
             n →∞
                         1
                             n
                                               (       1
                                                                 )
                                 = Lt n n − 1 = 1 − 1 = 0 < 1 since Lt n
                                     n →∞
                                                                                    (        n →∞
                                                                                                    1
                                                                                                        n
                                                                                                            =1 ;)
      ∴      ∑u     n        is convergent by root test.
EXAMPLE 57
                                                                                                            n
                                                                           th               ⎛n+2⎞ n
Examine the convergence of the series whose n                                       term is ⎜    ⎟ .x
                                                                                            ⎝ n+3⎠
SOLUTION
                                                   n
                     ⎛n+2⎞ n           1         ⎛n+2⎞
                un = ⎜    ⎟ .x ; nLt un n = Lt ⎜      ⎟x = x
                     ⎝ n+3⎠       →∞        n →∞
                                                 ⎝ n+3⎠
∴ By root test, ∑ un converges when x < 1 and diverges when x > 1 .
                                                                                        n
                                            ⎛ 2⎞
                           n                ⎜1 + ⎟
                  ⎛n+2⎞                           n⎠
When x = 1 : un = ⎜       ⎟ ; nLt un = Lt ⎝
                  ⎝ n+3⎠
                                                     n
                               →∞      n →∞
                                            ⎛ 3⎞
                                            ⎜ 1 +  ⎟
                                            ⎝ n⎠
                     e2 1
                =       = ≠ 0 and the terms are all +ve .
                     e3 e
∴ ∑ un is divergent . Hence ∑ un is convergent if x < 1 and divergent if x ≥ 1 .
EXAMPLE 58
Show that the series,
                         −1                                −2             −3
          ⎡ 22 2 ⎤   ⎡ 33 3 ⎤   ⎡ 44 4 ⎤
              −
          ⎢ 12 1 ⎥ +     −
                     ⎢ 23 2 ⎥ + ⎢ 34 − 3 ⎥ + ...... is convergent                                                    (JNTU 2002)
          ⎣      ⎦   ⎣      ⎦   ⎣        ⎦
                                                                −n                                     −n
               ⎡ ( n + 1)n +1 n + 1 ⎤                                ⎛ n +1⎞
                                                                               −n
                                                                                    ⎡⎛ n + 1 ⎞ n ⎤
          un = ⎢      n +1
                             −      ⎥ ;=                             ⎜     ⎟        ⎢⎜       ⎟ − 1⎥
               ⎢⎣ n             n ⎥⎦                                 ⎝ n ⎠          ⎢⎣⎝ n ⎠       ⎥⎦
                                                            −n                                                  −1
          ⎛ 1⎞
                    −n
                         ⎡⎛ 1 ⎞ n ⎤           1     ⎛ 1 ⎞ ⎡⎛ 1 ⎞
                                                           −1       n
                                                                        ⎤
          ⎜1 + ⎟         ⎢⎜   +   −  ⎥    u       =     + ⎟ ⎢⎜   + ⎟ − 1⎥
                                                n
                            1   ⎟   1   ;   n       ⎜ 1        1
          ⎝ n⎠           ⎢⎣⎝ n ⎠     ⎥⎦             ⎝ n ⎠ ⎢⎣⎝ n ⎠       ⎥⎦
52                                                                                                            Engineering Mathematics - I
                                                          1                             1
                                                     =
                              ⎛ 1 ⎞ ⎪⎧⎛ 1 ⎞ n ⎪⎫
                              ⎜1 + ⎟ 1 +      − 1⎬
                              ⎝ n ⎠ ⎨⎪⎜⎝ n ⎟⎠
                                     ⎩           ⎭⎪
                1     1 1      1
        ∴ Lt un n = .       =     <1
          n →∞        1 e −1 e −1
        ∴ By root test, ∑ un is convergent.
EXAMPLE 59
        ∞
                                                                                        e− m
Test   ∑u         for convergence when um =
                                                                        (                      )
              m                                                                                    − m2
       m =1
                                                                         1+ 2
                                                                                          m
SOLUTION
                                                                                1
                                                 ⎡
                                                     (         )         ⎤
                                                                   m2               m
                                                 ⎢ 1+ m
                     ( )
                                                     2                                                        m
                               1                                         ⎥                     1⎛      2⎞   e2
              Lt um                m
                                           = Lt ⎢                        ⎥              ; Lt     ⎜ 1 +  ⎟ =    = e >1
              m →∞                          m →∞     em                                   m →∞ e
                                                                                                 ⎝ m⎠       e
                                                 ⎢                       ⎥
                                                 ⎣                       ⎦
Hence Cauchy’s root tells us that                          ∑u      m            is divergent.
EXAMPLE 60
                                                                   n
Test the convergence of the series                            ∑e    n2
                                                                            .
SOLUTION
                                                 1
                                          n n
                                                                                                          ∑u
                       1
              Lt un        n
                                   = Lt n = 0 < 1                        ∴ By root test,                       n   is convergent.
              n →∞                   n →∞ e
EXAMPLE 61
                                                      ( n + 1) .x + ......, x > 0
                                                                                                          n    n
                                    2    32
Test the convergence of the series, 2 x + 3 x 2 + ...
                                   1     2                n n +1
SOLUTION
                                                                             1
                                   1              ⎡ ( n + 1)n .x n ⎤             n
                                                                                               ⎡⎛ n + 1 ⎞ 1 ⎤
                     Lt un             n
                                           = Lt ⎢         n +1     ⎥                    = Lt ⎢⎜         ⎟ . 1 n .x ⎥
                  n →∞                       n →∞
                                                  ⎢⎣ n             ⎥⎦                     n →∞
                                                                                               ⎣ ⎝  n   ⎠ n        ⎦
Sequences and Series                                                                                                            53
                               ⎡⎛ 1 ⎞ 1 ⎤
                       = Lt ⎢⎜1 + ⎟ . 1 .x ⎥ = 1.1.x = x ⎡since Lt n n = 1⎤
                                                                     1
                                                         ⎢
                                                         ⎣                ⎥⎦
                          n →∞
                               ⎣⎝ n ⎠ n n ⎦                     n →∞
                                                                  Exercise 1.4
1. Test for convergence the infinite series whose nth terms are:
                    1
        (a)                                 .............................                                 [Ans : convergent]
                   2 −1n
                     1
        (b)                             . ( n ≠ 1) ......................                                 [Ans : convergent]
                   ( log )
                                   2n
                                                 n
                   ⎛ 3n + 1 ⎞                                                                                 4          4
        (c)        ⎜           .x ⎟ .................................                            [Ans : x <     cgt , x ≥ dgt ]
                   ⎝ 4n + 3 ⎠                                                                                 3          3
                   xn
        (d)              ............................................                                  [Ans : cgt for all x ≥ 0 ]
                     n
                     n
        (e)              .............................................                                      [Ans : convergent]
                   nn
                   3n.∠n
        (f)                   ........................................                                        [Ans : convergent]
                      n3
                   ( 2n            − 1)
                               2            n
                   (                    )
                           1                2n
        (h)            n       n
                                   −1            ...................................                     [Ans : convergent]
54                                                                                        Engineering Mathematics - I
                            − n2
                 ⎛ n −1 ⎞
       (i)       ⎜      ⎟           ...................................                           [Ans : divergent]
                 ⎝ n ⎠
                            n
                 ⎛ nx ⎞
       (j)       ⎜      ⎟ , ( x > 0 ) .........................                         [Ans : x < 1 cgt , x ≥ 1 dgt]
                 ⎝ n +1 ⎠
2. Examine the following series for convergence :
                    x x 2 x3
       (a)       1 + + 2 + 3 + ....., x > 0 ..................                            [Ans : x ≤ 1cgt , x > 1dgt ]
                    2 3 4
                                2            3
                 1 ⎛2⎞ ⎛ 3 ⎞
       (b)        + ⎜ ⎟ + ⎜ ⎟ + ..... .......................                                       [Ans : convergent]
                 4 ⎝ 7 ⎠ ⎝ 10 ⎠
             From the above figure, it can be seen that the area under the curve y = φ ( x )
             between any two ordinates lies between the set of exterior and interior
             rectangles formed by the ordinates at
                 n = 1, 2, 3, .....n, n +1 ,......
       Hence the total area under the curve lies between the sum of areas of all interior
       rectangles and sum of the areas of all the exterior rectangles.
       Hence
                     ∞
       ∴ S n ≥ ∫ φ ( x )dx ≥ S n +1 − φ (1)
                     1
Sequences and Series                                                                                                                    55
Y= O ( n)
B1 c1
                                    P1                         c2
                                            B2
                                             P2                         c3
                                                          B3
                                   O1                     P3
                                                                        Bn - 1         cn           cn+1
                                            O2                                   Bn
                                                      O                                         Bn+1
                                                          3
                                                                                 On On + 1
                                        1        2             3                      n     nn +1
                                     A1      A2                A3                     An    A
                                                                                                        ∞
      As n → ∞, Lt S n is finite or infinite according as                                              ∫ φ ( x )dx is finite or infinite.
                                                                                                       1
      Hence the theorem.
                                            Solved Examples
EXAMPLE 62
                                            ∞
                                                           1
Test for convergence the series             ∑ n log n
                                            n=2
                                                                                                            (JNTU 2003)
SOLUTION
                   ∞      1              ⎡ n 1         ⎤
               ∫               dx = Lt ⎢ ∫                                            = Lt [ log log x ]2 = ∞
                                                                                                                  n
                                                    dx ⎥
               2       x log x      n →∞
                                         ⎣ 2 x log x ⎦                                      n →∞
SOLUTION
                                                                                            n
           ∞  1            ⎡ n 1 ⎤                  ⎡ x − p +1 ⎤
          ∫1 x p dx = nLt
                        →∞ ⎢ ∫1 x p
                           ⎣
                                     dx ⎥ = Lt ⎢
                                         ⎦ n→∞ ⎣ − p + 1 ⎦1
                                                               ⎥ ;
                             1
                        =          Lt ⎡⎣ n1− p − 1⎤⎦
                          1 − p →∞n
                                                           1
Case (i) If p >1, this limit is finite;         ∴ ∑ p is convergent.
                                                          n
56                                                                                          Engineering Mathematics - I
                                                                               1
Case (ii) If p < 1, the limit is in finite;                            ∴   ∑n   p
                                                                                    is divergent.
                                                                                                       1
Case (iii) If p = 1, the limit Lt log x
                                                   n →∞
                                                                 n
                                                                 1   = Lt ( log n ) = ∞ ; ∴
                                                                       n →∞
                                                                                                 ∑n    p
                                                                                                            is divergent.
                              1
            Hence   ∑n            p
                                          is convergent if p > 1 and divergent if p ≤ 1
EXAMPLE 64
                                      ∞
                                              n
         Test the series          ∑e  1
                                              n2
                                                    for convergence.
SOLUTION
                          n
                un =          2       = φ ( n )( say ) ;
                        en
φ ( n ) is +ve and decreases as n increases. So let us apply the integral test.
                ∞                             ∞                        ∞
                                                                        e dt {t = x 2 , dt = 2 xdx}
                                                                     1 −t
                ∫ φ ( x ) dx = ∫ xe dx =                              ∫
                                   −x                  2
                1                             1
                                                                     21
                                                   1              1⎛    1⎞ 1
                                          = − e−t          ∞
                                                           1   = − ⎜ 0 − ⎟ = , which is finite.
                                                   2              2⎝    e ⎠ 2e
By integral test,   ∑u            n       is convergent.
EXAMPLE 65
                                                                                        ∞
                                                                                            1        ⎛π ⎞
Apply integral test to test the convergence of the series                               ∑n
                                                                                        2
                                                                                             2
                                                                                                 sin ⎜ ⎟
                                                                                                     ⎝n⎠
SOLUTION
                1       ⎛π ⎞
Let φ ( n ) =       sin ⎜ ⎟ ; φ ( n ) decreases as n increases and is +ve .
                n 2
                        ⎝n⎠
     ∞              ∞
                       ⎛π ⎞
                                  Let π = t
                        1
     ∫ φ ( x ) dx = ∫ x
     2         2
                   sin ⎜ ⎟dx ;
                       ⎝ x2
                           ⎠             x
         0
     − ∫ sin tdt = cos t π0 = finite, − π 2 dx = dt ;
       1          1           1                                                              1        dx = − 1 dt
       ππ         π         2 π            x                                                     x2           π
            2
EXAMPLE 66
Apply integral test and determine the convergence of the following series.
              ∞                        ∞                                 ∞
                3n                         2n 3                               1
   (a)     ∑1 4n2 + 1       (b)        ∑1 3n4 + 2             (c)       ∑ 3n + 1
                                                                         1
SOLUTION
                        3n
   (a)    φ (n) =                is +ve and decreases as n increases
                      4n 2 + 1
           ∞              ∞
                                3x          ⎛ 4 x 2 + 1 = t ⇒ xdx = 1 dt ⎞
           ∫1 φ ( x )dx = ∫1 4 x 2 + 1 dx ⎜⎜ x = 1 ⇒ t = 5, x = ∞ ⇒8t = ∞ ⎟⎟
                                            ⎝                             ⎠
          ∞
                              ⎡ 3 t dt ⎤       ⎡3              ⎤
          ∫ φ ( x ) dx = nLt
          1
                          →∞
                             ⎢    ∫    ⎥ = nLt
                              ⎣ 8 5 t ⎦ →∞ ⎣ 8
                                               ⎢  log t − log 5⎥ = ∞
                                                               ⎦
          ∴ By integral test,     ∑u    n      diverges.
                    2n 3
   (b)    φ ( n) =          decreases as n increases and is +ve
                  3n 4 + 2
           ∞           ∞
                           2 x3
           ∫1 ( ) ∫1 3x 4 + 2 dx
             φ x dx =
                              ∞
                          1 dt 1
                              = [ log t ]5 = ∞
                                         ∞
                      =    ∫
                          65 t 6
                                                                    [where t = 3 x 4 + 2 ]
Alternating Series
A series, u1 − u2 + u3 − u4 + − + ..... + ( −1)
                                                     n −1
                                                            un + ..... , where un are all +ve, is an
alternating series.
58                                                                                     Engineering Mathematics - I
                                   ∑ ( −1)
                                                  n −1
If in an alternating series                              .un , where un are all +ve,
                                    n =1
Proof :
      Let u1 − u2 + u3 − u4 + ...... be an alternating series (‘ un ’are all +ve)
           Let u1 > u2 > u3 > u4 ...... , Then the series may be written in each of the following
           two forms :
                        ( u1 − u2 ) + ( u3 − u4 ) + ( u5 − u6 ) + .....                                .........(A)
                        u1 − ( u2 − u3 ) − ( u4 − u5 ) − .....                                         ..........(B)
           (A)     Shows that the sum of any number of terms is +ve and
           (B)     Shows that the sum of any number of terms is < u1 .
                   Hence the sum of the series is finite. ∴ The series is convergent.
Note : If Lt un ≠ 0 , then the series is oscillatory.
                 n →∞
                                                  Solved Examples
EXAMPLE 67
                                1 1 1
Consider the series 1 −          + − .....
                                2 3 4
In this series, each term is numerically less than its preceding term and nth term → 0 as
n → ∞.
∴ By Leibneitz’s test, the series is convergent.
(Note the sum of the above series is Log e 2 )
EXAMPLE 68
                                   ( −1)
                                           n −1
SOLUTION
                                                                                                1
                                                           ∑ ( −1)
                                                                     n −1
The given series is an alternating series                                   un , where un =
                                                                                              2n − 1
We observe that (i) un > 0, ∀n (ii) un > un +1 , ∀n (iii) Lt un = 0
                                                                                n →∞
EXAMPLE 69
                                     1 1 1
Show that the series S = 1 −          + − + ...... converges.                                          (JNTU 2000)
                                     3 9 27
SOLUTION
                          ( −1)
                                  n −1
                      ∞
                                                                                          1
                      ∑                  = ∑ ( −1)
                                                         n −1
The given series is           n −1
                                                                un , where un =                is an alternating series
                      1       3                                                          3n −1
in which 1. un > 0, ∀n 2. un > un +1 , ∀n and 3. Lt un = 0 ;
                                                                      n →∞
               xn
where     un =         Since 0 < x < 1, un > 0, ∀n ;
             1 + xn
                         xn         x n +1
Further, un − un +1 =          −
                      1 + x n 1 + x n +1
                            x n − x n +1         x n (1 − x )
                   =                       =                       .
                      (1 + x n )(1 + xn+1 ) (1 + x n )(1 + x n+1 )
0 < x < 1 ⇒ all terms in numerator and denominator of the above expression are +ve.
∴         un > un +1 , ∀n.
                                                                                         0
Again,     x n → 0 as x n → ∞ since 0 < x < 1; ∴ Lt un =                                     =0
                                                                        n →∞            1+ 0
∴ By Leibneitz’s test, the given series is convergent.
EXAMPLE 71
                                  ( −1)
                                               n −1
                          ∞
Test for convergence      ∑
                          n=2 n ( n + 1)( n + 2 )
                                                                                                (JNTU 2004)
60                                                                                       Engineering Mathematics - I
SOLUTION
                                                            ∑ ( −1)
                                                                      n −1
The given series is an alternating series                                    un
                                  1
where         un =                                 ; un > 0, ∀n ;
                         n ( n + 1)( n + 2 )
Again,          ( n + 1)( n + 2 )( n + 3) >               n ( n + 1)( n + 2 )
                             1                                    1
∴                                                   <                             , ∀n
                ( n + 1)( n + 2 )( n + 3)                 n ( n + 1)( n + 2 )
i.e.,         un +1 < un , ∀n
                                              1
Further,       Lt un = Lt                                     =0
              n →∞         n →∞
                                      n ( n + 1)( n + 2 )
                                  ∞
                               ∑ ( −1)
                                            n −1
∴ By Leibnitz’s test,                              un is convergent
                                  2
EXAMPLE 72
Test for the convergence of the following series,
                 1 2 3 4 5
                  − + − + − +....                                                              (JNTU 1998, 2004)
                 6 11 16 21 26
SOLUTION
                     ∞
                             n
                     ∑ ( −1)     = ∑ ( −1) un is an alternating series
                               n −1       n −1
Given series,
                n =1      5n + 1
                n                  n      n +1           −1
         un =        > 0∀n ;            −      =                    ⇒ un < un +1 , ∀n
              5n + 1             5n + 1 5n + 6 ( 5n + 1)( 5n + 6 )
                                            n    1
Again,               Lt un = Lt                 = ≠0
                 n →∞          n →∞       5n + 1 5
Thus conditions (ii) or (iii) of Leibnitz’s test are not satisfied. The given series is not
convergent. It is oscillatory.
EXAMPLE 73
Test the nature of the following series.
                           ( −1)                                  ( −1)                               ( −1)
                                   n −1                                   n −1                                n −1
                     ∞                                                                          ∞
        (a)      ∑   1    n + n +1
                                                    (b)       ∑    n2 + 1
                                                                                         (c)   ∑
                                                                                               n =1    n +1
Sequences and Series                                                                                                                61
SOLUTION
                                      1
      (a)           un =              > 0∀n ;
                            n + n +1
                                    1              1
                    un − un +1 =           −
                                 n + n +1     n +1 + n + 2
                                          n+2 − n                                                    2
                      =                                                   =                                                        >0
                           (   n + n +1    )(     n +1 + n + 2           ) (    n+2 + n    )(   n + n +1   )(   n +1 + n + 2   )
                   ∴ By Leibnitz’s test the series converges.
                         1                1           1
      (b)          un = 2    > 0, ∀n ; 2       >             ⇒ un > un +1 , ∀n ;
                       n +1             n + 1 ( n + 1)2 + 1
                               Lt un = 0 ∴ By Leibnitz’s test, given series converges.
                               n →∞
                           1
      (c)           un =      > 0, ∀n ;
                         n +1
                                       1    1
                    n + 2 > n +1 ⇒        <     ⇒ un > un +1 , ∀n
                                     n + 2 n +1
                   By Leibnitz’s test, given series converges.
EXAMPLE 74
                                                       1                 1           1
Test the convergence of the series                               −             +         − +......       (JNTU 2004)
                                                     5 2             5 3           5 4
SOLUTION
                                                  ( −1)
                                                          n −1
                                            ∞
                                                                                       1
The series can be written as               ∑5
                                           n =1      n +1
                                                                     ;        un =
                                                                                     5 n +1
            (i)      un > 0∀n
                                                              1       1
            (ii)      5 n + 2 > 5 n +1 ⇒                           <       ⇒ un > un +1∀n
                                                            5 n + 2 5 n +1
            (iii)      Lt un = 0 ;
                      n →∞
SOLUTION
                                                   ( −1)
                                                           n
                1           1        1                             1
                   > 0∀n ;      >         ⇒ un > un +1 , ∀n ; Lt      =0
               2n           2n 2n + 2                         n →∞ 2n
                        ( −1)
                              n
                                      ⎛ −1 1 ⎞
   i.e., it converges ∀x ∈ ⎜              , ⎟ (k ≠ 0)
                                      ⎝ k k⎠
64                                                                              Engineering Mathematics - I
                      ⎛ −1 1 ⎞
     The interval ⎜       , ⎟ is known as the interval of convergence of the given power
                      ⎝ k k⎠
     series.
                                              Solved Examples
EXAMPLE 77
                                                                  ∞
                                                                      xn
Find the interval of convergence of the series                   ∑
                                                                 n =1 n
                                                                        3
SOLUTION
                           xn              x n +1
                  un =        ; u n +1 =
                           n3            (n + 1)3
                                                                            3
                                                      ⎛      ⎞
                    ⎛ un +1 ⎞      ⎛ n ⎞
                                          3
                                                      ⎜  1 ⎟
                Lt ⎜        ⎟ = Lt ⎜    ⎟   .x = Lt ⎜        ⎟ .x = x
               n →∞
                    ⎝ un ⎠ n →∞ ⎝ n + 1 ⎠        n →∞
                                                      ⎜ 1+ 1 ⎟
                                                      ⎝ n⎠
By ratio test, the given series converges when x < 1, i.e., x ∈ (−1,1)
When x = 1,       ∑ u = ∑ 1n
                       n               3   , which, is convergent by p series test.
∴    ∑u    n   is convergent when x = 1
Hence, the interval of convergence of the given series is (–1, 1)
EXAMPLE 78
Test for the convergence of the following series.
     (a)       1− 1         + 1        − 1 + ..........                                 (JNTU 1996)
                       2           3     4
     (b)       1 + 1 2 − 1 2 − 1 2 + 1 2 + 1 2 − 1 2 − 1 2 + .......                    (JNTU 1998)
                     2     3         4     5         6  7 8
               1 − x + x − x + ..........
                    2      4         6
     (c)                                                                                (JNTU 2004)
                       2      4        6
                ∞
                                                 1
     (d)       ∑0 (−1)n (n + 1) x n , with x < 2                                        (JNTU 2004)
SOLUTION
     (a)       The series is of the form         ∑ (−1)   n −1
                                                                 un where un = 1
                                                                                    n
Sequences and Series                                                                                         65
         It is an alternating series where (i) un > 0∀n                                (ii) un > un +1∀n and
         (iii) Lt un = 0;∴ By Leibnitz test, the series is convergent.
               n →∞
                     x2n            un +1        1                    u
             un +1 =      ;               =              . x 2 ; Lt n +1 = 0 < 1
                     2n !            un     (2n − 1)(2n)         n →∞  un
         By ratio test, the series          ∑u       n   converges ∀x; i.e.,        ∑u   n   is absolutely
         convergent ∀x;
   (d)   Here, un = ( n + 1) x n ;| un +1 |= ( n + 2) x n +1 (neglect 1st term)
                un +1        (n + 2)           (1 + 2 )
              Lt      = Lt            x = Lt          n x = x < 1 (∵ x < 1 )
                        n →∞ ( n + 1)                                      2
           n →∞ u                         n →∞
                                               (1 + )
                                                    1
                  n
                                                      n
         ∴ ∑ un is convergent ∀x , i.e., given series is absolutely convergent and
         hence convergent.
EXAMPLE 79
Show that the series 1 + x + x              +x
                                    2            2
                                                         + ..... converges absolutely ∀x
                                        2            3
SOLUTION
               un +1  x                                 x n −1           xn
           Lt        = = 0 < 1 when x ≠ 0 [since un =          ; un +1 =    ]
          n →∞ u
                 n    n                               (n − 1)!           n!
EXAMPLE 80
                                   1 1 1
Show that the series, 1 −           + − + ........ is absolutely convergent.
                                   3 32 34
SOLUTION
                             ∞
                                                                                                              1
              ∑ un = ∑ 1    n =1
                                   3n −1   , which is a geometric series with common ratio
                                                                                                              3
                                                                                                                <1
                                                            1          1
Hence,        un > 0∀n ∈ N ; un +1 =                                =
                                                      4 ( n + 1) − 3 4n + 1
                                   1      1
              un − un +1 =             −
                                 4n − 3 4n + 1
                                  4n + 1 − 4n + 3        4
                            =                     =                > 0, ∀n ∈ N
                                 (4n − 3)(4n + 1) (4n − 3)(4n + 1)
                                                                    1
i.e.,         un > un +1 , ∀n ∈ N                  Lt un = Lt            = 0;
                                               n →∞        n →∞   4n − 3
All conditions of Leibnitz’s test are satisfied.
Hence    ∑ (−1)     n −1
                           un is convergent.
                       1                1      un        n     1
              un =          ; Take vn =   ; Lt    = Lt        = ≠ 0 and finite.
                     4n − 3             n n→∞ vn n→∞ n(4 − 3 ) 4
                                                            n
∴ By comparison test,              ∑u      n        and   ∑v n    behave alike.
Sequences and Series                                                                                           67
EXAMPLE 82
                           ∞
                                                1
Test the series          ∑ (−1)
                         n =1
                                    n −1
                                           .
                                               3 n
                                                     , for absolute / conditional convergence .
SOLUTION
                                                                           ∑ ( −1)
                                                                                     n −1
The given series is an alternating series of the form                                   un .
Here
                      1
  (i)        un =        , ∀n ∈ N
                    3 n
 (ii)        3 ( n + 1) > 3n ⇒ 3 n + 1 > 3 n , ∀n .
                    1       1
              ∴        <         , i.e., un +1 < un , ∀n ∈ N
                3 n +1 3 n
                               1
             And Lt un = Lt          =0
                 n →∞    n →∞ 3 n
EXAMPLE 83
SOLUTION
                  sin nα     1
      (a)     un =        < 2 ⎡⎣since sin nα < 1⎦⎤ considering vn = 1 2 and using
                     n 2
                             n                                          n
             comparison and p - series tests, we get that ∑ un is convergent ∑ un is
             absolutely convergent .
      (b)    By Leibnitz’s test, the series converges.
                                     1                                                   n2
             Taking vn =
                                     n
                                       , by comparison and p - series tests ,         ∑ n3 + 1 , is seen to
             be divergent.
             Hence given series is conditionally convergent.
                                  1       un +1
      (c)    Take un =               ; Lt
                                 2n ! n→∞ un
                                                = 0 < 1 ; By ratio test,          ∑u   n    is convergent;
∴ ∑u n is convergent if x < 1
                                                                            1 1 1
           If x = 1, the given series becomes 1 −                             + − + ........
                                                                            23 33 43
                                                                1
           which is convergent, since                  ∑n         3
                                                                        is convergent.
                                                                                          1           1
           Similarly, if x = –1, the series becomes                             ∑− n       3
                                                                                               = −∑
                                                                                                      n3
                                                                                                         which is also
           convergent.
           Hence the interval of convergence of                            ∑u   n   is   ( −1 ≤ x ≤ 1)
     (b)   Proceeding as in (a),
                      un +1   x+2
               Lt           =
               n →∞    un      3
−5 < x < 1 .
                     ∑ u = ∑ ( −1)
                                                      2 n −1
           If x = –5,              n                           .n , and is divergent ( in both these cases
           If x = 1, ∑ u = ∑ ( −1)
                                                    n −1
                               n                           .n , and is divergent Lt un ≠ 0 )
                                                                                         n →∞
                                             un +1           1
                                       Lt          = Lt          | x |= x
                                     n →∞     un     n →∞ ⎛ 1⎞
                                                          ⎜1 + ⎟
                                                          ⎝ n⎠
                    By ratio test,          ∑u   n       is convergent when x < 1
                                                                                1     1 1 1
                                             ∑ u = ∑ ( −1)
                                                                        n −1
                    When x = –1,                     n                         . = 1 − + − + ....... ,
                                                                                n     2 3 4
                                                           Exercise 1.5
1. Use integral test and determine the convergence or divergence of the following
     series:
                     1
        1      ∑n     2
                                                     ......................................         [Ans : convergent]
               ∞
                            1
        2.     ∑n                                    .......................................        [Ans : convergent]
                       ( log n )
                                   2
                2
              ∑ ( −1)
                           n −1       −5
         3.                       n        2
                                                       ...................................         [Ans : convergent]
              1
         1.   ∑     n3
                                                        .......................................       [Ans : abs.cgt]
                  sin n
         2.   ∑        3
                                                      ..........................................      [Ans : abs.cgt]
                   n       2
                  ( −1)
                                  n
                xn
         2. ∑ n2               ............................................  [Ans : −1 ≤ x ≤ 1 ]
                 x2    x3 x 4
         3. x −      +    −     + ...... ..................................  [Ans : −1 < x ≤ 1 ]
                   2    3    4
                            1 1 1
 5.      (a) Show that 1 − 2 + 2 − 2 + .... is absolutely convergent.
                            2 3 4
                             1         1        1
         (b) Show that 1 −        +        −         + .... is conditionally convergent.
                              2         3         4
                                                                 Summary
                                               ∞
 1.      The geometric series                  ∑x
                                               n =1
                                                        n −1
                                                               converges if | x |< 1 , diverges if x ≥ 1 , and oscilates
         when x ≤ −1
 2.      If   ∑
             un is convergent, Lt un = 0 [The convergent need not be necessary ]
                                                      n →∞
                                           ∞
                                               1
 3.      p – series test :-            ∑n
                                       n =1
                                               p
                                                      is convergent if p > 1 and divergent if p ≤ 1
72                                                                          Engineering Mathematics - I
                                                                               ∑ ( −1)
                                                                                         n −1
 9.   Alternating series – Leibnitz’s test: An alternating series                               un convergent
                                                                               n =1
            divergent.
      (c) An absolutely convergent series is convergent, but converse need not be true .
            i.e., a convergent series need not be convergent.
Sequences and Series                                                                                                             73
           x     x2      x3
    5.        +       +       + ..... ( x > 0 ) ........                                           [cgt. if x ≤ 1 dgt. if x > 1]
         1 + x 1 + x 2 1 + x3
                    3x 2 4 x3
    6.   2x +           +     + ..... ( x > 0 ) ..........................                         [cgt. if x ≤ 1 dgt. if x > 1]
                     8    27
           1 1.3 1.3.5
    7.   1+ +   +      + ....                                    ................................. [dgt.]
           2 2.4 2.4.6
         32 32.52 32.52.7 2
    8.     +     +          + ...... ............................... [cgt]
         62 62.82 62.82.102
         3.4 4.5 5.6
    9.      +   +    + ....                          ................................              [dig.]
         1.2 2.3 3.4
         ( 1)            ( 2)                    ( 3)
                2                  2                     3
   10.              .x +               x   2
                                               +             x3 + .... ( x > 0 ) ............. [cgt. if x <4, dgt. if x ≥ 4 ]
           2                   4                     6
              x x 2 x3
   11.   1+     + + + ..... ( x > 0 )                                  .........................    [cgt.if x ≤ 1 , dgt. if x > 1]
              22 32 42
                          2                      3
         3x ⎛ 4 ⎞ 2 ⎛ 5 ⎞
   12.     + ⎜ ⎟ x + ⎜ ⎟ + x 3 + ..... ( x > 0 ) ............. [cgt if x < 1, dgt. if x ≥ 1 ]
          4 ⎝5⎠      ⎝6⎠
                              n2
            ⎛ 1⎞
   13.   ∑ ⎜⎝1 + n ⎟⎠              ..........................                                      [dgt.]
74                                                                                         Engineering Mathematics - I
                  23 n
      14.      ∑ 32n ................................................                      [cgt.]
                   an
      15.      ∑ 1 + n2 , a < 1 ................................................           [cgt.]
                   1     1       1
      16.      1−      +     −        + − + −..... .......................                 [Abs. cgt.]
                  2.2 3.3 4.4
                   1     1      1    1
       3.      1−     +       −    +       ...........................                    [Cond. cgt]
                    2      3     4    5
                      n ( n + 1)
                            2
       2.      ∑      n.2n
                                                     ................................     [ −3 < x < 1 ]
                            1              un               n2
      Let              vn = 2 ; then, Lt      = Lt
                           n          n →∞ v    n →∞ ( n + 1)( n + 2 )
                                            n
                                                                       1
                                                     = Lt                       = 1,
                                                          n →∞    ⎛ 1 ⎞⎛ 2 ⎞
                                                                  ⎜1 + ⎟ ⎜1 + ⎟
                                                                  ⎝ n ⎠⎝ n ⎠
      Which is non-zero and finite.
      ∴ By comparison test, both             ∑u      n    and     ∑v  n   converge or diverge together.
                           {                                  }                 {
      Let λ = min a1 , a2 ,........am −1 , ( l − 1) , and μ = max a1 , a2 ,........am −1 , ( l + 1)       }
      Then obviously, λ ≤ an ≤ μ , ∀n ∈ N ;
      Hence an is bounded.
                                                    ∞
 3.   Show that the geometric series                ∑q
                                                    m=0
                                                          m
                                                              = 1 + q + q 2 + ....... converges to the sum
       1
           when                q < 1 and diverges when q ≥ 1
      1− q
                                                                                                 (JNTU 2001)
Solution
      See theorm 1.2.3 (replace ‘x ‘ by ‘q’ ) .
76                                                                    Engineering Mathematics - I
                                                                                         (JNTU 2000)
                                          − n2
                            ⎡       1 ⎤
                       ∑ ⎢⎣1 +        ⎥
                                     n⎦
Solution
      For theory part , refer 1.2.1, 1.2.2, 1.8, 1.8.1, 1.9.1 and 1.9.2
                                                         ( )
                                                 − n2                           −n
                             ⎛      1 ⎞              1          ⎛  1 ⎞
      Problem : Let un = ⎜1 +          ⎟   ;   Lt  u n
                                                       n
                                                         = Lt ⎜1 +   ⎟
                             ⎝       n⎠      n →∞          n →∞
                                                                ⎝   n⎠
                                        1         1
                          = Lt               n
                                                = 2 <1
                              n →∞
                                   ⎡     1 ⎤      e
                                   ⎢1 + n ⎥
                                   ⎣       ⎦
      By Cauchy’s root test, ∑ un is convergent.
                                                        1    1.3 2 1.3.5 3
 5.   Test the convergence of the series, 1 +             x+     x +       x + .....
                                                        2    2.4     2.4.6
                                                                                         (JNTU 2001)
      Given that x > 0.
Solution
      Omitting the first term of the series, we have,
                                1.3.5. ( 2n − 1) n          1.3.5..... ( 2n + 1) n +1
                       un =                     x ; un +1 =                       .x ;
                                  2.4.6....2n               2.4.6..... ( 2n + 2 )
                              un +1        ⎛ 2n + 1 ⎞
                       Lt           = Lt ⎜          ⎟ .x = x
                       n →∞    un     n →∞
                                           ⎝ 2n + 2 ⎠
      By ratio test,   ∑u       n   is convergent when x < 1, and divergent when x > 1
      The ratio test fails when x = 1
                         un        2n + 2        1
      When x = 1,             −1 =        −1 =
                        un +1      2n + 1      2n + 1
                             ⎡ ⎛ u       ⎞⎤      ⎛ n ⎞ 1
                         Lt ⎢ n ⎜ n − 1⎟ ⎥ = Lt ⎜        ⎟ = <1 ;
                                  u          n →∞ 2n + 1
                        n →∞
                             ⎣  ⎝   n +1 ⎠ ⎦     ⎝       ⎠ 2
      ∴ By Raabe’s test , ∑ un diverges .
      ∴ The given series converges when x < 1 and diverges when x ≥ 1 .
Sequences and Series                                                                                                    77
                                                                                   2                3
                                         1 ⎛2⎞      ⎛3⎞       ⎛4⎞
 6.   Test the convergence of the series, + ⎜ ⎟ x + ⎜ ⎟ x 2 + ⎜ ⎟ x 3 + .........x > 0
                                         2 ⎝3⎠      ⎝4⎠       ⎝5⎠
                                                                                                          (JNTU 2002)
Solution
      Neglecting the 1st term,
                                                 n
                           ⎡⎛ n + 1 ⎞ ⎤
                     u n = ⎢⎜       ⎟ x⎥ ;
                           ⎣⎝ n + 2 ⎠ ⎦
                                          ⎛ 1+ 1 ⎞
                       1    ⎛ n +1 ⎞      ⎜      n⎟x
                     un n = ⎜       ⎟ x =
                            ⎝ n + 2 ⎠     ⎜ 1+ 2  ⎟
                                          ⎝      n⎠
                                                                  ∑u
             1
       Lt un n = x ; By Cauchy’s root test,                            n   is cgt. when x < 1 and dgt. when
      n →∞
      x > 1; when x = 1 , the test fails .
                                 (1+ 1 )
                                                 n
                                        n                          e 1
      When x = 1, un           =                     ; Lt un =       = ≠0
                                 (1 + 2 n )
                                                 n    n →∞         e2 e
      ∴ ∑u       n    is divergent.
      ∴ ∑u       n   is cgt. when x < 1 and dgt. when x ≥ 1 .
 7.   Test the series whose nth term is ( 3n − 1) 2n for convergence. (JNTU 2003)
Solution
                     un =
                              ( 3n − 1)      ;        un +1 =
                                                                {3 ( n + 1) − 1}       ;
                                 2n                                2n +1
                     un +1
                             =
                               ( 3n + 2 )             Lt
                                                          un +1    1
                                                                  = <1 ;
                      un       2 ( 3n − 1)            n →∞ u
                                                             n     2
      ∴ By ratio test,         ∑u   n       is convergent.
                                                                            ∞
                                                                                       1
 8.   Show by Cauchy’s integral test that the series                       ∑n                      converges if p > 1
                                                                                   ( log n )
                                                                                               p
                                                                           n=2
Solution
                               1
      Let φ ( x ) =                        ; x ≥ 2 ; Then φ ( x ) decreases as x increases in [ 2, ∞ ]
                         x ( log x )
                                       p
78                                                                                           Engineering Mathematics - I
             ∞             ∞                                 ∞
                                 dx                            du u1− p
             ∫ φ ( x )dx = ∫ x ( log x )                = ∫ p =                            ∞
                                                                                                   ;
                                                  p
                                                                  1− p
                                                                                           log 2
             2             2                             log 2
                                                               u
                          1
      [Taking log x = u,    dx = du x = 2 ⇒ u = log 2 and x = ∞ ⇒ u = ∞ ]
                          x
      Case (i) : p > 1 ⇒ 1 − p < 0 ⇒ Integral is finite , and
      Case (ii) : 0 < p ≤ 1 ⇒ Integral is infinite.
      Hence, by integral test, the given series converges if p > 1 and diverges when
      0 < p ≤1.
                                                                                     3
                                                                                    n 2
                                                                 ⎛           1 ⎞
 9.   Test the convergence of the series                 ∑ ⎜⎜⎝1 +              ⎟⎟
                                                                              n⎠
Solution
                                      1
                   ⎧           n 2⎫
                                3         n
               1 ⎪⎛       1 ⎞ ⎪                          1
             u n n ⎨⎜⎜1 +    ⎟⎟ ⎬             =                          ;
                                                                     n
                   ⎪ ⎝     n  ⎠ ⎪                 ⎛     1 ⎞
                   ⎩              ⎭               ⎜⎜1 +   ⎟⎟
                                                   ⎝     n⎠
                     1   1
             Lt un n =     <1         [2<e<3].
             n →∞        e
      By Cauchy’s root test,    ∑u            n   is convergent.
                                                ( −1) .x n
                                                                         n
                                                         ∞
10.   Test the convergence of the series, ∑                ,0<                              x <1
                                          n = 2 n ( n − 1)
Solution
                                                                                                       xn
                                                      ∑ ( −1)
                                                                 n
      The given series is of the form                                un , where un =                          .
                                                                                                   n ( n − 1)
      This is an alternating series in which (i) un > 0 and un > un +1∀n ∈ N .
      Further Lt un = 0 . Hence, by Leibnitz test, the series is convergent.
              n →∞
                                                                     1            x2   x4   x6
11.   Discuss the convergence of the series,                                 +       +    +    + ..........
                                                                 2 1             3 2 4 3 5 4
                                                                                          (JNTU 1995, 2002, 2003, 2008)
Solution
                                                        x2n
      nth term of the series = un =                              (omitting 1st term)
                                                  ( n + 2) n + 1
Sequences and Series                                                                                                        79
                                 x 2n+2    u       n + 2 n +1 2
              un +1 =                     ; n +1 =           .x
                           ( n + 3 ) n + 2 un       ( n + 3)
                             ⎡ 1+ 2 . 1+ 1         ⎤
                un +1        ⎢     n        n   2⎥
            Lt        = Lt                    .x = x 2 ;
           n →∞ u
                   n
                        n →∞ ⎢
                             ⎢⎣
                                  1+ 3
                                       n
                                                   ⎥
                                                    (
                                                   ⎥⎦             )
      ∴ By ratio test, ∑ un converges if x 2 < 1 , i.e., if x < 1 , and diverges if
      x 2 > 1 , i.e., if x > 1 ;
                                                1                                       1
      When x 2 = 1 , un =                                         ; taking vn =                     ,
                                ( n + 2)                n +1                        n
                                                                                            3
                                                                                                2
                                                         3
                un               n 2
              Lt   = Lt 3                   =1
           n →∞ v
                 n
                     n →∞
                          n 2 1+ 2
                                   n
                                     1+ 1
                                          n (                )
      ∴ By comparison test, ∑ un and ∑ vn both converge or diverge together;
        ∑v
      But         n    is convergent by p-series test.
      ∴ ∑u    n       is convergent if x ≤ 1 and divergent if x > 1 .
                                                                  ∞
                                                                            x2n
12.   Test the convergence of the series                          ∑
                                                                  n =1 ( n + 1) n
                                                                                                        (JNTU 2006, 2007)
Solution
                            x2n                   x2n+2
              un =                ; un +1 =
                       ( n + 1) n           ( n + 2) n + 1
           un +1      n n +1 2      1+ 1
                 =           .x =        n .x 2 ; Lt un +1 = x 2 ;
            un         n+2         1+ 2
                                        n
                                                  n →∞ u
                                                        (n            )
      ∴ By ratio test, ∑ un converges when x < 1 and diverges for x > 1 .
                                                1                               1
      When x = 1 , un =                                          taking vn =
                                            (                )
                                    3                                               3
                                                                                                and applying the comparision
                                n       2
                                            1+ 1                               n        2
                                                        n
      test, we observe that         ∑u          n       is convergent .
      Hence    ∑u      n   converges when x ≤ 1 and diverges when x > 1 .
80                                                                    Engineering Mathematics - I
                                                      x 2 x3 x 4
13.   Find the interval of convergence of the series,    + + + .........∞
                                                      2 3 4
                                                                              (JNTU 2006, 2007)
Solution
                                  x n +1            xn+2
      For the given series, un =          ; un +1 =
                                  n +1              n+2
                  u          ⎛ 1+ 1     ⎞
              Lt n +1 = Lt ⎜        n⎟x = x
                        n →∞ ⎜
             n →∞ u
                               1+ 2 ⎟
                    n
                             ⎝      n⎠
      By ratio test, ∑ un converges when x < 1 i.e., −1 < x < 1
                           1
      When x = 1, un =
                         n +1
                       1 u     1
      Taking       un = ; n =
                       n vn 1 + 1
                                      n
                        un
      and,          Lt     = 1 ≠ 0 and finite.
                   n →∞ v
                         n
Solution
                     1.3.5.... ( 2n + 1)            1.3.5.... ( 2n + 3)
             un =                         ; un +1 =
                     2.5.8.... ( 3n + 2 )           2.5.8.... ( 3n + 5 )
Sequences and Series                                                                                                81
             un +1 2n + 3
                  =                                   Lt
                                                         un +1
                                                               = Lt ⎢
                                                                      ⎡2+ 3 ⎤
                                                                            n ⎥ = 2 <1     ( )
                                                                                           ( )
                           ;
                                                                 n →∞ ⎢
              un    3n + 5                           n →∞ u
                                                            n           3+ 5 ⎥ 3
                                                                      ⎣     n ⎦
      ∴ By ratio test,       ∑u      n   is convergent.
                                         ∞
                                            (– 1)n
15.   Prove that the series          ∑
                                     n =2 n(log n )
                                                   2
                                                                          converges absolutely.       (JNTU 2006)
Solution
                                                         ∞                             ∞
                             1                                   dx                         dt
             un =
                      n ( log n )
                                     3
                                                 ;       ∫ x ( log x )
                                                         2
                                                                              3
                                                                                  =    ∫
                                                                                      log 2
                                                                                            t2
                                                         −1   ∞              1
            (where t = log x ) =                              log 2   =          , which is finite.
                                                          t                log 2
      ∴ By integral test             ∑u              n       is convergent.
      ∴    ∑u   n   converges absolutely.
      Note: This problem can also be done by Leibnitz test. The reader is advised to try
      that method also.
                                                                              ( 2n + 1) x n , x > 0
16.   Test the convergence of the series                              ∑           n3 + 1
                                                                                                      (JNTU 2006)
Solution
                                                                      2n + 1 n
      nth term of the given series , un =                                    x ;
                                                                      n3 + 1
                     ⎡ 2 ( n + 1) + 1 ⎤ n +1           2n + 3
             un +1 = ⎢                  ⎥x =                      x n +1
                     ⎢⎣ ( n + 1) + 1 ⎥⎦             ( n + 1) + 1
                                 3                          3
              Lt
                  un +1
                         = Lt
                                 ( 2 n + 3 ) .x
                                                n+1
                                                    × n
                                                        ( n3 + 1)
             n →∞ u
                    n
                            n →∞
                                     {
                                   ( n + 1) + 1 x ( 2n + 1)
                                           3
                                                                      }
                                                         ) (                       )
                  ⎡                                  ⎤
             Lt ⎢
                  ⎢     2n 1 + 3 (
                                 2n
                                     .n3 1 + 1 3
                                              n
                                                     ⎥
                                                     ⎥ x = .x
            n →∞
                 ⎢⎣ ⎨⎩   (    n        ⎬
                                    n3 ⎭
                                             )
                  ⎢ n3 ⎧ 1 + 1 3 + 1 ⎫ .2n 1 + 1     ⎥
                                                 2n ⎥⎦                    (                )
      By ratio test, ∑ un converges if x < 1 and diverges if x > 1. If x = 1 the test fails.
82                                                                                               Engineering Mathematics - I
                             2n + 1               1
      When x = 1, un =              ; Taking vn = 2 ;
                             n +1
                               3
                                                 n
                     un        2n + 1 2
                 Lt     = Lt 3        × n = 2 ≠ 0 and finite
                n →∞ v    n →∞ n + 1
                      n
           un   =                             ; un =                        ;
                             n   2
                                                                 n2
           ∞                         ∞
             log x
           ∫2 x 2 dx = log∫ 2 te dt [taking log x = t , x = e , 1 x dx = log t ]
                                −t                           t
                                                                                                   1
                             = −te− t + e− t           ∞
                                                       log 2   = 0 − [1 − log 2].e− log 2 =          ( log 2 − 1) ,
                                                                                                   2
           which is finite.
      ∴ By integral test                 ∑u       n   is convergent ⇒            ∑u   n       converges absolutely.
      (Note that         ∑u      n   is cgt. by Leibnitz’s test).
                                                                                1
18.   Test the convergence of the series                          ∑                                            (JNTU 2006)
                                                                          ( log log n )
                                                                                          n
Solution
                                                       1
                Given that un =                                       ;
                                              ( log log n )
                                                                  n
                 1        ⎡    1     ⎤
            Lt un n = Lt ⎢           ⎥ = 0 <1
                     n →∞ log log n
           n →∞
                          ⎣          ⎦
      By Cauchy’s root test, ∑ un is convergent.
Sequences and Series                                                                         83
               Lt
                  un +1
                        = Lt ⎢
                              ⎡    ( 2n + 1)
                                             2
                                                         ⎤
                                                    .x 2 ⎥
                                                       Lt ⎢
                                                           ⎡ n2 4 + 4 + 1
                                                           ⎢         n   (n 2
                                                                                 ⎤
                                                                                2⎥
                                                                                    )
                                                                              .x ⎥ = x 2
              n →∞ u
                     n
                          n →∞ ( 2n + 2 )( 2n + 3 )
                              ⎢⎣                         ⎥⎦
                                                      n →∞
                                                                        (
                                                           ⎢⎣ n 4 + n + n 2
                                                               2   10   6
                                                                                 ⎥⎦  )
      By ratio test, ∑ un converges when x 2 < 1 , i.e., x < 1 ⇒ −1 < x < 1
      When x 2 = 1 , the test fails;
               un        ⎛ 4n 2 + 10n + 6 ⎞     8n + 5
      Then          −1 = ⎜               − 1⎟ = 2
              un +1      ⎝ 4n + 2n + 1      ⎠ 4n + 2n + 1
                               2
                ⎡ ⎛ un
            Lt ⎢ n ⎜
                            ⎞⎤
                         − 1⎟ ⎥ = Lt
                                         n2 8 + 5
                                                  n   (= 2 >1
                                                              )
           n →∞      u
                ⎣ ⎝ n +1 ⎠ ⎦
                                 n →∞
                                      n 4+
                                       2    2
                                              (
                                              n
                                                + 21
                                                     n            )
      ∴ By Raabe’s test, ∑ un converges when x = 1 , i.e., x = ±1 .
                                                  2
                     ⎛       ⎞
                 un  ⎜ 1 ⎟
       Lt      = Lt ⎜        ⎟ = 1 which is non-zero finite number
      n →∞ ν
                     ⎜ 1+ 12 ⎟
                n →∞
             n
                     ⎝    n ⎠
      ∴          By comparison test, Σun and Σνn behave alike.
                                               ⎛         3 ⎞
      But Σνn is convergent by p-series test ⎜∵ p =        > 1⎟
                                               ⎝         2 ⎠
      Hence Σun is convergent
                                                           2 −1   3 −1   4 −1
21.   Test the convergence of the series,                       + 2    + 2    + .......
                                                          3 −1 4 −1 5 −1
                                                           2
                                                                                              [JNTU 2007]
Solution
                    n +1 − 1                         1
      un =                     ;      Let νn =
                 (n + 2) 2 – 1                      n3/2
                                                    [∵ Highest degree of n in Dr – Nr = 2 – 1/2 = 3/2]
                                                            1    1
       un
          =
                          (
            n3/2 . n + 1 − 1              )    =
                                                     n2 1
                                                            n     n
       νn       (n + 2) 2 – 1                              4 3
                                                      n2 1
                                                           n n2
                   un
            Lt          = 1 ⇒ Σun and Σνn both converge or diverge together (by comparison
           n →∞   νn
                                                     ⎛      3 ⎞
           test). But Σνn converges by p-series test ⎜∵ p =  > 1⎟ . Hence Σun is
                                                     ⎝      2 ⎠
           convergent.
                                                   n3 1        n3       n3 1    n3
      un can be written as, un
                                                           n3 1          n3
                                                     1                               1
      i.e.                         un =                             ;    Let νn =
                                                 ⎡    1    ⎤                        n3/ 2
                                              n3 ⎢ 1+ 3 +1 ⎥
                                                 ⎣   n     ⎦
Sequences and Series                                                                              85
                            un              1            u   1
       Then,                   =                  ⇒ Lt n = ≠ 0.
                            νn               1      n →∞ ν   2
                                                           n
                                          1+ 3 +1
                                            n
       ∴ By comparison test, Σun and Σνn have same property
                                          ⎛      3 ⎞
       Σνn is convergent by p-series test ⎜∵ p =  > 1⎟ . Hence Σun is convergent.
                                          ⎝      2 ⎠
                                                               x x 2 x3
23.    Test for the convergence of the series, 1 +              + + + ....x > 0
                                                               2 5 10
                                                                     [JNTU 1998, 1985, 2002, 2002]
Solution
       Neglecting the first term, we observe that the nth term of the series,
                                   xn             x n +1
                           un =        ; un+1 = 2         , so that,
                                  n +12
                                               n + 2n + 2
                                  un +1      ⎛ n 2 +1 ⎞
                            Lt          = Lt ⎜ 2        ⎟x = x
                           n →∞    un n →∞ ⎝ n + 2n + 2 ⎠
       ∴ By ratio test, Σun converges when x < 1 and diverges when x > 1 and the test
       fails when x = 1
                                1                   1
       ∴ when x = 1, un =           ; Taking Σνn = 2 and using comparison test, we can
                              n +12
                                                   n
       show that Σun      is convergent. [This part of proof is left to the reader as an
       exercise].
       ∴ Σun converges for x < 1 and diverges for x > 1.
                                               n
24.   Test the convergence of Σ                      . x n (x > 0)                  [JNTU 2003]
                                           n +12
Solution
                       un +1                   n +1            n2 + 1
                Lt           = Lt                          .          .x
                n →∞    un n →∞           n 2 + 2n + 2           n
                                                         1
                                                      1+   .x
                           = Lt           1+
                                               1
                                                 .      n2    = 1. x = x
                             n →∞              n        2 2
                                                      1+ + 2
                                                        n n
86                                                                           Engineering Mathematics - I
      ∴ By ratio test, Σun converges when x < 1 and diverges when x > 1 and when x = 1
      the test fails.
                                  n                       1             un
      When x = 1, un =                   ; Taking νn =        , Lt           = 1 (verify)
                                n 2 +1                    n     n →∞   νn
      By comparison test, Σun diverges. [Since Σνn diverges by p-series test as p =
      1
        < 1]
      2
      Hence Σun converges when x < 1 and diverges when x > 1.
                                                   xn
25.   Test for convergence the series Σ               (x > 0)                       [JNTU 2007, 2008]
                                                   n
Solution
                       xn          x n +1      u          ⎛ n ⎞
               un =       , un+1 =        ; Lt n +1 = Lt ⎜      ⎟ x=x
                       n           n + 1 n →∞ un     n →∞
                                                          ⎝ n +1⎠
      ∴ By comparison test, Σun converges when x < 1 and diverges when x > 1. when x
      = 1, the test fails.
                               1
      When x = 1, un =           and Σun is divergent (p series test – p = 1)
                               n
      ∴ Σun is convergent when x < 1 and divergent when x > 1.
                                                            ⎛ 1        ⎞
                                              ∞
                                                       sin ⎜           ⎟
26.   Find whether the series                 Σ (–1) n      ⎝ n        ⎠ is absolutely convergent or
                                             n=2          (n–1)
      conditionally convergent.                                                        [JNTU 2006]
Solution
      When n > 2, we have,
                                ⎛ 1 ⎞
                           sin ⎜    ⎟
                      un =      ⎝ n⎠ ;         Let νn =
                                                           1
                                                               ;
                              (n–1)                       n3/2
                      un       n3/2   ⎡    ⎛ 1    ⎞⎤
           ∴               =          ⎢sin ⎜      ⎟⎥
                      νn       n–1    ⎣    ⎝ n    ⎠⎦
Sequences and Series                                                                        87
                                   ⎛      1           ⎞
                                   ⎜ sin              ⎟⎛ n ⎞
                       ⎛u ⎞                n
                   Lt ⎜ n ⎟ = Lt ⎜                    ⎟⎜      ⎟ =1
                  n →∞
                       ⎝ νn ⎠ n →∞
                                   ⎜    1             ⎟⎝ n −1 ⎠
                                   ⎜                  ⎟
                                   ⎝     n            ⎠
           ∴ By comparison test Σ un and Σνn behave alike. But Σνn is convergent by
           p-series test (p = 3/2 > 1).
           ∴ Σ un is convergent. Hence Σun is absolutely convergent.
                                      ∞     cos n π
27.   Test whether the series Σ                     converges absolutely    [JNTU 2006]
                                     n =1    n 2 +1
Solution
                                     ∞      cos n π   ∞                       1
           The given series is Σ                    = Σ (−1) n un where un = 2 .
                                    n =1      2
                                             n +1     1                     n +1
           It is obvious that u1 > u2 > …. un > un + 1 > …. and Lt un = 0
                                                                     n →∞
                                    ⎛ u           ⎞        ⎡ (2n + 10) ⎤
           It can be seen that Lt ⎜ n
                               n →∞ ⎜ u
                                                  ⎟⎟ = nLt ⎢ (2n + 5) ⎥ = 1, so that ratio test fails.
                                    ⎝ n +1         ⎠
                                                        →∞
                                                           ⎣           ⎦
                ⎛ u      ⎞      ⎡ (2n + 10) ⎤            ⎛ 5n ⎞ 5
            Lt ⎜ n − 1 n ⎟ = Lt ⎢          − 1⎥ n = Lt ⎜          ⎟ = >1
           n →∞ ⎜ u      ⎟ n →∞ (2n + 5)
                ⎝ n +1   ⎠      ⎣             ⎦     n →∞
                                                         ⎝ 2n + 5 ⎠ 2
                                              (              )
                                ∞
                                Σ (−1) n +1       n +1 − n                               [JNTU 2008]
                                1
Solution
           The given series is Σun where un = (– 1)n+1 ⎡⎣ n + 1 − n ⎤⎦ . It is an alternating
           series.
                        ⎡ n +1 − n ⎤ ⎡ n +1 + n ⎤
             n +1 − n = ⎣          ⎦ ⎣          ⎦ =                           1
                                                                                        = ν n (say),
                                 n +1 + n                                 n +1 + n
Sequences and Series                                                                                89
                                                                                                1
          ∴ By comparison test, Σ un and Σνn behave alike. But Σνn = Σ                              is
                                                                                                n
                                     ⎛    1 ⎞
          divergent by p-series test ⎜ p = < 1⎟ .
                                     ⎝    2 ⎠
               ⎡u ⎤               1            n(1 − x) n           1        1      1
           Lt ⎢ n +1 ⎥ = Lt                               = Lt           .       =
          n →∞
               ⎣ un ⎦ n →∞ (n +1) (1 – x)
                                          n +1
                                                   1        n →∞ ⎛    1 ⎞ (1 − x) 1 − x
                                                                 ⎜1 + ⎟
                                                                 ⎝ n⎠
           (iii)   x ≠ 0 and x < 1 and > 0 ⇒ the limit is > 1 ⇒ Σun is divergent
                                                      1 1
           (iv)    If x = 0, the series is 1 +         + + ....., which is divergent by p-series test
                                                      2 3
                   (p = 1)
           (v)     If x < 0, the limit is < 1 ⇒ Σun is convergent by ratio test .
                   Hence the given series converges for all values of (i) x > 1 and x ≠ 0 and
                   (ii) x < 0.
                                                       x 2 x3 x 4
  5. The interval of convergence of the series      x − + − + ...... ,is
                                                       2 3 4
                     n2 + 5
     2. The series ∑ 2      is not convergent .                                 ......................          [True]
                    2n + 7
                         1 1 1
     3. The series        + + + ........ is divergent....................                                       [False]
                         1 2 3
                               x3 x5
     4. The series x −           + − + − ......., converges when −1 ≤ x ≤ 1 ..                                  [True]
                               3 5
                             ( −1)
                                     n −1
                       x 2 x3
     7. The series x +    + + ........∞ is divergent if x ≥ 1 ...............                                   [True]
                       2 3
                               x 2! 3 3! 3 4! 4
     8. The series 1 +          + x + 3 x + 4 x + ...... + ∞                                  is convergent
                               2 32   4    5
                  x     x2      x3     x4
 12. The series      −       +      −        + ......∞ is convergent ......                                        [True]
                1 + x 1 + x 2 1 + x3 1 + x 4
                           sin x sin 2 x sin 3x
 13. The series                 − 3 + 3 + ......∞ converges absolutely......                                       [True]
                            13     2       3
                                 ( −1)
                                         n −1
                                                              3n 2 + 5
 15. The series whose nth term is                                           is convergent.                        [False]
                                                             ( n + 2)
                                                                        a
       ∑{                            }
       ∞
  3.            3
                      n3 + 1 − n             is __________.                                             [Ans: convergent.]
       n =1
              ∞
                      3n3 − 4
  4. If       ∑                      is divergent ,value of p is _________.                                    [Ans: ≤ 4 ]
                      ( n + 5)
                                 p
              n =1
                                                                                                   2n
                                                    ⎛ n2 − 2 ⎞
  5. The interval of convergence of ∑ un where un = ⎜ 2      ⎟ x , is _______.
                                                    ⎝n +2⎠
                                                                            ⎡ ⎧ un      ⎫⎤
     8. If un > 0, ∀n and             ∑u       n   is convergent, then Lt ⎢ n ⎨      − 1⎬ ⎥ is _______.
                                                                            ⎣ ⎩ un +1 ⎭ ⎦
                                                                       n →∞
                                                                                                   [Ans: > 1 ]
                        ∞
                                                                                                            an
                        ∑ ( −1) a , ( a                > 0∀n ) is convergent, then for all values of n ,
                                       n
     9. If the series                      n       n
                        n =1                                                                               an +1