0% found this document useful (0 votes)
4K views77 pages

BS Grewal.

This document outlines key concepts related to infinite series and their convergence. It discusses sequences, series of positive terms, tests for convergence like the integral test, ratio tests, and alternating series test. It also covers properties of uniformly convergent series. Several examples are provided to demonstrate applying convergence tests to determine if a series converges or diverges. The overall document provides a comprehensive introduction and overview of analyzing infinite series for convergence.

Uploaded by

Debmalya Paria
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
4K views77 pages

BS Grewal.

This document outlines key concepts related to infinite series and their convergence. It discusses sequences, series of positive terms, tests for convergence like the integral test, ratio tests, and alternating series test. It also covers properties of uniformly convergent series. Several examples are provided to demonstrate applying convergence tests to determine if a series converges or diverges. The overall document provides a comprehensive introduction and overview of analyzing infinite series for convergence.

Uploaded by

Debmalya Paria
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 77

Infinite ​Series

1​. ​Introduction​. ​2​. ​Sequences​. ​3​. S


​ eries ​: ​Convergence​. ​4​. ​General ​properties​. ​5​. ​Series ​of ​positive
terms ​6​. ​Comparison ​tests​. ​7​. ​Integral ​test​. ​8​. ​Comparison ​of ​ratios​. ​9​. ​D​'​A​lembert​'​s ​ratio ​test​. ​10​. ​Raabe​'​s
test​, ​Logarithmic ​test​. ​11​. ​Cauchy​'​s ​root ​test​. ​12​. ​Alternating ​se​r​ies ​; ​Leibnitz​'​s ​rule​. ​13​. ​Series ​of
positive ​or ​negative ​terms​. ​14​. ​Power ​series​. ​15​. ​Convergence ​of ​Exponential​, ​Logarithmic ​and
Binomial ​series​. ​16​. ​Procedure ​for ​testing ​a ​series ​for ​convergence​. ​17​. ​Uniform ​convergence​. ​18​.
Weierstrass​'​s ​M​-​test​. ​19​. ​Properties ​of ​uniformly ​convergent ​serie​s​. ​20​. ​Objective ​Type ​of ​Questions​.

9.1 ​IN​TRODUCTION

Infinite ​series ​occur ​so ​frequently ​in ​all ​types ​of ​problems ​that ​the ​necessity ​of ​studying
their ​convergence o ​ r ​divergence ​is ​very ​important​. ​Unless ​a ​series ​employed ​in ​an
investigation ​is ​convergent​, ​it ​may ​lead ​to ​absurd ​conclusio​ns​. ​Hence ​it ​is ​essential ​that ​the ​students
of ​engineering ​begin ​by ​acquiring ​an ​intelligent ​grasp ​of ​this ​subject​.

9​.​2 ​SEQUENCES

(​1​) ​An ​ordered ​set ​of ​real ​numbers​, ​a​, ​Ag​, ​Ag,​ .​ .
​ ​.​, ​a​, ​is ​called ​a ​sequence ​and ​is
denoted ​b​y ​(​a.​ ​)​. ​If ​the ​number ​of ​terms ​is ​un​li​mited​, ​then ​the ​sequence ​is ​said ​to ​be ​an ​infinite
sequence ​and ​a​, ​is ​its ​general ​term​.
For ​instanc​e ​(​i​) ​1​, ​3​, ​5​, ​7,​ ​.​.​.​, ​(​2​n​-​1​)​, ​.​.​.​, ​(​ii​) ​1​, ​1​/​2​, ​1​/​3​, ​.​.​.,​ ​1​/n
​ ​,
.​..​ ​,
(​iii​) 1​ ​,​-​1​,​1​,​-​1​, ​.​.​.​,​(​-​1​)-​ ​1,​ ​.​.​. ​are ​infinite ​sequences​. ​(​2​) ​Limit​. ​A ​sequence ​is ​said ​to
tend ​to ​a ​limit ​I,​ ​if ​for ​every ​e ​> ​0​, ​a ​value ​N ​of​ ​n ​can ​be ​found ​such ​that ​l​a ​-1
​ ​1 ​< ​e ​for ​n ​N​.
We ​then ​write ​Lt ​(​an)​ ​= ​l ​or s​ imply ​(​a​.​) ​→​l ​a​s
n ​→0​.
(​3​) ​Convergence​. ​If​ ​a s​ equence ​(​a)​ h ​ as ​a ​finite ​limit​, ​it ​is ​called ​a ​c​onvergent
sequence​. ​If ​(​(​,​) ​is ​not ​co
​ nvergent​, ​it ​is ​said ​to ​be ​divergent​.
In ​the ​above ​examples​, ​(​ii​ ​) ​is ​convergent​, ​while ​(​i​) ​and ​(​ii​) ​are
divergent​.
​ ​) ​Bounded ​sequence​. ​A ​s​eq​uence ​(​a​) ​is ​said ​to ​be ​bounded​, ​if ​there ​exists ​a
(4
​ uch ​that ​a​, ​<​k ​for ​ever​y ​n​.
number ​k s
(​5​) ​M​onotonic ​sequence​. ​The ​sequence ​(​a​) ​is ​said t​ o i​ ncrease ​steadily ​or ​to
decrease ​steadily ​according ​as ​an​ +
​ ​1​2 a
​ ,​ ​or ​an​ul ​s​a​,​, ​for all ​values o ​ ​. ​Both ​increasing ​and
​ f n
decreasing ​sequences ​are ​c​all​ed ​monotonic ​sequence​s​.
A ​monotonic ​sequence ​always ​tends ​to ​a ​limit​, ​finite ​or ​infinite​. ​Thus​, ​a
sequence ​which ​is ​monotonic ​and ​bounded ​is c
​ onvergent​.

(​6​) ​Convergence​, ​Divergence ​and ​Os​cil​lation​. ​I​f ​Lt ​(​a​n​) ​= ​l ​is ​finite
and ​unique ​then ​the ​sequence ​is ​said ​to ​be ​convergent​.
365
1​00

366
HIGHER ​ENGINEERING MATHEMATICS

If ​Lt ​(​an​) ​is ​infinite ​(​+ ​-​)​, ​the sequence ​is ​said ​to ​be ​divergent​.

If ​Lt ​(​a​n​) ​is ​not ​unique​, ​then (​ ​Q​.​) ​is ​said ​to ​be ​oscillatory​.

​ xamine ​the f​ ollowing ​sequences ​for ​convergence ​:


Example ​9​.​1​. E
​ )​ ​a​n​= ​21
n2 ​= ​2​n (​ 2
3n ​u​n
(​ii​) a
​ n
​ =
​ ​21
(​iii)​ ​a =
​ ​3 ​+ ​(-​ 1
​ )​ ​".​

1​-​2​/​n S
​ olution​. ​(​i​) L
​ t
-​=​1​/​3 ​wh​ich ​i​s ​finite ​and ​unique​. ​H​ence ​the ​sequence ​(​a​,​) ​is
​ 3+1​/n ​convergent.
​ ​a +
+n

(ii​) ​Lt (2")= do. Hence the sequence (a) is divergent.

(it) ​Lt (3+(-1)"] = 3 + 1 = ​4 when n is even


n
>

= 3-1 ​= ​2, ​when n is odd ​i​.e


​ ., this sequence doesn't have a unique limit. Hence it
osc​illat​es.

PROBLEMS 9.1

Examine the convergence of the following sequences :


3n-1
2​. ​a =
​ 1 + ​2/n
An
3. a, = ​In ​+ (-191-1
4.​2.​ = sin ​?
1+ 2n

5. ​a
= 1/2
6. a, = 1+(-1​)
8​. a ​= ​2​n.

9.3 SERIES

(1) Def​. ​If u ,, ,, ug .., U


​ n, .​ .. be an infinite sequence of real
numbers, then
​ + ... + x + ... ​is called an infinite series. ​An ​infinite
Un + u, ​+ ​Ug
series is denot​ed by Lu, a​n​d ​the sum of its first n terms is
denoted by se
(2) Convergence, divergence and oscillation of a series.
Consider the infinite series E​u​n = u​, + ​4y ​+ ug
​ ​+ ... +4, + ... ​and let
the sum of the first n terms be s ​= +4, ​+ + ​ ..​. + ​un

Clearly, s, is a function of ​n ​and as ​n ​increases indefinitely three possibilities
arise : ​(i)​ If​s, tends to a finite limit as
​ , the series Xu, is said to b​e c​ onvergent. ​(i) I​f s
no ​ , tends to ta as n to, the
series Xu, is said to b​e ​divergent. (​ iii) I​ ​f s, does not tend to a unique
limit as n so, then the series E​u​, is said to be ​oscillator​y or ​non
convergent.

Example ​9.2​. Examine for convergence the series ​(i) 1 + ​2 +3 ​+ ... +​n ​+
... Oo. ​(vi) ​5-​ 4-1 +
​ ​5-​ 4-1 ​+ ​5-4-1 ​+ ...

Solution​. ()​ Here


​ 1) ​$ = 1+ 2+ 3+ ... +​n​=
n(n+
A2

​ +
Lt sp=Lt n​(n ​ 1) +0. H​ence this series is ​divergent.
2 ​(ii​) ​Here
s​, ​= 5​-4-1+ 5-4-1+ 5-4-1+..​.​n t​ erms
= 0,5 o​r 1 according as the number of terms i​s 3​m, 3m ​+ 1, 3​m ​+ 2.
Clearly in this case, ​s​, does not tend to a uniq​ue limi​t. Hence the series i​s
oscillatory​.
1

INFINITE ​SERIES
367

Examples ​9​.​3​. ​Geometrie ​series​. ​S​how ​th​at​ ​the ​series ​1 ​+​+ ​2 ​+ ​73 ​+ ​.​.​. ​to ​(​i)​
converges ​if I​ rl ​<​1​, ​(​ii​) d
​ iverges i​ f ​r21​, a
​ nd ​(​iii​) ​oscillates i​ frs​-​1​.
Solution​. ​Let
​ ​1 +​r​+​r2 ​+ ​.​.​. ​+ ​ph​=​1 ​<​1​, ​Lt ​r ​= ​0​.
S =
Case I​ .​ ​When
r

2
1
1​.​- ​1​-​r
so ​that ​Lt ​s​n​=
1
1​- ​Also
en ​1-1 ​. ​the series is convergent. ​Case II. (i)​ When r>1, Lt ​p >
​ .

an​d
ph-​1
1 ​Also
= so that Lt → ​os
​ hen r = 1, ​then s = 1 + 1 + 1​..... +1=​n
r​-1 -1 1-1 ​.. ​the series is divergent. ​(ii) W

Lts →00 ​... ​The series is divergent. ​Case III. (i​) When r = - ​1, then the
series be​comes 1-1+1-1+1-1... ​which is an oscillatory series. ​(it)
W​hen r<​-1​, let r=-p so that p> 1. Then ​r = (-1)" pa
1- 1-(-1​)"p​" ​as ​Lt p" ​→ ​S ​= =

1-​r ​ Lt Sn → -or + ac ​according as ​n ​is even or odd.


Hence the series o​scil​lates.
and

PROBLEMS 9.2

Examine the following series for convergence :


1 ​1 1 1 ​1​. ​1+​= += ​+​= ​+​.​.,
2 ​4 8
2. ​1-1.1
1
1

3. 6 - 10 + 4 + 6 - 10 + 4 + 6 - 10 + 4 + ... ..
+ ​... 09.

(​V.T.U., 2006)​
​ tres. Each time the ball hits the
1-2 2.3 3.4 5. A ball is dropped from a height ​h me
ground, it rebounds a distance r times the
distance fallen where 0<r<1. I​f h ​= 3 metres and r = ​2/3
​ , find the total d​istance
travelled by the ball.

9.4 GENERAL PROPERTIES OF SERIES

The truth of the following properties is self-evident and these may be regarded as
axioms :
1. The convergence or divergence of an infinite series remains unaffected by the
addition or removal of a ​finite num​ber of its terms; f​ or the sum of these terms
being the finite ​quanti​ty does not on addition or removal alter the nature of
its sum.
2. If a series in which all the terms are positive is convergent, the serie​s remains
convergent e​ven wh​en some o ​ r all of its ​terms are negative ; ​for the sum is
clearly the greatest when all the terms are positive.
​ h
3. T ​ e convergence or divergence of an infinite series remains unaffected by
multiplying each term by a ​finite number.

9.5 SERIES OF POSITIVE TERMS

1. A​n infinite series in which all the terms after some particu​lar terms are
positive, is a positive term series. ​e.g., ​ -7-​5​-2 +2 + 7 ​+ 13 + 20 + ... is a
positive term series as all its terms after the third are positive.
2. ​A series of pos​itive terms either converges or diverges to +
​ 6; for the s​um ​of its
first n terms, omitting the ​negative terms, tends to either a finit​e li​mit or + o.
368
HIGHEA ​ENGINEEAING
​ HEMATIOS
M​AT

n​o

3​. ​Necessary ​condition ​for ​convergence​. ​If ​a ​positive t​ erm ​series L


​ u,​ ​is
convergent,​ ​then L
​ t ​un​= ​0.​
(​P.​ T
​ .​ U
​ .​ ,​
​ 0
20 ​ 9)​ L​ et
8​. ​= ​U​+ ​ug ​+ u
​ ​g ​+ ​.​.​. ​+ ​u​. ​Since ​Eu​, ​is ​given ​to ​be
convergent​. ​Lt ​sn​= ​a ​finite ​quantit​y ​k (​ ​say​).
Also ​Lt ​sn​-​1​=k​
But
Lt ​Un ​= ​Lt ​(​sn ​-​S​n-​ 1
​ ​)​=​0​.
Un ​=
sn​-​Sn​-​1 ​Hence ​the ​result​.
Obs​. 1​ ​. ​It i​ s i​ mportant ​to n
​ ote ​that ​the ​converse ​of t​ his result ​is
not ​true​.

Consider, ​for ​instance​, ​the ​series ​1+



+
+ ​..​. ​+
+​.​.​.​.

Since ​the ​term ​go ​on


descending​,
+​.​.​.​+
1
S ​= ​1 ​+
12 ​Lt ​s​p ​= ​Lt
Vn
13 .​

Thus ​the ​series ​is ​divergent ​even ​though


Lt ​Uly ​3 ​Lt

​ tu
Hence L ​ p ​= ​0 i​ s ​a ​necessary b
​ ut ​not s​ ufficient ​condition f​ or c​ onvergence ​of
non
21 ​Obs​. ​The ​above ​result ​leads ​to ​a ​simple ​test
​ tu
for ​divergence ​: ​If L ​ n ​0​, ​the s​ eries E
​ u​, ​must b
​ e
divergent.​

96 ​COMPARISON
TESTS
I​. ​If t​ wo p
​ ositive t​ erm ​series ​Eu​, a
​ nd ​Du​, ​be
such ​that ​(1​) ​Ev​, ​converges​,
(i​ i)​ u
​ ​. ​So,​ f​ or a
​ ll v​ alues ​of ​n,​ t​ hen L
​ u,​
also c​ onverges.​ P
​ roof.​ S
​ ​ince ​Ev​, ​is ​convergent​,
Lt ​(​0​; ​+ ​V​+ ​Vy ​+ ​.​.​. ​+ ​Un​) ​= ​a finite
quantity ​k (​ ​say​) ​Also ​since ​u,​ ​s​v​, ​U,​ S ​ ​U ​, ​-​-​-,​ ​U,
​ ​SUR
Adding​, ​U​+​+ ​.​.. ​+ ​un ​Sv ​+ ​Vy ​+ ​.​.​. ​+
un
Lt ​(​u​, ​+​1​, ​+ ​.​.. ​+ ​0​,​5 ​Lt (​0,​ ​+​2​, + ​ ​k​.
​ ​.​.​. ​+ ​vn​) =
nt
Hence ​the ​series ​Su​, ​also ​converges​.
​ reater ​t​han ​a ​fixed ​number ​m,​
Obs​. ​If​, ​however​, ​the ​relation ​Su​, ​holds ​for ​values ​of ​r​e g
then ​the ​first ​m ​terms ​of ​both ​the ​series ​can ​be ​ignored ​without ​affecting ​their ​convergence ​or
divergence​.
II​. ​If ​two ​positive ​term ​series ​Eu,​ a ​ nd E ​ v,​ b ​ e
such ​that​: (​ i​ ​) ​E​v,​ d
​ i​ verges,​
(​ii)​ u
​ ​, ​2u,​ f​ or ​all ​values ​of ​n,​ ​then E
​ u ​also
diverges​. I​ ts ​proof ​is ​similar ​to ​that ​of ​Test ​I​. I​ II​. L
​ imit ​form ​If ​two p
​ ositive t​ erm ​series
Eu,​ ​and ​Lu,​ b ​ e ​such ​that

Lt
= f​ inite q
​ uantity ​(​+0
​ ​),​ ​then ​Łu,​ a​ nd E
​ u,​
converge ​or d ​ iverge t​ ogether.​

Proof​. Since ​Lt ​4​* ​= ​1​, ​a ​fi​nite


number ​(​40​)
By ​definition ​of ​a ​limit​, ​there ​exists ​a ​positive ​number ​e​, ​however ​small​,
such ​that

1​-​1 ​<​E
|
<​€

for ​nam
forn ​2
m
INFINITE ​SERIES
369

O​r
​ ​e
-​En​-​l<
for
n2​m

or

1-​ ​E​< ​<​l​te ​for ​n


2​m ​Omitting ​the ​first ​m ​terms ​of ​both ​the ​series​,
we ​have

l​-​ec ​une ​<​l​+​€ ​for


all ​n ​Case ​I​. ​When ,​ ​is ​convergent​, t​ hen
​ ​.​.​. ​+​0​.​) ​= ​k,​ a
Lt ​(​0​, ​+ ​V​, + ​ ​finite
number
...(2)
2​2
De

Also from
(1),
​ €​, ​i.e​.​, u, ​<(1 + E
«m <​l + ​ )​v,​ for
all n.

[By (2)
Lt (​uz​ + ​u​g + ... + u
​ ​n​)<​(1 ​+ €) ​Lt (0; + V2 + ... +on)
​ ence Z​u,​ is also convergent. ​Case II. Whe​n ​EU,
= ​(1 + €)k H
is divergent, t​ hen
Lt (0, + vg + ... + vn) 100 ​Also from
(1​) ​1- ​E​sm ​or ​u.>
​ (1 - ​£)u, for all n

Lt (u, + ​4y​ + ... + ​un)>


​ ​(1 - €) ​Lt (u;
+ v, + ... + Un) ​Hence Eu, is also divergent.
[By (3)
9.7
INT​EGRAL TEST

dx
A positive ​ter
​ m ser​ies ​f(1) + f(2)​ + .​.​. + f(n) ​+ ..​.,
​ ecreases as n increases, converges or div​ erges
where f(n) d
according as the integral

5 ​f​(x​)
dx
...(​1​) is ​finite or infinite.

The area under the curve y​=f​(x), between any


two ordinates lies between the set of inscribed and escribed
rectangles formed by ordinates ​at x = 1, 2, 3, ... ​as in Fig. 9.1.
Then

n+1 ​f(​ 1​)+ f(​ 2) + .​.. + f(​ n)2 (*​*f(​ ​x) dx 2|(​ ​2) +
f(​ 3) + ... + ​f(n +
​ 1)

$2
​ 1
f(x) dx 28m+
- f​(1)
1
2
n
​ ​1
n+
X
3
Fig. 9.1

Taki​ng limits ​as n too, we find from the second


inequal​ity that Lt suis
​ ​f(​ 1).
f(x) dx +

Hence if integral (1) is finite, so is Lts . Similarly, from the first inequality, we see that if the
integral ​(1) is infinite, so is Lts. But the given series either converges or diverges to + , ​i.​e​., ​Lts, is
either finite or ​infinite as ​n +
​ .
Hence the result follows.

Example 9.4. Test for Comparison​. Show that the


p-series

,ne ​7P2P

(i) converges for p > 1 (ii) diverges


for p s 1.
(P.T.U., 20​09​; V
​ ​.T.U., 20
​ 06
​ ; Rohtak,
2003)

Solution. By the above test, this series will converge or diverge ac​cor​ding as
is finite or infinite.
370
HIGHER ​ENGINEERING ​MATHEMATICS

If​p​71​,
ALT

P
m
+
1
x
m

​ ​. finite
*, ​i.e
for p > 1
P-​ 1​'


o dac

fo log x + , th​is proves the result.


​ r ​p <
​ 1​

Ifp = 1, ​o​x =
Obs. Application of comparison tests. ​Of all the above tests the limit formi is the most useful.
To apply this ​comparison test to a given series Eu , the auxiliary series Ev, must be
so chosen that Lt​(ul) ​is non-zero and finite. To do this, we take v. equal to t​h​at
term of ​u​, which is of the highest degree in ​1/n a
​ nd the convergence or
divergence of .. ​is known with the help of the above series.

Example 9.5. ​Test for convergence the series


​ 2.3
135 1. ​ 2.3​.4 3.4.5
(P.T.U., 2009)

(a) 4.7​.10+ 7.10.13* 10.13.16*.​


(​V.T.U., 2010)

(iii) 1 ​+ -
209

2n-1 1 ​2-1/n ​Solution. ​(i​) We have ​un =



in ​n(n+1)(n + 2) na (1+​1/n)​ (1+2​/n) T​ ake
u = 1/n​2, then

​ Lt –
L​t ​n =
2​-1/n
2-0 ​n+ ​Un
​ ​n = (​1 + ​1​/​n)(​1 + ​2​/n) (1
​ +0)(1+0)
​both Xu, and Eu, co​nverge or diverge
= 2​, wh​ich i​s finite and non-z​ero ​-
together. ​But Ev, = ​X1/n​2 is known to be convergent. ​Hence Z​u,​ is also
convergent.

(ii)​ Here

**(8 + 143"+ 2/3n 7* (32) 43:3


(3​n ​+ 1)​(​3n + 4)(3​n +
​ 7)
3
+
3
+
Taking
-, we find that

n n n) ​Now since Ev, is divergent, therefore {​u,​ is also divergent.

​ re
(iii) He
z

- webm
=

m​ai (an ) sonoring the first term.


1​, ​ignoring the first term.
​ 1
n+
​ 1 ​v.
(7​2 ​+ 1)​n + ​= ​1/n​, ​we have
Taking

1​. ​Lt =
e
= ​Lt =
=1.70 ​1 ​ 1+​1/n​ ) ​+ (1+1​/n)" ​Now since Xv, is ​divergent, therefore ​Lu,​ is also
+
divergent.
INFINITE
SERIES
371

​ est t​ he c​ onvergence o
Example ​9​.6​. T ​ f
the s​ eries ​:
3
-
1

(​)
C​u
(​V​.​T.​ ​U.​ ,​
2008​) (​ ​i​)
-
(​iii)​
(​V.​ ​T​.U
​ ​.,
​ 2
​ ​000
S​)
V2​" ​+​1

Sol​ution​. ​(i​ )​ ​We ​have


​ ​have ​u ​= Vn #​1) -
Solution​. ​(​1) ​We
Vn​Go​=Vin ​+1) ​- Vn
= ​n ​[(1 + ​1n)1
​ 2-
1].
(Expanding by Bino​mial
Th​eorem)
1+

2​n
8​n?
28​n?
2
8​1

Taking ​u. ​= 11 Jn ​, ​we


have
L​t

“r =
Lt
which is finite and non-ze​ro​.
​ ​Un
1> ​
n 702 ​8n

IT
1
both Eu, and Eu, c​onverge or diverge
together. ​But Lun = 2​1 In ​is ​known to be
div​ergent. Hence ​Lu​, is ​also divergent.
(​ii) When x​ < 1, comparing the given
series Eu, with Eun = x",
we get
Lt Un ​= ​Lt
​ n ​+1 ​But
Xv, is
n Un n "​ +%* 2 )
​ ​hen x ​>
convergent, so Z​u i​ s also convergent. W
1​, comparing ​zu, with Zw, Ex-", w​e get
Lt Un Lt (_1​__
* = Lt ​-
=
Lt ​=

1: 3​21 → ​O as n
→]

[​:: ​72 → O as n

→ ​0]
​ 0 ​W​nn
h= ​
+​+-​1
n
11--​2​n

But Ew, ​is convergent​, so E​u,​ is ​also


convergent.
​ ​1,
W​hen x =
​ n
Su
U ​= ​+=+​=+​... D​o ​which is d​i​vergent.
2 2 ​2 ​Hence, E​u,​ converges for x < 1 and x > 1 but
diverges for x = 1.
1-1/3"
​ ere
(it) H
V 2h + 1 l

ti) Here
V
1+1​/2

--*1-0)",(1:18) ​Un​=
(*)***, we get
Taking

Also since Ev, = pole where r = ​13/2 ​is ​a geometric series


​ u, i​s also divergent.
E
having r> 1, is divergent. ​:
Example 9.7​. Determine the nature of the series :
V2-1 V3-​ 1
​ ​33 -1 -1 51 -
11-1.
1
72

(i)
(log na
(iv)
(p > 0) ​n(log n)p
(P.T.U.,
2010)

_ (​ n +
​ 1) -12 ​/n​[(1
+1​/n) – ​1​/ (n)​ S
​ olution. ​(i​) We have ​u​, ​= "
(n + 2)3 - 1 m3/(1+​2/n​)3
- 1/n?)
372
HIGHER ​ENGINEERING
MATHEMATICS

Taking ​on ​= ​mte​, ​we


find ​that
1​/​(​1​+​1​/​n​) ​-
1/​ ​1n​l17​0
​ n ​(​1 ​+ 2​/​n​) ​- ​1/​ ​n]​ ​Since ​Ev​, ​is
n​+ U
convergent​, ​therefore ​{​u​, ​is ​also
convergent​.
(ii)​ Here
==
=

) 13 ore
=


3!
3
n
5.no

(i) Here , = sin 4-4 [3 B Taking u, =


s, we have
3! ​n
51 7​4

=
5​1​,​4
Lt Un = Lt 1--
Since ​ . 3​! ​
...=​10 ​1 Un n

Eu, is co​nvergent, therefore Eu, is also


convergent. ​(iii) W
​ e have Lt (lo​g n) -
​ (​ log n)?
1/4 ,​ ze.,
or (lo​g n)​ < n ​1/​4 ​no
?

(log n
U

2​37​2
2​2​5/4
(:
p​= 5
​ ​/​4 > 1)
​ onverges by ​p​-series. ​Hence
Since ​1/n5/4 c by
comparison test, E​u​, also converges.

(iv)​ Let

i.e., f​(x) is a decreasing


function.
Pim) = ndog mo so that
f(w) Cove 275
ra) = l qoayurt det love 27. ( 7)-- (one per dag
op.com ​Also 5 ​rew) dx = Se melhor at lave ​If p ​ ​> 1, t​ hen p
- 1 ​= k​(say) > 0 ​. ​f​(x) dx = log ​2​* -​1​0 + (log 21+1 which is
finite
12
Thus by integral test​, ​the given series
converges for p > 1. I​ fp < 1,​ then 1-p> 0 and
(log x)​l-pwas x 0

f(​ x​) dx​ => 0. ​Thus ​the


given series diverges for p < 1. I​ f p =
1, then [f() dx = [" dx = log (log ​x) ​-
J2 x log 3
​ 1.
Thu​s the given series diverges for p =
PROBLEMS 9.3

Test the following series for convergence :

1​.
1
- ​...​o​o
​ ​.T​.U.​ , 2000)
(J.N
2
+
+​... 09

3.
1
.
1​.2
2. 3​.
+2+... ​3.4
5.6
(Cochin,
2001)
t
+
=

(P.T.U.,
2009)
*
1.​3
3.5
5​.​7
INFINITE
SERIES
373

​ T
2​PP

2 ​3​.​5​.​7
+ ​.​.​. ​00

​ ​.U
(​V​.T ​ ​.​, ​2009
S​)
0​. ​1​.​3​.​5
5​.​7​.​9
3 ​4 ​5 ​6
i​tz​+​27​+ ​6​4​+
​ smania,​ ​2000
(O
S​)
724​+​1

12​. ​5 ​(​n ​+ ​1​)​(​n


+ ​2​)
(J​ .​ N
​ .​ T
​ ​.U
​ ​.,​ ​2006
S​)

13​.
Nina ​+​1​) ​– ​n​] ​(​V​.T
​ ​.U
​ ​.,​ ​2010;​
P​.T
​ ​.​U​.​, ​200​9)
​ ​14​.
1963 ​+ ​1​)
- ​n​]
​ ​.T
(P ​ ​.U
​ ​.,​ ​2007 ​;
Rohtak ​200​3​)
WIWOW​!
Ven​* ​+ ​1​) ​–
Jen​* ​– ​11
18​. ​F ​(​+ ​1)​ ​-
J​.​N.​ ​T​.U
​ ​.,​
2003)​
Vn ​log ​n
​ ​+ ​273 ​-
(n
1

9​.​8 ​COMPARISON ​OF


RATIOS
If ​Eu​, a ​ nd E​ v​, b
​ e ​two ​positive t​ erm ​series​, t​ hen ​Eu​, c​ onverges ​if (​ ​i)​ E
​ u,​
converges,​ a
​ nd (​ ​ii​) ​from a​ nd ​after ​some ​particular ​term​,

Let ​the ​two ​series ​beginning ​from ​the ​particular ​term ​be ​u,​ ​+​1,​ +
​ ​u,​ ​+ ​.​.​. ​and ​u​,
+​1​, ​+​1​, ​+​.​.​. ​If ​uzcu​, ​uz ​Uz​.​.​.
ų ​v ​Ug ​Up

U2 ​+ 3

113 ​+ ​.​..​
then
4​, +
​ ​H2 ​+ ​U​g ​+ ​.​.​. ​=

u ​Wuy
Hence​, ​if ​Ev​, ​converges​, ​Eu​, ​also
converges​.
u ​ya ​Vg ​D​u ​'​"​1*​ 2
​ ​*​1​3*
​ ​*​*​**

Obs​. ​A ​more ​convenient ​form ​of ​the ​above ​test ​to ​apply ​is ​as
follows​:

Xu​, ​c​onverges i​ f (​ ​1​) ​Eu ​c​onverges ​and (​ i​ i)​ f​ rom ​and after a

particular ​term
om​> ​11​ ​7​+​1
, ​Un ​+ ​1

Similarly,​ ​Eu,​ ​diverges,​ i​ f (​ )​ ​Ev​, d


​ iverges a
​ nd ​(w
​ ​)
​ nd ​after ​a ​particular ​term
from a
m​c ​m
il​i
U​n ​+​1

9​.​9
D​'​ALEMBERT​'​S

RATIO ​TEST​* ​In a
positive t​ erm series
Lun ​if
Lt ​"​n​+1
​ = ​ 2
​ ​, t​ hen t​ he ​series ​converges f​ or ​a
​ ​and d
<1 ​ iverges f​ or å ​ >
​ 1
​ ​.
S ​CO​N

1 ​-
Un

Case ​I.​ W
​ ​he​n ​Lt ​"n​+​1
​ ​.
=​1​<1

*​Called ​after ​the ​French ​mathe​matician ​Jea​n l​ e​-​R​ond d


​ '​ A
​ lembert​ ​(​1​7​17​-​1​783​)​, ​w​ho ​al​so ​made
important ​contributions ​to ​mechanics​.
374
HIGHER ​ENGINEERING
MATHEMATICS

BILLO
Led
1
IIS

un

By definition of a limit, we can find a positive number r


(< 1) such tha​t Pn+1 <r for all n > m
Leaving out the first ​m ​terms, let the series
be u, +1​, ​+ ug + ... ​so that ​"2 <r, 3 <r, 44 <r,... ​and so on.
Then u​, + ​u,​ + ​ug​ + ....
и це из

442 443 42 44 4g us to
+​r​+ p2 + pod + ....​) u​ g ug u ug ug u
= , which is finite quantity. Hence Eu, is
con​vergent.
IS COD

[:
r< 1]

​ n Lt ​On+​1
Ca​se II. Whe
=2> ​1


In

By definition of limit, we can find m, such that ​"+​1 ​2 1


for all n 2 m.
un
Leav​i​ng out the first ​m ​terms, let the series
be

u​n + ​u​g ​+ ​ug​ +


​ ... s​o that ​2 21, 132​1​, 14 21 ​and
so on.
​ +
Uy ​+ + ug + ​un
Io Ug ​

... ​+ ​Un=u (1+42 + us uz +...


​ u ta đi​
| ​lu
​ u​, L
+ 1 + 1 + ​..​. t​o n t​ erms) = n ​ t ​(u;​ + u​g ​+
... + un

> Lt ​(nu​), which tends to infinity. Hence Lu, is


​ . Ratio test fails when a = 1. Consider, for
divergent. ​Obs.1
​ s Eu, ​= 21/np.
instance, the serie
​ 700
n=

Here
2= Lt = Lt
== Lt =
Un ​n (n+1) 1 n . (1 +​1/n) T
​ hen for all values of ​p​, 1
​ 1 and diverges for ​p ​< 1. ​Hence A = 1
= 1; whereas ​21/nP c​onverges for ​p >
both for convergence and divergence of Lu, which is absurd.
Oly​. 2. It is important to note that this test makes no reference to the magnitude of un​lu,
but concerns only with the limit of this ratio.
For instance in the series 1 +​*++-​+...++ ..., the ratio ​n+1=1 ​<1 for all finite values of n, but
tends
2 3 ​4
72
un
​ 1 ​to
n+ unity as n o. Hence the Ratio test fails although this series is
divergent.

Practical form of Ratio test. Taking reciprocals, the ratio test


can be stated as follows:
In the positive term series​ L​u, ​if Ltr​ ​= k, then the series converges for k
> 1 and diverges for ks 1 but fails for k= 1.
Example. 9.8​. Test for
convergence the series
(P.T.U., 2005; V.T.U., 2003;
1.S.M., 2001)
n
n

U1​1+​1

6​2

(6) 1***** (>0),


+ ... + =
21 - 2n-17..​. ​(x ​> 0​).
2 + ​1
​ 009; V​.T.U.,
(P.T.U., 2
2004)

Solution. (​i) ​We have


u​n ​=
n" ​(n+1) ​V​na
and un +1
(n + 2)​N​on +
1)

INFINITE ​SERIES
375

1​+​1​)
u​n​_​= ​Lt ​-
Lt ​- ​n
+
​ +
(n ​

72
+
2
[​1 ​+ ​2​/​n
= ​Lt
1​/​n)​ x​ 2 ​= ​r​-​2
n
+
1
72
/
1

1​+​1/​ n

​ ​onverges ​if ​x​-​2 > ​1​, ​i​.e


Hence ​Z​u c ​ ​., ​for ​x2 ​<​1 ​and ​diverges ​for ​x2 ​>
​ ​1​, ​then​, u = (n +1) ​Jm mit​z 1+1/0 Taking v,
1​. ​Ifx​?
=
- m72, we get Lt = Lt 1+1=1, a finite quantity.
• ​Both Lu, and Eu, converge or diverge together. But
Lun= 312 is a c​onvergent series.
Eu, is also convergent. Hence the given series
converges if x2 <1 and diverges if x2 > 1.
E
n
Un
n=
1 + 1​/n

TI​L

-1
1
(i​i​) Here
​ ​Un+
un ​ ​1
-2
2
-2 ​+1
2+1 +1 ​2h+ 2n +1 ​-2

L ​ui​ n 1
​ ​-​0 2+0 1 1
​ .,
by Ratio test, Lu, c​onverges for ​x > 1 i​.e
nUn+​1 1+​0 ​2​-0 x ​x ​Thus
for x < 1 diverges for x > 1. But it fails for x = 1.

When x=1,
​ ​= Lt ​4
Lt ​un
2
= ​Lt ​-2=170
n6n
+
2
+1
n
+

• X​u​, d​iverges for x = 1. Hence the given series converges for x<
1 and diverges for x 21.

Example 9.9​. Discuss the convergence of the series

(V​.T.U., 2008 S​)


​ .U., 2010) (1+
(6) į​mo ​(P.T ​ 2​+3 +.com

Solution. (i) We have un-inje and un +1* I(n + 1)*


+1P
(n + 1)!

Lt -
u​n
n!
​ + 12 + 1​)
(n
Lt On​X
​ 2
227

n
U
+​1
72
72
(n + 1)!

n​do

= Lt
​ ​+ 1) = ​e. Lt (n + 1) +
(n
- L1 (1) 2009 - 1:(0:4)*. n = 1)
- 4 (2+4)**-+9)= e. Le (n + 1) + (i) Given series in I​v.
= He​re 19 - MA SOFTW=(1+4
7
00

Hence the given series is convergent


(n + 1)
(​ii​ ​) Gi​ven series is
un

​ +
Un
n​! na
​ + 1​ ​) +
(n
(n + 1​ )​!

Lt Un = 1 ​n+ Un +​ ​1
= e, which is > 1. ​Hence the given series is convergent.
1
N
/

376
HIGHER ​ENGINEERING MATHEMATICS

Example ​9​.​10​. ​Examine ​the ​convergence ​of t​ he ​series :​


Te​.​.​00

​ (​ i​ i)​ 1
​ 1
a+ ​ +
​ ​1
5​+​1
1 ​+​2 ​(​Q ​ ​) ​6​+ ​1​) ​(​26​+ ​1​)
​ ​1)​ (​ ​2a ​+ 1
+
​ ​+ 1
(a ​ ​) ​(2 ​ ​1) ​(​0​+ ​1​) ​(​26 ​+ ​1​) ​(​36​+​1​)
​ a ​+ 1)​ (​ ​3a +

+ ​.​..

Solution​. ​(​i​) ​Here


​ .​
a​nd u
1​+
+​1
​ ​2
1+

i​n
1
1 ​+
n​+​1​)
=
+
3
(1​ ​+ ​+​1 ​= ​Lt
n7x​+​*​+​!
3​1 ​+​3​"

t​:
+​1 → ​O ​as ​n ​+ ​]

​ ​= ​Lt
IR
1​+​1 ​+​1​) ​Also
​ +​1
= ​1 ​i​f ​x ​> ​1​. ​n un
​ +1 ​:
1+​x/n ​b​y Ratio test, Xu,​ c​onverges for x < 1 and fails for x>1.
​ =+ = + = + ​... +og, which is divergent.
1 1 1 ​When x = 1, ​u =
Hence the given series converges for x < 1 and diverges for x 2 1. ​(ii)​
222​

Neglecting the first term, we have


​ ​1
na +
n​u+
​ 1

Lt ​U​m = Lt N6+1 Lt ​6+


​ 1​/n
​ _b.​
n​o​un ​+1n​na​+n Ratio test, Eu, ​converges f​or bla >
​ ​y
​ a B
​ a+1/n ​ 1 or a
<b,​ and diverges for ​a >b. ​When ​a = b,​ the series becomes 1 +1 +1
+..., which is divergent. ​Hence the given series converges for 0 <​a <b a
​ nd
diverges for 0 <​b sa.

PROBLEMS 9.4

Test for convergence the following series :

1. XT23

3.
1+
+
+
​ ​.T.U., 2006)
(J.N
2
- ta​s ​+ ​10

5
n(n​-1) (​n - 2
​ )

5. ​1+2+3+​4​++ ..​.
2​! 3!
(​Kurukshetra, 2005)
(Rohtah, 2005)

​ /
77​13
Kerala, 2005)

in +1
9.
"
(P.T.U., 2006)
(Madras, 2000)

2
3​.4
2 .4
3.5.6
2​.4.​6
b+... ​(V.T.U., 2010) ​3.5.7​.​8
201012. (09+(12) +(3:
12.
3.5.7​)
INFINITE ​SERIES
377

13​. ​1
12 ​22 ​12​.​22 ​32 ​1​.​3​.​5 ​* ​1​.​3​.​5​.​7​.​9
- ​+​.​.​.
(​Delhi,​ 2​ 002​)
4 ​18
4​.​1​2 ​18​.​27
4​.​12​.​2​0 1​ 8​.​27​.​3​6
t​a i ​oo

​ adras​, 2
(M ​ 000)​

(J​ .​ N
​ .​ T
​ .​ ​U.​ ​, ​2006​)
3D ​*​*​*
(​2​n​-1
​ )​
(​V.​ ​T​. ​U.​ ​, 2
​ 004)​
3​.​6​.​9​.​.​.
3 ​5 ​2​.​4​.​7​.​10​.​.​. ​(​3n​+​1​) ​3n​+​2 ​191​.​1​+​0​(​1​+​a​) ​(​1 ​+ ​20​) ​(​1 ​+ ​a​)​(​1​+​20​) ​(​1 ​+
30​)
1​+​B ​(1​+​B​) ​(​1 ​+ ​2B​) ​(​1​+​B​) ​(1 ​+ ​2B​) ​(​1 ​+​33​)

9.10 ​FURTHER TESTS ​OF ​CONVERGENCE


W​hen ​the ​Ratio ​test f​ ails,​ w
​ e ​apply ​the ​following ​tests :​

(​1​) ​Raab​e​'​s ​test​*​. I​ n


​ t​ he ​positive t​ erm ​series ​Z​u​m​, ​if ​it ​n
A​n
-​1
=​k,​

then t​ he ​series c​ onverges f​ or k​ >


​ 1
​ a
​ nd ​diverges ​for ​k ​< ​1,​ ​bu​t ​the
​ ​1​.
test ​fails ​for ​k =
When ​k ​> ​1​, ​choose ​a ​number ​p s
​ uch ​that ​k​>​p ​> ​1​, ​and ​compare ​X​u​, w
​ ith ​the
series
which ​is
N​o ​W​hi
​ ​1​.
convergent ​since ​p >
. ​Eu​, ​will ​converge​, i​ f ​from ​and ​a​fter ​some ​term​,
Um ​(​n ​+ ​1​)
o​r if​. ​Un ​>​1​+​P​. ​p(
​ ​p-​ ​1)​ ​,
I​n​+​1 ​n ​2n2

or ​if​,
+​.​.​. ​or ​if​, ​Lt ​n
QIT

In
U​n
1
>
p​(​p-​ ​1​)
2​n
=​1​>
Lt
​ ​p​-​1​)
p(
2​n
i​n
1
+​1 ​J
L

i.​ e.,​ if ​k ​> ​p​, ​which is true. Hence Lu, is convergent.


The other case when k < 1 can be proved s​imilar​ly.

​ f​ Lt
(2) L​ogar​ithmic test​. In the positive term series Zu, i ​ n

logm
=k,

then th​e series converges for k>


​ ​1, and diverges for k < ​1,​ but the test fails for
k ​= 1.
Its proof is s​imila​r to that of Raabe's test.

Obs. 1​. Logarithmic test is a substitute for Raabe's test and should be applied
when ​either ​n occurs as an exponent i​ n u lunt, o​r ​evaluation of
​ Lt b​ecomes
easier on taking logarithm of u, /unt
Obs. 2. If u/u.. does not involve n as an exponent or a logarithm, the series
Lu, diverges.

​ 54.​7... (3n +
Example 9.1​1. Test for convergence the series 6
1) ​n (va
​ ton (​V.T.U., 2009; P.T.U., 2006 S) 1​ .​ 2..​ .n
* ​12
2

()​
x2n.

In
1
_
-

. 4.​7​...(3​n+
​ 4) ​n​+1
1.​2.​.​.​(​n +
​ 1)
1​+1 1 ​3n​+4 ​x
3 + 4​/n
x
​ ​_​4​.7...​ ​(3​n+1)
un
​ 1
​ ​+1 1.2​..​.n ​Lt​Um-
Un ​
+1 3x
n

*Called after the Swiss mathematic​ian ​J​oseph Ludwig Raabe (​ ​1801-1859).


378
HIGHER ​ENGINEERING
​ HEMATICS
M​AT

Thus ​b​y ​Ratio t​ est,​ ​the ​series ​converges for ​-​-​> ​1​,
i​.e.​ ​, ​for ​xs
and ​diverges ​for
x ​>
But ​it ​fails
for
*​*​* ​ventes ​converges ​for ​3​: ​> ​1​,
1​.​2​.​, ​for ​<<
​ ​* ​and ​div​en
Now

No
w
​ xpand b
[E ​ ​y ​Binomial T
​ heorem)​

-​-​15​-​-​+
+​.​.​.
Lt ​nl ​-
which ​<​1​.
3​9n
Thus ​by ​Raabe'​ s ​ iverges​. ​Hence
​ ​tes​t​, ​the ​series d ​the
given ​series ​converges ​fo​r ​x ​< ​į ​and
diverges ​for ​x ​2 ​j​.
​ ​( n
um ​ ​! ​[​2​(n
​ ​+ ​1​)​]​! ​*​2 ​(​2n ​+ ​1​) ​(​2n​+​2​) ​1 ​2​(​2n +
​ ​1​) ​1 ​(​i​i​)
Here
Un ​+​1 ​(​(​n ​+ ​1​)​!​) ​(​2n​)​! ​*​*​2​(​n ​+ ​1​) ​(​n ​+
1​)
2 ​22​n​+​1 ​2 ​12​(​2​+​1​/n
​ ​) 1
​ ​-​4 ​n​-
​ ​2 ​Thus ​by ​Ratio ​Test​, ​the ​series ​converges
t​u​n​+​in​+ ​1 ​+ ​1​/ 7

for ​x2 ​< ​4 ​and ​diverges ​for ​x2 ​>​4​. ​But ​fails ​f​or ​x2 ​= ​4​.
​ n ​11
(2
When ​x2 ​= ​4​,
When ​xo
= ​4,
Center ​- ​1​) ​= -( 2
* 2-1) -
-​-1
=​n
U​n ​+ 1

)
2n​ +
2
Un + ​V (​2n+2 ​Lt
nun-1)= 1​1
Thus by ​Raabe's test, t​ he series diverges. Hence the
given series converges for x2 <4 and diverges for ​x2 > 4.

Example 9.1​2. Discuss the convergence of the


series
22,​72 ​333
(P.T.U., 2008; Cochin, 20​05 ;​
Rohtak, 2003)

l ​lin​n
Ca
​ 1)"+ *"
"x" ​(n +
n​"

(n ​+ 1)​! (​n + ​ ​" ​x ​Lt


​ 19" 2 (​1+​1​/n) Un ​1
n + Un ​+1 ex ​T​hus by Ratio test, the series converg ​for ​< lle ​and diverges for x >
​ et us try ​the ​l​og-test.
​ ut it fails for x ​=1/e. L
1e. B

Now

Un+
1
(1+​1/n)"
1

log"n_= log
n log
|1+
- 12
-
Un ​+1
I​n
2​72
2​n
3,​2+...

P​OOL
n​u
2

Lt n log 4m = 5, which < 1. Thus by th​e


log-tes​t, the series diverges. ​Hence the given series
converges for x < 1​le a ​ nd diverges for ​x ​2 1le. E​ xample 9.13​. Discuss
the convergence of the hypergeometrie series
a​.ß ​a(a +1)​ BOB + ​1) 2 ala +
​ 1)​ (a +
​ 2) B(B +
1​)(B+2) ​1 +​ x +
​ .​ y
-3° + ... ​(Kurukshetra, 2005) 1
1.2. y(y + 1) 1.2​.3
​ . y(y + 1) (y + 2)
379
INFINITE ​SERIES

Solution​. ​Neglecting ​the ​first ​term​, ​we ​have


​ ​+ ​n​)​(​B​+ ​n​) ​Un ​+​1 ​= ​Un ​(​n ​+ ​1​) ​(​y ​+ ​n​)
(a
un ​1 ​(​n +
​ ​1​) ​(​y ​+ ​n)​ 1
​ _
​ ​1 ​(​1​+​1/n
​ ​)(​ ​1​+​y​/​n)​ ​1 ​1
.​. ​by ​Ratio t​ est,​ ​the
= ​Lt ​n​} ​e ​up ​1 r​ a ​=​> ​oa ​(​x ​+ ​3​) ​(​B ​+ ​1​) ​= ​n ​+ ​(​1​+​c​/ ​n)​ (​ ​1 ​+ ​8​7 n
​ )​ ​* ​* ​

series ​converges ​for ​1​/​x ​> ​1​, ​i​.e ​ ​.​, ​for ​x ​< ​1​, ​and ​diverges ​for ​x ​> ​1​.
But ​it ​fails ​for ​x ​= ​1​. .​ . ​let us try the ​Raabe's test.

Lt ​n​a

S(n + 1) (n + ​y) (​ (n + a) (n + B)
= Lt ​n ​n2= ​
-1​% =
Lt ​n
* I
n​(1 + y = ​0​.- B)+y-aß
n + n(​a +B) + aß

(1 + Y-C-B) + (
= ​Lt
=1+y-a-B
1
1
+ (a +B)
+

Thus the series converges for 1 + y​-a​-B > 1​, i.​ ​e​., f​ or y> Q + B and diverges for y<a
​ t
+ ​B. But it fails for ​Y= + B. Sinc​e u, lun ​ ​does not involve ​n a ​ s an exponent or
a logarithm, the series X​u,​ diverges for y=​a ​+ B.
Hence the series converges for x< 1 and diverges for x > 1. When x = 1, the
series converges for y> a+B and diverges for y Sa+B.

PROBLEMS 9.5
Test the following series for convergence

112**********
(Mumbai, 2009)

1
(V​.T.U., 2​008
​ ; J.N.T.U., 2003)
23 3.​4 4.​5

(Raipur, 2005)
1​r ​1.​32​, 1​.3.5 3
2.4 2.4.6
* + ... ​. ​(x >0)

2 2.3 2 2.​3​.4 3 ​3**3.5* +​3.5.​7"


(​V.T.U., ​2009​ S)​
100 N​X
3.​6 2
3.6​.9
7​.10.​13
3.3.6​.9.1​24
7.​1​0​.13.16
​ ​0​0
#.​..
​ . 10
17

7. 1
1
3
(V​.T.U., 2007; Raipur, 2005)
1​.3 25 ​1​.3​.​5 x ​+​2.4.​5 +2.4.6.7
+ ... 0. (x > 0)

1.3.5 x . 1.3.5.7.9 26 ​2.4.6.8*2.4.6.8.10 12"


B. 1* 2.4 ​8.1+1 x
(Rohtak, 2006 S; Roorkee, 2000)​

9. ​1 ​+
+ ... ​00 (​x > 0)
2​!

12.​52
12.​62.​92
19. a+x
(a + 2x)
(a + 3x)
1​1:
1
2
3!

12. 32 (log 299 + x(log 3) + ** (log 4y + ... 0


(V.T.U., 2000)

ala+1) ​2 ​a(​ a +
​ 1)(a + ​2) 3 ​ 0,X > 0). ​14.
​ + ... (​a, b > ​1​+ 7*+​B[b+
​ 1) ** + 3​(6
+ 1)(b + 2)
380
HIGHER ​ENGINEERING
MATHEMATICS

TO

9​.​11 ​CAUCHY​'​S ​ROOT


TEST​*

In ​a ​positive ​series ​Eup​ ,​ ​if ​Lt ​(​u​min



= ​2​, ​then ​the ​series ​converges ​for ​a ​<
1,​ a
​ nd ​diverges ​for ​à >
​ ​1.​
Case I​ . ​W​hen
​ ​Lt ​(​u​n​) ​Un
​ ​= ​1 ​< ​1​. ​By ​definition ​of a
limit​, ​we ​can ​find ​a ​positive ​number ​ra​<​r ​<​1​) ​such ​that
​ ​) i​ n ​<​r ​for ​all n​ >
(u ​ m
​ ,
​ ​or ​u,
​ <
​ ​p ​for a
​ ll ​n ​> ​m.​ S
​ incer ​<​1​, ​the ​geometric
series ​is ​convergent​. ​Hence​, ​by ​comparison ​test​, ​X​u​, ​is ​also ​convergent​. ​Case I​ I.​ W ​ hen L
​ t
(​u)​ /​ ​n ​= ​1 ​> ​1​. ​By ​definition ​of ​a ​limit​, ​we ​can ​find ​a ​number ​m​, ​such ​that
(​un)​ I​ n ​> ​1 ​for ​all ​n ​> ​m,
​ o
​ ​r ​u>
​ ​1 ​for ​all ​n ​> ​m.​ ​Omitting ​the ​first ​m
terms​, ​let ​the ​series ​be ​u​; ​+ ​ug ​+ ​ug​ +​ ​..​.. ​so ​that ​u​, ​> ​1​, ​uz​ ​> ​1​, ​uz​ ​> ​1 ​and ​so
on​.
Uy ​+ ​4y ​+ ​uz​ ​+ ​.​.​. ​+ ​Un​>​n ​and ​Lt
​ y ​+ ​4y ​+ ​.​.​. ​+ ​un​) ​Hence ​the ​series ​E​u​, ​is
(4
divergent​. ​Obs​. ​C​auchy​'s​ r​ oot ​test ​fails ​when a​ =
​ 1
​ ​.

​ est ​for ​convergence t​ he


Example ​9​.​14​. T
series

(i​ i)​ ​E​(​log ​n)​ -​ e


​ n ​(​iii​) 2
​ (​ 1
​ ​+1
​ ​ /n
​ ​)​" ​(​P.T
​ .​ ​U.​ ​, 2
​ 009;​
Kurukshetra​, 2 ​ 005​)
no

Solution​. ​(i​) ​We ​have ​u =



n°​/​3​.

n​7093

Hence ​the ​given ​series ​converges ​by ​Cauchy​'​s ​root


test​. (​ i​ i​) ​Here
(​ ​u​n​)​!​/​n ​=
​ ​(​lo​g ​n)​ -​ ​2n ​Lt
Un =
Lt ​(​log ​n​)​? ​= ​0 ​(​< ​1​)
Hence​, ​by ​Cauchy​'s​ ​root
n ​→ ​

test​, ​t​he ​given ​series ​converges​. ​(i​ i​)


Here
U​n ​= (1+​1​/
/n)​-2012
1:
Lt log ​n ​=
0]
1​1/7

tu, une fata,


soy
3/2

sau a ​fost
in
Lt (​u)​ n = Lt ​-
(1+1 ​nyn
which is < 1. Hence the given series is
convergent.
n​oo

Example 9.1​5. Discuss the nature of the


following series :

(​J.N.T.U.,
2006)
m 3+3++(99**+()*2* =
.6630) (6) 3 (1) 4 19.29
(​V.T.U.​,
2​006)

*See footnot​e p.
144.
INFINITE
SERIES
381

n
+​1

Solution​. ​(i​ ​) A
​ fter ​leaving ​the ​first ​term​, ​we
find ​that
*​"​, ​so ​that
n ​+ ​2​)

​ ​Lt
(​1​+1​ /​ n ​(​u​)n
​ ​= ​Lt
n​+ ​1​+​27n .
​ : ​By ​Cauchy​'​s ​root ​test​, ​the ​given ​series ​converges
for ​x ​< ​1 ​and ​diverges ​for ​x ​> ​1​.
n​+​1
When ​x ​= ​1​, ​4​,
​ 1​
n+

When ​x ​= ​1​, ​.​-​(​0​:​2​)


1​+

(​1​+​2​+​)
​ ​1​)
n+

n​os ​e​i

11
L​t ​n​in​=1

n

: ​Lt ​u ​== +​0. ​Si​nce ​u,​ does not tend to zero, &​u,​ is
divergent. ​Thus the given series converges for x < 1 and
diverges for x 2 1. ​(ii) Here (alt) = 0
​ t (un)n = Lt 1​+1​. 1 ​*= ​Lt
. L
[*. Lt nin=​1​]
n in
• ​The give​n series converges for x <
1 and di​ve​rges for x > 1. ​When x = 1, u =
4 * * - - [1 + ​1)
Taking ​Taking ​o​n L. (4.) = + (1+ 1)* = e 40
and finite. ​- By comparison test ​both Eu,
and Lu, behav​e alike.
​ 1). E​u,​ also diverges. Hence t​he
But Ev, = 2 is divergent (: ​p=
given series converges for x <1 ​and diverges for x 2 1.
=
= ​e ​= 0 and finite.
​ ​70​0​0​)
n n

+ ​1)​ 2+1​
'
n ​+1​
(iii) ​Here
n​+1

(i) Here --- (0 Sa+


(o,)* = (01) "[C+1) -21°+(14(1+4) -​-"
• ​Lt (,)o'* = 1- (e –
14--19<1
1:​: ​e​> 1]
n ​700

Thus the given series


converges.

PROBLEMS 9.6

Discuss the convergence of the following series


:

2.
1
(P.T.U.,
2005)​
L
(​l​og n)

3.
(P.T.U.,
2010)
+ ... + (> 0)
2
34

[(2n + 1) x)"
2​0
72
+1

(​V.T.U., 2007)
382
HIGHER ​ENGINEERING
​ HEMATICS
M​AT

9.12 ​ALTERNATING
SERIES

(​1​) ​Def​. ​A ​series i​ n ​which t​ he t​ erms a


​ re a
​ lternately ​positive ​or negative i​ s c​ alled ​an alternating
series.​
​ g ​+ ​Ug ​- ​U ​+ ​.​.. ​conver​ g
(​2​) ​Leibnitz​'​s ​series​. ​An ​alt​ernating s​ eries ​un -​ U ​ es i​ f
(i​ ​) ​each term ​is ​numerically l​ ess ​than ​its p
​ receding ​term,​ a
​ nd (​ ​ii​) ​Lt u
​ n
= ​0.​

an​d

o​r ​as
Lt u ​ n
​ ​70,​ ​the ​given ​series ​is ​oscillatory​.
n ​→ ​The ​given ​series ​is ​u​, ​-​u​, ​+

u​z​-​u,​ +
​ ​.​.​. ​Suppose
Lt ​u​n ​= ​0
n ​→ ​Consider ​the ​sum ​of ​2n ​terms​. ​It
can ​be ​written as
82n ​= ​(​uq-​ u
​ n​) ​+ ​(​ug-​ )​ ​+ ​.​.​. +
​ ​(​u​an​-​1​-​4​2n​)
San ​= ​4​,​- ​(​uz -​ ​ug) ​- (​ ​44 -​ ​ug)​ ​..​. -​ ​Uan ​By ​virtue of ​(​1​)​,
the ​expressions ​within ​the ​brackets ​in ​(​3​) ​and ​(​4​) ​are ​all ​positive​. ​. ​It ​follows
from ​(​3​) ​that ​s​. ​is ​positive ​and ​increases ​with ​n​. ​Also ​from ​(​4​)​, ​we ​note ​that
sy ​always ​remains ​less ​than ​u ​Hence ​s​.​, ​must ​tend ​to ​a ​fini​te ​limit​. ​Moreover
Lt ​Sun+1 ​= Lt (S2n + Ulin +1​)= ​Lt ​S​an + 0
Thus Lt sn tends to the same f​ini​te limit
whether n is even or odd. ​Hence the given series is
convergent. ​When
​ ​0, Lt San Lt S2n+1. ​The given series is
Lt ​Un
oscillatory.
[by (2)

Example 9.​16. Discuss the convergence of


the series
(i) 1 -
​ 2*​4*6
5 7 9 W
11
8
...

(ii) 102-1​0​3.3 ​* ​log 4


logo
(P.T.U.,
2010)
Solution​. (i​) The terms of the given series are alternately positive and negative;
each term is numerically

less than its preceding term


u​n ​= Un
​ -1 =

2​0​12
​ s

Also L​t ​u​n ​= Lt ​(1​/ \n) ​= 0. ​Hence by L​ei​bnitz's rule, the given
series is convergent. ​(ii)​ The terms of the given series are
alternately positive and negative and
​ 3 ​2n +
2​n + ​ 1_ ​"nun​-1" 2n2​n - 2​4nin -
1)
-6 <0 for n ​> 1​.

t.​ ​e​.,
n
.
2​n
=1+0
​ 3 ​u​n
2​n + <un​-1 for n > 1. ​Also Lt ​un
​ = Lt ​Hence by
Leibnitz's rule, the given series is oscillatory. ​(iii) T
​ he
terms of the given series are alternately positive and negative.
​ ., log (n + 2) > log (n + 1)
Also n + ​2 >n+​1​, ​i.e
i.e.,

log (n + 2)log (n + 1), 1.l.,


Un +1 < Un
and
​ t
Lt ​u, = L
​ 1)
" ​i​n log (​n +
Hence the given series is convergent.
INFINITE
SERIES
383
Example ​9​.​1​7​. E
​ xamine the ​character ​of t​ he
series

(i​ ​)
(-​ 1
​ ​)​^​-​1
2

(​-​1​)​" ​-
tema
(i​ i​)
<​x​< ​1.​
2​n -​ ​1
n​(​n-​ ​1)

n ​=
2

Solution​. ​(​i​) ​The ​terms ​of ​the ​given ​series ​are ​alternately ​positive ​and
negative​; ​each ​term ​is ​numerically ​less ​than ​its ​preceding ​term​.

1 ​-
Un​-1
2n ​- ​1
2n​- ​3​* ​(​2n​-​1​)​(n​-​3​)
But
Lt ​u ​= L
​ t ​-​1 ​= ​Lt ​-
which ​is ​not ​zero​. ​n
n - 2​n ​- 1 - 2 - 1​/n 2 H
​ ence the given series is

​The terms of the given series are


oscillatory. ​(ii)
alternately positive and negative
*
*​-1 "- ​l​(n - 2)x - n]
​ un-1-​n​in​-1​) (n-1) (n ​- 2​) = n​(n​-1) (n - ​2​)
un
"<0 ​f​or ​n​22,

Un < U​n​-1 for n 2 2. Also Lt u, ​= L​t = 0


no n + ​n(n ​-1) ​Hence
the given series is convergent.
(: 0<​x​< 1)

i.​ e
​ .,

(: 0​<x<
1)

PROBLEMS 9.7

Discuss the convergence of the following


series :

1.1- ​1-​1+.... ​(P.T.U.,


2009)
(V.​T.U.,
2010)

22!
RSO

6
1​1
16
2​1 2​6
2.1--13 +
​ elhi, 2002
...co. 3. 5​1​" (D ​ )
4. Ž (-19-

5.
-+... ​(Osmania, 2003)​ 6. 1-​2 3
-45​.. ​7. 1–2 **** *r**.**, (=<). (Cochin, 2005) & į
s​e non
. . ​. . . =​0 <<1). 10. (è love
2) - (hopa) (lang ) - (it loss) ​-
​ 2004
(V​.T.U., ​ ; Delhi,
2002)

9.13 SERIES OF POSITI​VE AND


NEGATIVE TERMS
The series of positive terms and the alternating series are special types of these
series with arbitrary signs.
Def. ​(1) ​If the series of arbitrary terms u; + u, +
such that the series ​1 uy | + |
ug ​+ ... + un + ... ​be
Uz | + | ug 1 + ... + | 4 | +.​.. ​is convergent, then the
series Xu, is said to b​e ​ab​so​lut​el​y convergent.
​ ​) If |​ | ​is divergent but Eu, is convergent, then Eu, is said to b
(2 ​ ec
​ ondit​ionally
co​nvergent.
For instance, the series
1
+
- ​.​.. ​is absolutely convergen​t, since the
series

1+*​+
... is known to be
convergent,
CONVERSE

384
HIGHER ​ENGINEERING
MATHEMATICS
Again​, ​since ​the ​alternating
series ​1 ​-
+
-
+​* ​- ​..​. ​is ​convergent​, ​and ​the ​series ​of
absolute ​values
+
+
+​.​.​. ​is ​divergent​, ​so ​the ​original ​series ​is ​conditionally
convergent​.
2
3
4
5

​ bsolutely c​ onvergent ​series ​is ​necessarily c​ onvergent b


Obs​. ​1​. ​An a ​ ut n
​ ot
conversely.​ L ​ et ​Zu ​be ​an ​absolutely convergent ​series​. ​Clearly
+ ​Ele +​ ​alig ​+ ​.​.. ​+​2​, ​+
.​..
sl ​ul​+ ​| ​42 ​| ​+ ​| ​Uz ​! ​+ ​.​.. ​+ ​1 ​url ​+ ​.​.​. ​which ​is ​known ​to
be ​convergent​. ​Hence ​the ​series ​Lu​, ​is ​also ​convergent​.
Obs​. ​2​. ​As ​the ​series ​II ​un | ​is ​of ​positive ​terms​, ​the ​tests ​already ​established ​for ​positive
term ​series ​can ​be ​applied ​to ​examin​e ​Su​, ​for ​its ​absolute ​convergence​. ​For instance​, ​Ratio ​test ​can ​be
restated ​as ​follows​:

The s​ eries
​ bsolutely c​ onvergent ​if L
is a ​ t
<​I​,

and i​ s d
​ ivergent ​if
Lt
1​! ​> ​1​. ​This t​ est ​fails w
​ hen ​the ​limit
is ​unity​.

Example ​9​.​18​. ​Examine t​ he ​following s​ eries ​for


convergence ​:
(​V​.T
​ .​ ​U.​ ​, ​2006)​
6​)​1​+​4 ​+​*​+​-​+​- ​+​.​co​m ​(ii) ​- ​1
+ ​2​) ​+​241 ​+ ​2 ​+ ​3​) ​- ​g ​1 + ​
​ ​2 ​+ ​3 +
4​) ​-

+ ​.​.​. ​which ​is​,


evidently
Solutio​n​. ​(​i) ​The ​series ​of
abso​lute ​terms ​is ​convergent​.
.​: ​the ​given ​series ​is ​absolutely ​c​onvergent ​and
hence ​it ​is ​convergent​.
(​ii)​ ​Here
=​(​-​13​-​1 ​n ​+ ​1​)​2
u​, =
​ (​ ​-​1 ​-1
​ ​(​1+
​ ​2+
​ ​3 ​+ ​.​.​. ​+
n​)

=​(​-​1
​ i
-​1 n ​ ​n ​+1​ )​
1 ​7
-​1
n

2​(​n +
​ ​1​)

20.​1​.​1​)​2 ​=
(​-​19-​ 1a, (Say).
Then
a​na

i.e.

2 (n + 1)2 (n + 2)2 ​00:1<4,. Also Lt - Lt n = 0.


Thus by Leibnitz's rule, La, and therefore Iu,
is convergent.
14,1 = 2 minTaking on = ., we
note that
Also

Since v, is ​divergent, therefo​re £ u | is


​ .​, ​Łu, is c​onvergent b​ut I | unl
also divergent. ​i.e
is ​divergent.
Thus the given series E​u i​ s conditionally
convergent.
Example 9.19​. Test whether the following series are absolutely convergent or
not?

(1)
(-​1)n-1
12
2n-1
=
n(log n)​

Solutio​n. (i​) Given series is


u.
INFINITE ​SERIES
385

1
= ​0
n7 ​2n​-​1 ​= ​0
This ​is ​an ​alternating ​series ​of ​which ​terms ​go ​on ​decreasing
and ​Lt ​4​, ​= ​Lt
. ​by ​Leibnitz​'​s ​rule​, ​Eu​,
c​onverges​.
1 ​1 ​1 ​The
series ​of ​abs​olu​te ​terms ​is ​1 ​+ ​+ ​+ ​.​.​.
3 ​57

Here ​un ​= ​2n1​, ​Taking


0​,​= ​, ​we ​have
L​# ​- ​.14 ( ​23​"​-​1​)​-​.​,​-​+0 and finite.
.:​by Comparison test, L​u,​ diverges (: EU,
diverges.
Hence the given series converges and the series of absolute terms diverges,
therefore the given series converges conditionally.
​ he terms of given series are alternately positive and negative. Also
(ii) T
each term is numerically less than ​the preceding term an​d Lt um 1= Lt [1​/​n
(log ​n)​ 1 = 0.
: ​by Leibnitz's rule, the ​given series
converges.
Als
o
so​meopata el logo de 5 – 105
2 = 0 and finite.
i​.e
​ ​., the series of abs​olute ​terms
converges.
Hence, the given series converges
absolutely.

9.14 POWER SERIES


(1) Def. A s​eries of the form a​, + 2 x + 2, *2 + ... + a, tem + ... ​where the a's
are independent of x, is called a ​power series ​in ​x. Such a series may converge for some or all ​values
of x.

(2) Interval of convergence ​In


the power series (​i)​, un =
0,*".
Un ​+1
= Lt ​"n +1*
—= L​t

un +​1
= 1,​ ​then by Ratio test, the series (1) converges, when ​l​x is
numerical​ly l​ess than 1​, ​i.​e.​,

​ d diverges for other


when | * | <​1/1 an
values.
Thus the power series (1) has an interva​l ​- 11 ​< x < 1/1 w
​ ithin which it converges and
diverges for values of x outside this interval. Such an interval is called the ​int​erval of convergence of
the power series.

Example 9.20​. State the values of x for which the following


series converge:
02​-*​**
za v**
30-​vjet.com Solution. (7) Here u.=1– 12–1 and
+2=(- 18 ***
Un +1

_* ​and
1
Lt
Lt ​- ​n+ 1​+1/n
I
= | ​X

72 +
by Ratio test the given series converges for | x | <1
and diverges for | x | > 1.
en sem

386
HIGHER ENGINEERING ​MATHEMATICS

Let ​us ex​amine ​the ​series ​for ​x ​= ​+​1​.


1 ​1 ​1 ​1 ​For ​ ​= ​1,​ ​the ​series ​reduces ​to ​1​- ​-​+ ​+ ​.​.​.
x
2 ​3 ​4 ​5 ​which ​is ​an a
​ lternating ​series ​and ​is ​convergent​.
1 ​1 ​1 ​1 ​For x​ ​=​-​1​, ​the ​series ​becomes ​- ​1​+
1 ​2 ​3 ​4 ​5 ​which ​is ​a ​divergent ​series ​as ​can ​be ​seen ​by ​comparison with ​p​-series
​ ​1​.
when ​p =
Hence ​the ​given ​series ​converges ​for ​- ​1​<​x​<​1​.
-
+
-
+
-
+
-​+

(i​ i​) ​Here


z​l​. =

n​(​1-​ ​x​)​"

n
-
C
LE

By ​Ratio ​test​, ​E​u​, ​converges ​for


1​, ​i​.​e​., ​| ​1​-​*​|​>​1

i​.e
​ ​.​, f​ or​-​1​>​1​-​2 ​>​1 ​or ​x <
​ ​0 ​and x​ ​> ​2​.
Let ​us ​examine ​the ​series ​for ​x ​= ​0 ​and ​x ​= ​2​.

1 ​1 ​1 ​For ​x ​= ​0​, ​the ​given ​series ​becomes ​1 ​+


ES ​? ​* ​2​*​34​*​*​* ​n ​wa
​ s
+ ​+​+​+ ​.​.​. ​+ ​which ​is ​a d
​ ive​rgent ​harmonic ​series​.
1 ​1 ​1 ​(​-​1​) ​ ​= ​2​, ​the ​given ​series ​becomes ​- ​1 ​+ ​It
​For x ​is ​an ​alternating ​series
which ​is ​convergent ​by ​Leibnitz​'​s ​ru​le
​ <
Un ​ u​ n
​ ​-​1 ​for ​all ​n a
​ nd ​Lt ​un
​ ​= ​0​.​]
.​.​+
-
+

Hence ​the ​given ​series ​converges ​for ​x ​< ​0 ​and ​< ​> ​2​.

Example ​9​.​2​1​. T ​ est t​ he s​ eries


=​= ​.​.​. f​ or a
​ bsolute c​ onvergence and c​ onditional c​ onvergence.​

​ .​ ​U.​ ​, ​2010)​
(​V​.T

(​-​1​)​"
+​1
​ ​= ​(​-​191​-​1 ​-
Solution​. ​We ​have ​u,
LLLLLLL​L

n+ ​ 1​ )​
(2​ n
​ ​+ ​3​)

1​)
+​1
J​(2
​ n ​+​1​)
N00


2​+​1​/n
2 ​+ ​3/​ n
​ )​

Hen​ce ​the ​given s​ eries ​is ​absolutely ​convergent f​ or ​| ​x ​| ​<​1 a


​ nd ​is
divergent ​for ​| ​*​|​>​1 a
​ nd ​the ​test ​fails ​for ​1 ​x ​1 ​= ​1​.
(-​ ​12​-​1
​ ​1,​
Forx=
Since ​2n ​+ ​1​<​2n + ​3 ​or ​(​2n ​+ ​1​)​-​1​/​2​> ​(​2n ​+ ​3​)​- ​1​/​2
​ n+
(2 ​ ​1​)
i​.e
​ ​.​,
u​n ​> ​Un
​ t
​ ​. ​Also ​Lt
n​o
= ​Lt ​n →
=
= ​0
​ 1
(2n +

​ rgent by Leibnitz's test.


.. ​the series is con​ve

.> :). Also Lt. x. = . LtMen + 1 = 0. ​the +​.. has un-


vent) Hon vetlin)
But
INFINITE
SERIES
387

On ​comparing ​it ​with ​vn ​= [u, is


div​ergent. ​Hence the ​given series is
conditionally convergent for x = 1. ​For
x =- 1, the series becomes - ( The
T​e ​* 5+.​.​.)
For ​x=​-1,​ the series becomes

But we have seen that the


series
t​..​. is divergent.
17

Hence​, the given series is divergent


when ​x =​- 1.

9.15 (1) CONVERGENCE OF


EXPONENTIAL SERIES
​ x
The series 1 +
+
+ .​.​. +
+ ... o​o is convergent for all
values of x.
​ .​ T.U.,
(J.N
2006)

-
- ​Lt x = 0
Her​e ​Lt Un+1 ​=
Lt |
nun​n ​n ​n ​- 1)! no​n ​Hence the series
converges, whatever be the value of x. ​(2)

Convergence of logarithmic
series
The
series x
-
+​-18
...cis convergent ​for
– 1<x51.
IL DE​T ​LE

​ n
nn ​ n+
​ 1 ​( 1​
​ ​n ​+​1
no
1+​1/n
(-​ 1)"+1
+1 ​Her​e
n ​Lt
"n+1 = Lt (​1​) *​*
=-* Lt =-* Lt
n

Hence the series converges for ' * [<1 and


diverges f​or * | > ​1. ​When x = 1, the series bein​g
1 ​- 2+ ​- + ..., ​is convergent. ​When x =-1, the
series being - (1+*+*+ 4 + ..​.), i​s div​ergent.
Hence the series converges for ​-1<x1. ​(3) Convergence of
binomial series
n(n-​1​)
​ ​-1)... (n-r+
n(n ​ ​1​)
The series 1 + nx​ +
x + .​.. + ​=

converges for ​| *
|<​1.​
n(n-​ 1)... (​n-r)
n(n​-1)​... ​(n-​1​+1) ​=
Her
e
r​-l​and

U​,=
(​-​1)!
n
+1
1​+1
ne​r +1 ​Lt
= Lt.
X​= Lt ​| ​r​u​r 00
10 ​T
--1
​ 1.
* = -x for r> ​n +

Hence, the series


converges f​or |*|<1.
PROBLEMS 9.8

nvergenc
e : 6 EV
(-12-1
(-1)=1

E
STER
(Rohtak,
2006 S)
1. Test the following series for conditional convergence :
(1)
Vh ​sin 2x sin 3x 2. Prove that the series sin x
-... converges
absolutely.
3
3
7​3 ​3. Test the following series for conditional
convergence :
( 01-11-1
1_1 1.3 1.3.5 ​P
2​P 3P 4P
2 2.4 2.4​.​6​***
+ .​.​. ​00

388
HIGHER ​ENGINEERING
MATHEMATICS

GE
D​? ​4​. ​Discuss ​the ​absolute ​convergence ​of ​(​1)​
(​Hissar,​ 2
​ 005
S)​
Vas
+​1​)
V​eep
+​1​)
(​38
+1​)
5​. ​Find ​the ​nature ​of ​the ​series
(​V​.​T​.​U.​ ​,
2009​)
1​-​2

6​. ​For ​what ​values ​of ​x ​are ​the ​following ​series


convergent ​:

​ .​ T
(P ​ ​.U
​ ​.,​ ​2009 ​S;​
V​.T
​ ​.​U​.​, ​2008)​
12

(​a)​
=
72

7​. ​Find ​the ​radius ​of ​convergence ​of ​the


series
(​Calicut,​
2005)​

8​. ​Prove ​that


+​1
+​2
+​3​+​7​+
4
5
+​.​.​. ​Is ​a ​divergent
series​.

9​. ​Test ​the ​series ​1 ​-


-
212 ​313 ​4​/​4 ​(​1​) ​absolute ​convergence ​and ​(​ii)​
conditional ​convergenee​.
(​V​.​T.​ U
​ L​, ​2007:​ ​Rohtak​,
2005)​

9​.​16 ​PROCEDU​RE ​FOR ​TESTING ​A ​SERIES ​FOR


CONVERGENCE

First ​see ​whether ​the ​given ​series ​is ​(​i​) ​a ​series ​with
terms ​alternately ​positive ​and ​negative​;
(​i)​ ​a ​series ​of ​positive ​terms
ex​cl​uding ​power ​series ​; ​o​r ​(​iii​) ​a ​power ​series​.
For ​alternating s​ eries (​ ​i)​ ​, ​apply ​the ​Leibnitz​'​s ​rule ​(​8 ​9​.​12​)​.
For s​ eries (​ i​ i​)​, ​first ​find u
​ ​, ​and ​if ​possib​le ​evalua​te ​L​t ​u​, ​If ​Lt ​u​, ​70​, ​t​he ​series
is ​divergent​. ​I​f ​Lt ​u​, ​= ​0​, ​comp​are ​E​u​, ​with ​2​1/​ ​n​and ​a​pp​l​y ​the ​comparison ​tests ​(​$ ​9​.​6​)​.
If ​the ​comparison ​tests ​are ​not ​applicable​, ​apply ​the ​Ratio ​t​est ​(8 ​ ​9​.​9​)​, ​If ​Lt ​u ​lu ​=
1​, ​i​.​e.​ ​, ​the ​ratio ​test ​fails​, ​apply ​Raabe​'​s ​teat ​(​8 ​9​.​10​)​. ​If ​Raabe​'​s ​test ​fails ​for ​a ​similar ​reason​,
apply ​Logarithmic ​t​est ​(​$ ​9​.​10​)​. ​If ​this ​also ​fails​, ​apply ​Cauchy​'​s ​root ​test ​(​8 ​9​.​11​)​.
F​or ​the p
​ ower s​ eries ​(​ii)​ ,​ ​apply ​the ​Ratio ​test ​as ​in ​$ 9 ​ ​.​14​. ​If ​the ​Ratio ​test ​fa​i​ls​,
examine ​the ​series ​as ​in c​ ase ​(i​ i)​ ​above​.

PROBLEMS
9​.​9

Test ​the ​convergence ​of ​the ​following


series ​:
2 ​-
2
​ smania​, ​1999)​
-​1 ​(​>​0​)​. ​(O

1​-
Nnt1
n​=​1
4
+​1
123 ​1​+​12 ​ ​+​213 ​1 ​+
1
314
& ​Livi​* ​2​: ​V2
3​*​3​*
1​+
1
2​+
2
3 ​+ ​13

nx ​In​+ ​1Xn​+ ​2​) ​(>


​ ​0​)​.
02

8​.
5​272

n
(​2n​-​12
gn
INFINITE
SERIES
389

11​.
(​3x ​+

5​)​" ​(n
+ ​1​)​!
12​.
(​x ​+
2​)"​
3 ​n
6​-​1
9​"
log ​72

14​. ​(​-​1​)"​
sin
nx

1​2​-​1 ​V3
1
14 ​= ​1
1​-​1 ​+ ​.​.​.​.​. ​(​V​.​T​.​U​.​,
2003​)
16
.
33​-​1
- ​i​n l​ og ​n​) ​(​log ​log ​n​)
4​-​1 ​53
​ 7
4

9​.​17 ​UNIFORM
CONVERGENCE

Let

(​x​) ​+ ​ug​(​x​) ​+ ​.​.​.​..


= į , (x)
n=1

.​..
(1)
be an infinite series o​f fun​ctions each of which is
- ​

​ ., 8, (​) ​= (x) + u2​(​x) + ...


de​fi​ned in the interva​l (​a,b)​ .​ Lets (1) be the sum of its first n ​term​s, ​i.e
+u,(x)
At some point x ​= xp, if Lt s. (x) = s(x), ​then the series (1) is said to
converge to sum ​s(x,) at that point. This means at x = x, given a positive number E, ​we can

find a number N such th​at | s(x,)-S (x ) 1 <£ ​for ​n >N
.​..(2) ​Evidently N will depend on e but generally it will also depend on x,. Now if we keep the same
s but take ​some other value x, of x for whic​h (1) i​s convergent, then we may have to chan​ge ​N
for the inequality ​(​2​) to hold. ​If we wish to appro​xima​te the sum s(x) of the series by its partial
sums s (​x)​, we shall require different partial ​sums at different points of the interval and the
problem will become quite complicated. If, however, we choose an N ​which is independent of the values
​ N) approxi ​mates to ​s(x) for all val​ues
of x, the problem becomes simpler. Then the partial sum s (c), ​(nu >
​ ​and e is ​unif​orm throughout this interval. Thus we have
of ​x i​n the interval ​(a, b)
​ ​iformly c​onvergent in the ​in​terval (a, b), if for a given € > 0, a
Definit​io​n​. The series Xu,​ (x​) is said to be un ​
number N can be foun​d ​independent of X​, su​ch that for every​ ​x in the interval (a, b),
s(x)-s, (x) < € for all ​n > N.​ E
​ xample 9.21​. Examine the
geometric series 1 ​+x+m2+ ..​. +​-14.​..for uniform convergence in the ​interval ( 1​)
Solution. We
have
(x) = 1 + x + x2 +
... + to
1

an
d
s(v) = Lt
isla– 6,6) 1
=
1-2 for 1 x | <1 ​6*1​-" which will be < e, if | x |" <e
(1 - 1)

or
1-​1 ​1- x
Choose N such that l x IN= € (1 - x)
N = log (€ (​1 ​- x)​)/ l​ og | * | ​Evidently N increases with the
increase ​of | x | and in the interval - S​x​s, ​it assumes a maximum ​value ​N = log
(ε/2l​ og į at x = { for a given €.
Thus | s(x​) – $​(x) | <ą for all n 2 ​N'​ for every value of x in the
interval (1,1). ​Hence
the geometric series converges
uniformly in the interval (-​1​,​3).
$
1

Ob​s. The gcometric series though convergent in the interual (1, 1), is not uniformly
convergent in this interval, ​since we cannot find a fixed number N for everyx in this interval
6. ​N ​given by ( ) --> as
1)..
390
HIGHER ​ENGINEERING
MATHEMATICS

9.18 ​WEIERSTRASS​'​S
M​-​TEST​*
A ​series E​ u,​ ​(​x​) i​ s u
​ niformly ​convergent ​in ​an i​ nterval ​(​a​, b ​ )​ ,​ ​if t​ here ​exists
a c​ onvergent series E​ M​, o ​ f ​positive c​ onstants ​such ​that u​ n​ ​(​x​) ​| ​S​M ​for ​all ​values o​ f x​ i​ n (​ ​a,​ ​b)​ ​.
Since ​SM ​is ​convergent​, ​therefore​, ​for ​a ​given ​€ ​> ​0​, ​we ​can ​find ​a
number ​N​, ​such ​that ​s​-​S1 ​<​for e​ ver​y ​n >​ N ​ here ​s ​= M​, + M, + ... + ​M, +
​ ​, w ​ ​Mn + ​ 1 + ... and
sn= M, + M, + ... + M.
This impli​es that | Mn+1​+M​n +​2 ​+ ... <​e for
every ​n > N. ​Since 1 u(x) | SM,
U​n+1(x) | +un+ 2(x) + ... I S un+ z(x)] + | Un+
2(x) + ...
SM + ​ ... <​e for every ​n > N. ​s(x)-s, (x) | <ɛ ​for every ​n ​> ​N​,
​ ​1​+​M+2+
where s(x) is the sum of the series E​u,​ (x). ​Since ​N d ​ oes not
depend on x, the series Eu, (x) converges uniforml​y in (​a,b)​. ​Obs. E​u​, (x​)
is also absolutely convergent for ever​yx​, since ​14,(x) | SM
Example 9.22​. Show that the following series converges uniformly in any interval: ​(1) 5
cos nx (A​ndhra, 1999) (​ i​i) -​ 3.42

values

Solution. (i) cos ne - cos ​p​å I​s ​=MQ) for


all values of x. Since ​M ​= & converges for
p >1,
Since
converges for p > 1, ​n=​ 1 ​. ​By M-test, the given series
converges uniformly for all real values of x and p > 1. ​(ii​) For all values of
x, n3 +n4x2 > n3

(=M.). But EM, b​eing ​p-​series with ​p ​> 1, is


convergent.

.​.By M-test, the gi​ven series converges uniformly in


any interval. ​Example 9.23​. Examine the following
series for uniform convergence : ​6 § ​sin (nx + ​x​)
2 (P.T.U., 2009)
(ii) ​E ​n(n ​+ 2)
(P.T.​U.​ , 2005 S)​

​ 2)
non +
na + 2n

Si​nce

Solution. (6) sin (nx + xo) |_| sin


(nx + x) | 1
(1)
10m+2) =
-) for all real x. ​

(= ​Mn​) for all


real x.

Since 3 ​M​, i​ s convergent, therefor​e, by ​M-​ test, ​the given series is


uniformly convergent for

all real values


of x.
(ii)​ For all real values of x​, x2 > 0​, i.e.,
​ n​9x​220

P + n°a? 2np or met het


my CM) ​S​i​nc​e Ë M, - is convergent for
p > 1,
i.​e.,

I​S C​OD
n​o
=1

.. ​by M-test, the given series is uniformly convergent for all real va​l​ues
of x and p > 1.

* Named after the great German math​ematicia​n ​Karl Weierstrass​ ​(181​5–1897) who made basic
​ proximation theory, Differential geometry and ​Calculu​s of variations. He
contributions to Calculus, ​Ap
was also one of the founders of Complex ​analysis.
INFINITE
SERIES
391

​ s
Hou
-​ZS ​L​it
​ e

9​.​19 ​PROPERTIES ​OF ​UNIFORMLY


CONVERGENT ​SERIES
I.​ I​ f t​ he s​ eries ​Eu,​ (​ ​x​) ​converges u ​ niformly ​to s​ um s​ (​ ​x)​ ​in t​ he ​interval ​(a ​ ​, ​b​) a
​ nd
each o​ f t​ he ​functions u ​ ,​ (​ ​x​) ​is ​continuous ​in t​ his i​ nterval,​ t​ hen t​ he ​sum s​ (​ ​x​) i​ s a
​ lso ​continuous ​in ​(a ​ ,​
b​).​
II​. I​ f ​the s​ eries ​Eu​, ​(​x​) ​converges ​uniformly i​ n t​ he ​interval ​(a
​ ,​ b
​ )​ a
​ nd e
​ ach ​of t​ he
functions ​un(​ ​x​) i​ s
hen t​ he ​series ​can ​be i​ ntegrated t​ erm ​by
term

i.​ ​e​.​,
[ ​[​u​(​x​) ​+ ​Uz​ ​(​x​) ​+ ​..​ ​.​) ​dx ​= ​4​(​x​) ​dx ​+ ​Luz​(​x​) ​dx​ ​+​... I​ II. If
Eu ​(x​) is a convergent series having continuous derivatives of its terms, and the series Lu (​ x)
​ tiated term by term
converges uniformly, then the series can be differen

4 lu () + 2(x)+ ..] ​= ​u​(​x) +


(x​) + ..
pb

Example 9.24​. Pro​ve that S


(23 dx = {
n(​n ​+ 1)

Solution​.
* 1 s 1 for O5xs1
for 0 <x​< 1​. But SM
is a convergent series.

.​. by M-test, the series 2​(x"In?​ ) is uniformly convergent in 0 SxS 1. Also


x"In​2 is continu​ous in ​this ​interval.
.. ​the series ​(x"In2)​ c​an be integrated term by term in the
inter​val 0 SX S1.

i.​e​.​,
li (23dx = E(L dx) - 2 (71* ** dx) = 2 ->
0+1)
Imp. Obs​. There is no relation between absolute and uniform convergence. ​In fact, a series
may converge absolutely but not uniformly while another series may converge uniformly but not
absolutely.
For instance, the series
1 1 1 ​*2 +1
= ... can be seen to converge uniformly but not absolutely, while the
series 212 +2 22 +3

3
+
2+1
... can be shown to converg​e absolutely but not
uniformly.
11​.

PROBLEMS 9.10

Test for uniform convergence the


series:

1. S​e
22
N​in2

6
sin *
sin 2x
s​in 3x
sin 4x
​ .U., 2003​; Andhra,
(​P.T
2000)

COS X
cos 30 cos 52
s
in 2x 4. sin se
2
4
sin 3x
313
sin 4x
47
t ​COS 5
22

2 5 + ​10+.+ m2 ​7. Show that


the series sin në and X
cos no converge uniformly for all real values of 0 if 0
<r<1.

8. Show that

W
9. Prove
that
+ ... converges uniformly in the interval x 20 but not absolutely. ​3+2 4+ 2

is uniformly convergent for all real values of x.


is uniformly
ennvere n(1 + nx?)
LS
2​1 + 7230
392
HIGHER ​ENGINEERING
MATHEMATICS

10​. ​Examine ​the ​following ​series ​for ​uniform


convergence ​:

​ ​)
(a
cos​(x​ 2 ​+
n2x​)
n2 ​+ ​2​)
=​]
11​. ​Show ​that

(​)
2
*​* ​dx = ​1 ​-​3​.​31​*​5​.​51
7​.​71 ​*​*​*
2​71 +​ ​.​.​co​;
(​w​)
sin ​ne
100​=​2

2​. ​(​2n ​-
134
m​u

9​.​20 ​OBJECTIVE ​TYPE ​OF


QUESTIONS

PROBLEMS ​9​.​11

Choose t​ he ​correct ​answer or f​ ill up the ​blanks i​ n ​each o


​ f t​ he
following ​problems:​

1​. ​The ​series


+
+ ​.​.​. ​converges ​if

(​a)​ ​p​>​0
(​6)​ ​p <
​ ​1
(​c)​ p
​ >
​ ​1
​ ​) ​ps​l.​
(d
2​. ​The
series
(​2x​)​"
converges
if

​ ​)​-​15x31
(a
(​c​) ​-​2 ​<​<​2
*
IA

2 ​3 ​4 ​5 ​ 8​. ​The ​series ​2​-​2​+​222


+ ​.​.​. ​is
(​a​) conditionally
convergent
(​b​) ​absolutely
convergent ​(​c​) ​divergent
(​d)​ ​none ​of
the ​above​. ​4​. Which ​one ​of ​the ​following s​ eries ​is ​not
c​onvergent ​?


21​/​2​*​313 ​414
+ ​.​.
1 ​1 ​1 1 ​(​c​)
​ ​3 ​+​4
2
+ ​.​.​.​091 ​(​d​)
x​+​2 ​+​3 ​+​4 ​+ ​.​.​. ​as ​where
<​1​.

5​. ​The ​sum ​of ​the ​alternating ​harmonic


series ​1 ​-
+

.​.​. ​is ​(a​) ​zero


(6)​
infinite
(​c​) ​log ​2 ​(​d​) ​not
defined ​as ​the ​series ​is ​not ​convergent​. ​6​. ​Let ​u​, ​b​e ​a ​series ​of
positive ​terms​. ​Given ​that ​w i​ s ​convergent ​and ​also

Lt ​2​+​1 ​exists​, ​then ​the ​said ​limit is



nh

(​a​) ​necessarily ​equal ​to ​1


(​1)​ ​necessarily ​greater
than ​1 ​(​c​) ​may ​be ​equal to ​1 ​or ​less ​than ​1
(​d)​ ​necessarily ​less
than ​1​.

(​c​) ​divergent​.
(​a​) ​convergent ​(​6)​ ​oscillatory

8​. ​1​- ​tato


8​. ​1 ​

sta ​+​..​.​is
+ ​is

(​a​)
oscillatory
(​c​) ​divergent
​ ​) ​conditionally ​convergent ​(​d​) ​absolutely ​convergent​.
(6
INFINITE ​SERIES
393

1 ​1 ​1 ​1 ​1 ​1 ​1 ​*​* ​22 ​324252​62​7282 ​.​.​. ​is ​(​a)​ ​condi​tionally ​convergent ​(​c​)


oscillatory
​ ​) ​convergent ​(​d​) ​divergent​.
(6

10​.
un

(​α​) ​Στη ​1
6​) ​Σ​.
,
20
+ ​1
n​(​n ​+ ​1​)
​ ​-​1​) ​n​=​0 ​11​.
(n ​If ​Eu ​is ​a ​convergent ​series ​of ​positive ​terms​, ​then ​Lt ​un i​ s

(​a​) ​1
(​6​) ​+ ​1
(​c​)​0
(​d)​ ​0​. ​12​. ​Geometric ​series ​1 ​+​*​+ ​*​2 ​+ ​.​.​. ​+ ​-​1​+ ​.​.​.​co
(​a​) ​converges ​in ​the ​interval ​.​..​.​.​..
(6​ ​) ​converges ​uniformly ​in t​ he ​interval ​.​.​..​..​,
(​V​.T​ ​.​U​.​, ​2010)​

13​. ​The ​series ​x​-


1
+ ​.​..
converges ​in ​the ​interval ​.​.​.​.​.​.
2
3
4

14​. ​If ​Lt


n
=​k​, ​then ​Xu​, ​converges ​for k​ ​.​.​.​.

15​. ​A ​sequence ​(​a​) ​is ​said ​to ​be ​bounded​, ​if ​there ​exists ​a ​number ​k ​such ​that ​for
ever​y n ​ ,
​ a
​ i​ s​.​. ​16​. ​The ​series ​2​-​5 ​+ ​3 ​+ ​2​-​5 ​+ ​3​-​5​+ ​.​.​. ​is​.​.​.​.​.​.​. ​(​Convergent ​etc​.​)
2

17​. ​The ​series ​1​+


+ ​..​.
converges ​for ​.​.​.
i
2​!
3​!
4!

18​. ​If ​Lt ​n ​n ​_​-​1​) ​=​k​, ​then ​u d


​ iverges ​for ​k ​.​.​.​.​.​.​.
n ​(​Un​+​1 ​19​. ​A ​sequence ​which ​is ​monotonic ​and ​bounded ​is ​.​.​.​.​.​.​.​.
9

20​. ​The ​series


+
1​.​2
3​.​4
= ​t​.​.​.​ois​.​.​..​.. ​(​Convergent ​etc​.​) ​5​.​6

эр ​24 ​Р​.

21​. ​The ​series


+ ​.​.​.
converges ​for​.
2​9

22​. ​The ​series


+ ​.​.. ​- ​is ​.​.​.​.​..​. ​(​Convergent ​etc​.​)

23​. ​The ​series


is​.​.​. ​(​Convergent ​etc​.​)

The ​series ​1 ​– ​} ​(​x - ​) ​+ ​1 ​6​-​2​. ​+ ​(​-​1​* ​6-​27


(​x ​- ​2​)​" ​+ ​.​.​. ​Do ​converges ​in ​the ​interval ​.​.​.​.​.​.

1
to

26​. ​Is ​the ​series


convergent​?

26​. ​The ​exponential ​series ​1 ​+ ​2 ​+


+ ​.​.​.
is ​absolutely ​convergent​.
True ​False​)
!
2​!
(​Convergent ​divergent​/​oscillatory​)
27​. ​The ​series
- ​+ ​.​.​. ​0​0 ​IS​.​.​. ​1​.​2 ​2​.​3 ​3​.​4 ​n(​ ​n​+​1​) ​28​. ​Is ​the series ​I​n t​ an ​1​/n
​ ​convergent ​?

29​. ​The series


conver​ges ​for ​x ​.​.​..​.​.

30​. ​The ​series


converges ​uniformly ​when ​x ​lies ​in ​the ​interval ​.​.​.​.​.
394
HIGHER ​ENGINEERING
MATHEMATICS

(​V​.7
​ .​U.​
2009​)
31​. ​Eve​ry ​absolutely ​convergent ​series ​is
necessarily
(​a)​ ​divergent
​ )
(6
c​onvergent ​(​c​) ​conditionally ​convergent
(​a)​ ​none ​of
these​.

32​. ​The ​convergence ​of ​the


series 1​-
2
.​.​. ​i​s ​tested
by
3 ​5
7 ​(​a​) ​Ratio ​test
(​6)​ ​Raabe​'​s ​test ​(​c​) Leibnitz​'​s
(​d​) ​Cauchy ​root
test​.
​ .​U.​ ​,
(​V​.T
2009​)
33​. ​The ​series
>
+ ​12
VV ​> ​O ​is

(​a​)
divergent
(​b)​
convergent
(​c​)
oscillatory
d​) ​none ​of
these​.
(​V​.​T.​ ​U.​ ​,
2010)​

(​c​) ​oscillatory
(​d)​ ​none ​of
these​.
(​a​) ​convergent ​(​b​) ​divergent

Š ​1​_ ​is
convergent​.
(​True ​or
False​)
2 ​(​lo​g ​n​)

You might also like