0% found this document useful (0 votes)
160 views6 pages

UNIT-6 Trigonometry

This document contains 20 trigonometry problems and their step-by-step solutions. It covers topics like proving trigonometric identities, relating trig functions to each other, and solving trigonometric equations. The problems progress from simpler to more complex and involve using trigonometric functions, identities, and relationships between functions.

Uploaded by

Harsh Bisla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
160 views6 pages

UNIT-6 Trigonometry

This document contains 20 trigonometry problems and their step-by-step solutions. It covers topics like proving trigonometric identities, relating trig functions to each other, and solving trigonometric equations. The problems progress from simpler to more complex and involve using trigonometric functions, identities, and relationships between functions.

Uploaded by

Harsh Bisla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 6

Downloaded From: http://www.cbseportal.

com

UNIT-6
TRIGONOMETRY

"The mathematician is fascinated with the marvelous beauty of the forms


he constructs, and in their beauty he finds everlasting truth."

1. If xcosθ – ysinθ = a, xsinθ + ycos θ = b, prove that x2+y2=a2+b2.

Ans: xcosθ - y sinθ = a


xsinθ + y cosθ = b
Squaring and adding
x2+y2=a2+b2.

2. Prove that sec2θ+cosec2θ can never be less than 2.

Ans: S.T Sec2θ + Cosec2θ can never be less than 2.


If possible let it be less than 2.
1 + Tan2θ + 1 + Cot2θ < 2.
 2 + Tan2θ + Cot2θ
 (Tanθ + Cotθ)2 < 2.
Which is not possible.

3. If sin = , show that 3cos-4cos3 = 0.

Ans: Sin  = ½
  = 30o
Substituting in place of  =30o. We get 0.

4. If 7sin2+3cos2 = 4, show that tan = .

1
Ans: If 7 Sin2 + 3 Cos2 = 4 S.T. Tan
3
7 Sin  + 3 Cos  = 4 (Sin  + Cos )
2 2 2 2

 3 Sin2 = Cos2

Sin 2 1
 =
Cos 2 3

38
Downloaded From: http://www.cbseportal.com

1
 Tan2 =
3

1
Tan =
3

5. If cos+sin = cos, prove that cos - sin = sin .

Ans: Cos + Sin = 2 Cos


 ( Cos + Sin)2 = 2Cos2
 Cos2 + Sin2+2Cos Sin = 2Cos2
 Cos2 - 2Cos Sin+ Sin2 = 2Sin2 2Sin2 = 2 - 2Cos2
 (Cos - Sin)2 = 2Sin2 1- Cos2 = Sin2 & 1 - Sin2 = Cos2
or Cos - Sin = 2 Sin.

6. If tanA+sinA=m and tanA-sinA=n, show that m2-n2 = 4

Ans: TanA + SinA = m TanA – SinA = n.


2 2
m -n =4 mn .
m2-n2= (TanA + SinA)2-(TanA - SinA)2
= 4 TanA SinA
RHS 4 mn = 4  TanA  SinA (TanA  SinA)
= 4 Tan 2 A  Sin 2 A
Sin 2 A  Sin 2 ACos 2 A
=4
Cos 2 A
Sin 4 A
=4
Cos 2 A
Sin 2 A
=4 = 4 TanA SinA
Cos 2 A
m2 – n2 = 4 mn

7. If secA= , prove that secA+tanA=2x or .

39
Downloaded From: http://www.cbseportal.com

1
Ans: Sec = x +
4x
1 2
 Sec2 =( x + ) (Sec2= 1 + Tan2)
4x
1 2
Tan2 = ( x + ) -1
4x
1 2
Tan2 = ( x - )
4x

1
Tan = + x -
4x

1 1
Sec + Tan = x + + x-
4x 4x
1
= 2x or
2x

8. If A, B are acute angles and sinA= cosB, then find the value of A+B.

Ans: A + B = 90o

9. a)Solve for , if tan5 = 1.

45
Ans: Tan 5 = 1 =  =9o.
5

Sin 1  Cos
b)Solve for  if 1  Cos  Sin
 4.

Sin 1  Cos
Ans:  4
1  Cos Sin

Sin 2   1(Cos) 2
4
Sin(1  Cos)

Sin 2   1  Cos 2   2Cos


4
Sin  SinCos

2  2Cos
4
Sin (1  Cos )

2  (1  Cos )
 4
Sin (1  Cos )

40
Downloaded From: http://www.cbseportal.com

2
 4
Sin

1
 Sin =
2
 Sin = Sin30
 = 30o

10. If

Cos Cos
Ans: m n
Cos Sin

Cos 2 Cos 2
m 2=
n 2=
Cos 2  Sin 2 

LHS = (m2+n2) Cos2 

 Cos 2 Cos 2 
 Cos 
2

 Cos  Sin  
2 2

 1 
Cos 2  Cos 2 
 Cos Sin 
2 2
= 

Cos 2
= =n2
Sin 2 
(m2+n2) Cos 2  =n2

11. If 7 cosec-3cot = 7, prove that 7cot - 3cosec = 3.

Ans: 7 Cosec-2Cot=7
P.T 7Cot - 3 Cosec=3
7 Cosec-3Cot=7
7Cosec-7=3Cot
7(Cosec-1)=3Cot
7(Cosec-1) (Cosec+1)=3Cot(Cosec+1)
7(Cosec2-1)=3Cot(Cosec+1)
7Cot2=3 Cot (Cosec+1)
7Cot= 3(Cosec+1)

41
Downloaded From: http://www.cbseportal.com

7Cot-3 Cosec=3

12. 2(sin 6+cos6) – 3(sin4+cos4)+1 = 0

Ans: (Sin2)3 + (Cos2)3-3 (Sin4+(Cos4)+1=0


Consider (Sin2)3 +(Cos2)3
(Sin2+Cos2)3-3 Sin2Cos2( Sin2+Cos2)
= 1- 3Sin2 Cos2
Sin4+Cos4(Sin2)2+(Cos2)2
= (Sin2+Cos2)2-2 Sin2 Cos2
= 1- 2 Sin2 Cos2
= 2(Sin6+Cos6)-3(Sin4+Cos4) +1
= 2 (1-3 Sin2 Cos2)-3 (1-2 Sin2+Cos2)+1

13. 5(sin8A- cos8A) = (2sin2A – 1) (1- 2sin2A cos2 A)

Ans: Proceed as in Question No.12

5
14. If tan = &  + =90o what is the value of cot.
6
Ans: Tan = 5 6 i.e. Cot = 5 6 Since  +  = 90o.

15. What is the value of tan in terms of sin.


Sin
Ans: Tan  = Cos
Sin
Tan  =
1  Sin 2

16. If Sec+Tan=4 find sin , cos

Ans: Sec  + Tan  = 4

1 Sin =4

Cos Cos

1  Sin
4
Cos
(1  Sin ) 2
  16
Cos 2

 apply (C & D)

42
Downloaded From: http://www.cbseportal.com

(1  Sin ) 2  Cos 2 16  1
= =
(1  Sin ) 2  Cos 2 16  1

2(1  Sin ) 17
 2 Sin (1  Sin ) =
15
1 17
 Sin =
15
15
Sin=
17
Cos = 1  Sin 2
2
 15  8
1   =
 17  17

p2 1
17. Sec+Tan=p, prove that sin =
p2 1

P2 1
Ans: Sec + Tan= P. P.T Sin=
P2 1
Proceed as in Question No.15

18. Prove geometrically the value of Sin 60o

Ans: Exercise for practice.


1  tan  3 1 sin 
19. If  ,show that =1
1  tan  3 1 cos 2
Ans: Exercise for practice.

2  2 1 
20. If 2x=sec and = tan ,then find the value of 2  x  2  . (Ans:1)
x  x 
Ans: Exercise for practice.

43

You might also like