0 ratings0% found this document useful (0 votes) 1K views48 pagesThermodynamics
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Engineering Thermodynamics
Tutorial Sheet 1
Non Flow Process & Working Substance-Air
QA perfect gas for which the ratio of specific heats is 14 occupies a volume of 0.06 m? at 10 bar
and 500 K. The gas undergoes an expansion to 0.3 m’, Assuming R=0.25 ki/kg K for gas, find the
heat absorbed or rejected by the gas for each of the following methods of expansion. (i) Constant
Pressure (ji) Isothermal (iii) Hyperbolic (iv) According to law Pv! 1? =¢ (v) Adiabatic
‘oan Porgest gan, reams edsel G7
Py = MRT |
Iwo 0°06 = an x 02S X SOD ? : 2
M=OUe ky
2 a ak
Jeo G-GaR > &
Om = OE gy 0-eoe BIT YeK v
Get = 0e7e kal ky k
S Te
(a) Sto Li- fe lobor= loo ela Veo-obm TreSoPK
i 4s
Ser tr Rake lobar, Vy =O. d™
Wo = PCY) = {oor x (93 — 0°06)
2
= 240 kt y [
- ac 2b 2
vw, = mGlh-D 77 he
= 0eUs ¢ 0-625 (25¥0~ $00)
O = wr My = boo +240
er tuo kT
"AH = madT
dh = Mop (TT) = ONE KORTE x C2ew~Suy)
= eyoke
() Tsotrounat
Sate ti. = (wba, Ye oem, T= SW k
cera Dat Corbheh) Vyeo-tm?
0-
Ww, = PY dl #)= foow x006 bn 9)
We Fes7 ke
OB. = Wh = 96ST bs
@) Hypebwbe (pv=c)
Gur on Detal go | Augporote pce bo Tre dard a,
wootheunal poten
} ”
Ge) Revstding 1 Law pyle (pvc)
Ti eso0 K
Sto = tbm, Yr owosm,
as ie 3
Stet 2i- AV = AY, , Vs oam
rer oot Egg rk
vy gee) . .
% = % CB) - yore (2%)ons
LN = hy o-asm
Be (EY = CR ~
loonn aos — [68:5 x 03
loon oe — [68'S XO
Os”
= 27-4 RI
V
ma bt) = OME x 0-620 x (uok-9 svn)
Yon 273s ke
@. = wr wy = 27-32 + 747
Bo = 60rlY RI
), Adiabatic Prowns
The head tramperd dump adinbahe’ pown & Yeo
Myer = me (ET)
0-4
_ 0:06 = 262-65
wu" = ss) * c
Oo owes (ape gm) = Te 8
Actkernaiwely \"
sy orb) = los-0d kg
P= Ck) = tox ($e eet)
o-
wo RY cBY, _ lomo xorot = jos-06 10:3
ve Wo oY
= 2 kFQ2 Air undergoes two processes in series
Process 1-2: expansion from 300 kPa, 0.019 mi/kg to 150 kPa, during which the pressure-volume
relation is P v=const,
Process 2-3: Constant pressure process to v3=v1.
Sketch the process on p-v diagram and determine the net work per unit mass of air in kW/kg,
assuming air as an ideal gas,
Solukwr,
P
tate Hyperbolic CTsetexmol ) expamou
Pia hey
2-B ie Osu Prenue hah
ghch Li Re zerkla, % = 0-019 "ig
Sto 2 PBA) P= Iso 4ePa,
= 5
saz 31 a = Isola p= Bj= 001m,
Prown 1-2:
= A® 30 * 0-019 orem’
Be = tb a AKER = 003
~ Py so /rp
: 002g
We = Wey (%) = 800 K O19 Dn (oe
= 39s bol
Procom 2-3
Wy, = ROKR) = Ix Cor0lg ~0-03¢')
=z — US bo | Ky
War = Wt
= Br (22)
= Py RT [hpQ:3 Air initially at 0.75 bar, 1000 K occupying a volume of 0.12 m* undergoes two processes. The
air is compressed isothermally until the volume is halved, then it undergoes a constant pressure
process until the volume is halved again. Assuming the ideal gas behaviour, sketch the process on p-
v diagram and determine
(@) the total work for the two processes (ii) the total heat transfer for the two processes
Lotutun
Proce |-2 1 Egetnewmal comronsum
2-8 Goutant Prue wolry
Stale |: P= OTS ban V, = 012m, T= lovo . 5
= 0-0b%m
Sia 2- = (or RMR Y) Vr=$\e
= 0.03"
Slate 3:~ Pa = Pa, ; Vy = LM = by =
Proous (2 ?
ae) i 4 2
Wa = AY, nC
; 0-06
= 7 KONL In a
= 608e ko *
2maCb-T) = et
Pe CET) e0 (y i tanitipians) vo
| =-6 kt
6.2 Ma = 6.28e
doal & epuol To
| [nete- change of; utteunal enw fon on ial fe,
| ger focan varourel perce , pecadine
| sntousl enoyy of omperaiare 01y-- )
| Proeen 2-3 1 Pve = AV)
pe PME Trl = Ist k fe
ve tel s
®
W, = BCR-Kw) = Id (OB - 0:06)
Tee Hseb, = malh-B)
For on Ga ON Rabe» Re 024k T ep,
Sn cruse. of; adlaal goo Wh our, Atal et “ta
y= MRT,
TS 8 Ore = om 01287 RIOD
me 0103186 be
yo = oo3ise xaos (TT)
23
Promina Proce we
(For Cota a
Ly,
5 2. = 4 HHS k
lood L
U = 0.03136 x O7IE X Com pave Jas? &7
237
iWon cc
$, = Yt 2: = ease + Cvs)
= - lew kT
Woo, Ave Gaatent phone poo
_ —h
a) CTs )
0: 03136 #005 ¥ (se -1oe2)
go =
23
= HICSS Rt
Co) fatal wee for fr pe
= Wot ay
©= 6-228 4 (Us)
= 0-728 kg
ii) fetal haat trope. fur tue pune,
= Gr Ss
= 76238 + C07)
> -21996 bg
QA A perfect gas undergoes a cycle comprised of three processes, It is first compressed isothermally
from 1 bar, 27°C to one-eighth of its initial volume, Energy is the added at constant pressure
increasing the temperature of the gas, and the cycle is completed by a reversible adiabatic expansion
to the original conditions, The isobaric specific heat capacity is 1.25 kW/kg K and the characteristic
gas constant is 0.5 kJ/kg K. Sketch the cycle on p-v diagram and calculate the following:
| (@ maximum cycle temperature (ii) the net work per unit mass
Setutun
Proum |-2' — Thotramal osmpenaur
a-3° Heat addubum al chnatonh pontine.
a-|: Adiobahe eepansu
Gp = bes I leg k
R= Of BI [hy
G-a = B
pele = OS
Oe = Or KT Ikp
|}ye Gems 1.
| a os 3
Ler ws Amira | runt man uf gan,
Pv mR T,
Ixy = 4x OX 36d}smS
= too kPa,
M
vi
Sta | Pye Shaw
omen eT (& Bray), W=by,
PVs
J
hv. = hy
ae loo %V)
Ye \ yall
av om (4% ) =
W, = 29
Me
Te 7
smiz aie & =
Provan |-21—
Po
v
T=
= pom
= hom,
TE2TC H Ber k,
= ovlerc mS
Tap?
wen k Pe
jv elicln (4h) = ~Biloae
bs
, Vy ad Us) ad1E
oe Ve ad ) m4
“;
‘aye
yi
Ve Y (
= g.usoe 4
8
tL
"
too NE
or)
QiNsok
al
689-3 kKMarymum Jemperarue of wa cycle = Tray = Th
= 6¢9.2 k
Mowcmum porwr 4, wre tyle Prop = Pah
= 20 f Py
WW, = CAM.) = Yoo (0°Ua0e — Olea)
= 194 ORT
Bs = MG(G—h) = Ie bern (6898 -30)
Suge 6 ko
Proun 27) ,
—— — fy,
Y, = AMe )
I
— BW x OUZog — [U2 KIS
= werowor si
x
$1)
Wi = 291-96 RF
Ld
64 = 9
Net 7 M 4 OE. yk Var = Ne Cc os tl
TNS FONG Y FPF HS
= IU 7ke
Nek sak bran is Beagie = Sear
= Ot at 8)
= 39 + 486-6 + O
=> \ITWYURS
Thue, [fd = SEMQ.5 A quantity of gas occupying a volume of 0.3 m’ at a pressure of | bar, and temperature of 20°C.
The gas is compressed isothermally to a pressure of 5 bar and then expanded adiabatically to its
initial volume, Assuming the ideal gas behaviour, determine for this quantity of gas (i) the mass of
gas (ii) the heat received or rejected during the compression (iii) the change of internal energy during
the expansion . Assume y=1.4 and Cy=1 kJ/kg K
Setubion The gas is amumad To behove Whe an Baal gay
Procom \-2 t Tootnermal Compr ur
2-3! Adiobali erwponne
q = | erly &
yey
Co
t= @ e
= J = 0-713
2 o Iv ° lek
Ra GGe £70743
¢ 0 -2es7 Ro) kek
Sto Li- Pi = took fa, yeosm>, 7 228K
gnie2in Pas km, hat (orbw= Au)
= 4
? ; Vg = V, = 0-37
Sie B!- Py Yq =
Proce Ind Ue = AY
a
Vi = loxdd _ o-0g m3
ee. 0:06
= PYin( = tones In(gee
= —4e-28 RT
PV = MRT) |
lox ose ™ KO-2ST HK 2A
ma 0-368 kp6. eee
Pawan 2-3
Be [20D
By = ate “
ab - &¥
| vw, = V- er
| Pa Yel = by!
B (oa t= sw x (0-06)!%
S28 KP
| a = smn (9:06)! =
ryt
ce
)
)
=
)
= - a bkQ6 A volume of 0.36 m? of a gas at 288 K and 1.03 bar is compressed reversibly and adiabatically
to 10 bar. It is then cooled at constant pressure to its original temperature after which it expands
isothermally. Find the heat transfer at constant pressure, the heat transfer during expansion and the
work transfer during eycle. Take y=1.41, R=0.287 ki/kg K
Solutwn Rvp = MRT,
103 PORE = MRO WTR 2E
m= 0-449 be '
Proeen I-21 Adtabahe compro us
2-3 Const Promur covlry
g-| +7 Tsotheunal expan
$ Ta
star (:- P, = loa kPa, Vy 20:36, T)=X€K
gta 2!- Pa lodokla , ayt= Ay =
state b!- Py=hr=tovo kfa , Pv, = AY, (B=T)
- #£ -9-
qwiek 2» Ge wa F o-7
Gaon = 407 = 0-9F7 wer) pk
1
Proc I-21 - Ayla RV
1. M 036 = o-oTle ms
Va= (7
OM)
bh. - 298 Tay
= w( By" (“38 bu
bh = $se-76 k
|
We = Pil “Ble ak (1,-T.)
© Yo Y-] i
= OUT 0-287 % Coep-cxe-o)
eg
“4/Procans2-3
plea
Ws = BOM ve)
QB, =m O(B-TL)
= ONG K 0-987 x (2H - <5B-E)
= Nig-iz kg
if
Now 2-) PM = hl
| Jos x0-26 = loo Wh
| V, = 0 102708 nt
| pees w= p.CYy-Ve) = love (0 -0370e — 0 -071e)
(2 = -ay. zie
fees Qe y= piv, on (Be
= [03x0 > tn tem)
> Sy. bs
Net wn Me + ow, + W,
= uw + (Ruue) C372)
= —3S-Lkege
Nek har eanufer = ‘So + 8,¢+ &,
= 0 +(air) F S428
= —te kgQ.7 An ideal gas with a molecular weight 6.5 kg/kmole is compressed in a reversible manner from
690 kPa and 277 K to a final specific volume of 0.49 m'/kg according to the relation,
P=561+200v+100v", where P is pressure in kPa and v is specific volume in m'/kg. The specific heat
at constant volume is 0.887 ki/kg K. Determine (i) final temperature (ii) initial specific volume (iii)
‘work done on system (iv) The heat transfer
be
Ry, 2313 Tenstck
Sube Pw aRT Re ee belt
Ra 1-279 kI/,
690 yas, = ].279 6277 Bre
B= OS1BS M?/ Ky
Stl 200%" + loors,2 = Stl +460 Cowen) +1a0(0¥7
s a
5 61705 kPa
Pv = RTL
e179 ONT = OPTS Te
ae Ue EK
Ya Cou + 200 + wo) Fe
Wa = S tae - -¥))
4 wr) +12 (w?-
ve SH CHEM) feo
wow o-siss
Ol (07-0135) +1 (o
hosts 4!
ay = 20-7 Rely
; g-8-277
au, = GCE T) = been CHEE O77)
= wot kel
a Uy ee = meas HOY)
= —SU-TY ky |pQ 8A fluid system undergoes @ non-flow process following the pressure volume relation as
P=4.5/V#2, where P js pressure in bar and V is volume in m'. During the process, the volume
changes from 0.12 m? to 0.04m' and the system rejected 40 kJ heat, Determine the following (i)
change in internal energy ({i) change in enthalpy
S ni 29S baw
Re Wyre LS 42
\
- [YS bar
Pho AS yr = S42 =
o-04
Fa Non-ftoo foam fi = faut (sw
4 Sa = favs (pay
WwW = (ees SG ape yetee av
dw = es sa) + acy) | *
. is (53) bg a@oo-on) |*
1037 #F
de At fw
yo = dt (-s10°37)
aus "70-37 ks
Change om Rntadhy
Methos T
——
R ur
dy + s (Pv)
sor)
J dit =
- w) + (ay)
WH, = W037 (usp x 0:04 ~3850 x01)
HoH = 4S 87 ke ©E
He utPv
dts d+ Pav-+vaP
L 2 au a
fan = fav J Pave J va?
1
» > R-2
Ap 4S bn 27
fre {rey a
7 whl Uys 2 2.) = 494-37 bo
we)
Py omd fy mem bar ea er
Py = MUS baw
ua au 2
fan = fat J Parr sve
\ ' f
vat, = uauaT e (-s10%4) tity
Werk, = usysT RSEngineering Thermodynamics
Tutorial Sheet 2
Non Flow Process & Working Substance-Steam
QI. One kg of steam at a pressure
of 10 bar exists at followin;
fraction, 0.8 (b) dry saturated (c)
der
18 conditions: (a) wet with dryness
temperature of steam is 200 °C, Determine specific volume,
ity, enthalpy, intemal energy and entropy in each case
@) P= bor, yao. From Steam Tablas ‘
= 0°tym/) = WORRY
YR ay = 0:8(0-194) Vy ‘ye 9
x Or ISSA? key Keg = Deis ko] ry
= 2139 kT
Ne hy tO Rey 4 Ihe
= 762-8 + 0-#( 2015-3)
= 2375-04 ka lky
us
By = 44a halk k
Ape = ZBTS-OU — [O00 ¥O-ISTTZ
= 2219 &Y dea | ky
A= bt Ay = 2189 + oF LY 4UE) = $6974 balty ,
a _ !
fot.
if ~ 6 4u2d Ay fimd
Onse 7
O) P= lobar, x= 4 om
US By = O14 mY ky tha hy = 2778-1 ka] kp [ steom taute
Us A-pw = 2778] —loronolay a rsey | kr )iy
A> Ay = 6: S87 ka |p k
f>4= iw = SHISGe kp fond
C) P=lobm , T= 200%
From Cieorm Tablas
weo20eom' lip A= 28279 by
95 =0:2.060 ™"/ Ky
ae 6690 ka Thy k
= 2927.9 ht | by
A= 6-694 kt Thy k
Ua h-pur = 2827-9 -lovond206
= 2621-9 ba |hp @
fod Ju =
Yo gsyy Replomnd
foe
0.2060Q2 Steam at 10 bar and 240°C is cooled under constant pressure until the steam becomes 0.8 dry.
Determine the initial and final specific volume and heat transfer per kg of steam,
Sour Sta = P= lobar Ty = 20°C
0-2060) Cayo-200) From Steam Tolslbs
.2397— 0° 2840
WB 2 012060 + (cae7 =) ?) 00%, | 250%
so
werl)| o-rve0 | 0:2397
A(eabtgy | -27°9 2qya-6
A a
= 0-22736 ™* Thy,
fy = 2ear.g (ners PTE) uoted)
(as -200)
= Mig. 6b kIT hy
soe PraPalobn, A= ok
From Skom “Totes
eX Ne Bgr
Ae lo baw 5)
= 0: (98
= o¢(oey) vy 08 ie
= 01S 2m Ip, Ap = eae "y
Reg = 2015-3 holy
AL > Ags + UC hye)
= 762.8 + 0-8 (2015-3)
= 2375. o4 Raley. °
AL- Ay
2237S OY — 2G 19-66
S oy, 62 ba] bp
Moll dt a
Ctate 4 amd Stale 2 are Pacated ut
Pa (0 bar an
State Lin obtamad by rowed of TY ,
ce Bw. TE Tazo w mot Shown on dioyram, is
Ti _ bf . ne duraung Ta200¢ 9 T2200
pron or be dou
Was Sepunh pad -Sta 2 in obtauned by antewedun 4
Pra loba and %=0-k
A, = 2920 ka |ip
A, 2 2380 by [ay
4 a hp,
= 23% ~ 2920
= S10 ke ye
Q.3 A pressure cooker contains 2 kg of steam at pressure of 5 bar and dryness fraction, 0.9. Find the
Quantity of heat which must be rejected so asthe quality of steam becomes 0.5 dry
Salut’ The beding of unter (food sbem una ppunure
Coke, Aakwo plae ot coutant. volume. 7
V=C amd othe man trophont Da proton & Comtanr
drove =
State (.- Pech | %=09
Fasm Stem Tales
At 5-0 ban
By = 0-375 onl ty hy = 650-25 hy
Ayy = Doms kal np
Ay) %0-9 (0-275)
OBB nb) ky
A= Gur +0: 9( PS) = 2037 8F bhp
(=
us
= 236q 1 RIN
205
She I- BLS,
Ta A pet; 2 Beare = sue O-RTEyy, = 0837S mt
rome [Real 8)
Ve [0-63 40-5
w7 [069 | S163
0:337S & os (qr)
W, = 06S nt | hy.
Bay son viterp toh
po Reg CT ae) (O67E-08) _ Rersh
= ON
(ovs69 0-693) id
&, (or 2.675bax)
Stop (MSH SHOP C2ETE- 2-H)
(27-26)
= UY 4s kal iy
iv (ab a67s bor)
= 2tI7B + (ity 2 277° D eae
1-29)
= ajisel ka) bp
Aye SIS poe (27D = lean kay
ase ec hte = ORS 7s x 0°33
a tsuarar Roly
GB, = MCR )= 2% (826-08)
= |653-76 kyQ4 One kg of steam undergoes a reversible isothermal process from 20 bar, 250°C to a pressure of
30 bar. Calculate the heat-flow and the work done. Show the process on T-s diagram.
Solyasr ‘=
Stat |:- P= 2obar, Te290°c
From Srtam Totes
% = oll ons hy
f= 290ns kolky
B= 6SUS kok
pe herp, = 2402-6 ~dwoV KOI)
= depos I] hy
saz 2: Pye Bobo Ta = 250°C
From Seon. tables
no = oroTee mp Ane 298 ka)ky
-
foe 69287 kalhe k
Up = Map, = DBS S — Bos x 010706 = 2644 ko
2 > Map =
q, = The-&) = (Q0+238) C6:287 - 6545)
Ves 13498 Ro hag
Uy = dey —2eeo Ss = —3ES AT) hep
aU =
Wye
= (UU) + Ma
ae (a yt
¥, 2 1
Wy 2 — FMS koh
=13y9y = Bb (ML 2 My
Moto D 7
Stale Ly bowted by mntoutctu® of f, 220 bar wa Maan euty
Qeor 2 le bocateet by sncterscctun of P= 20ban T= 2v'C cwwe
From Mothur diagrann 5
V=orlimj, hy = 2900 ka |hg A = 6S +9 Tega a)
Da 0TH y Ay = Des holy Are 628 43 Map 4Q, = Tlbandi) = sora oem 67
= ~ poy 45 lig
= APY,
= 240 — rowox oI!
= 26s ko | up
Vy
=
ure Arh
= 285y — 200d x 0:07
= 2c ae lig
4, = (Mey) + Me
W421 = Caeyc-ree) + Wy
Wy = 106-24 RT| hp
Ue =
Q5 A quantity of dry saturated steam occupies 0.396 m? at 15 bar. Determine the final condition of
steam if itis compressed until the volume is halved, if the compression is carried out (a) isothermally
(b) according to law pv=c. In case (a) determine the heat rejected and the work done during the
‘compression and in case (b) change in enthalpy, work transfer and heat transfer.
=
Solum (a) Togthoumal
Sate 1!- PpalSban, Mab
Fyom Geom Tables CTar = l9e-s%) IShar
en i 0-13. m? / kp teste
t= fy = aaa: keh 2 of
Am Ay = 6-44 halby K
|
w= Ay PB, = 2792-2 —I800 x0 +132 4
= ray. 2 kale |
3 |
a 1396 ™ = 3k
™= Te = Corsa Thy + |
_T |
seme BEM , BE m|
. _ 9066 m?/Rg
= 4 132) = 0r0 +T= Te 143°C
ppowo|-2 2 Berea a2 will do wsbaue
Prom Steam Fables
t= 1S bow
AT 1S-0 baw
BX Bey Vy = O° 12m [hy
D 606m ex, (0132) Ae = Puyea balay.
Ay SOT Ay = (3978 kal
Bp = sis kalhy k
er) aos (19973) + we
gg = WI8° Ih k
= leg sckslap
Bra Vi POS (U0) = ye kale
tre Apt = Nees — 157 * 0,066
= iigess RITA
4g. = Tlk) = es 173) Car b4ve)
; = —973-25 kal ry
wu, = Mg So ~ 2842 = — B7y 165 kaIpy
= (4) ae
egres = HoT fF Mo
=) MW = —Se-se ao) he
: T
(6) Hypeuroe
As the puta) phe w uncoryed , Bobar
A. valuna Of puspecnes waged St
Rernoris ba Adame
State 2 Bal, hm= hy
B® (4%) = xe,
Ppa Se bar
oe 4 (o- 182) = 0-066 m8 ug a0. 2 Py From. Steam Totes
2
fe Bo bow
0-06 ~ % ( 0-06677 ve, = 00667 mS/kip
mu 0-499 v
Ay = Jove. ¥ ka| hy
hg loe-4 # 0-890 (1795-7) Reg = NM 786-7 daly
= 27e0-25 o|by
Us Ap Pte = 279¢s 1 - BoB w0-066
= ose7. ws AT | kp
UW e WseT wr — 2942
= — 6-90 Ro |p
Vee bh (Be).
= [sex 0182 Mn ( 4)
— 137-24 balay
Ww
y = (uy) + Wa
= bas ¢ (187324)
= —luyeg ko) by
Apoh, = 27e5-1s- — 2792-2,
=~ 695 dylhy.Q.6 A closed system containing steam undergoes an isentropic expansion from an initial pressure
of 13 bar to 1.3 bar. If the steam is initially dry saturated, evaluate the index of expansion, work
done and heat supplied
Soluhior PA Bewhopu ows (42.=41) may be heppwoonted
dy qquabin PUM = ennai adam behuetn
ond T,
mihi R= bm =)
From Steam Tables
We 1:0 bo aN
‘By = Orist m4] Ry
fg = LIBS ba | ep r\
fy = 49S BI] k a
- %, = Os) m3] —___________,
Ay = 2187-6 kal by Ayo eas baby k ae
uy = Ay Pye, = 27876 —120 ROIS) = 2891-3 alg
Ste AI- Pa bSba, Asam 4y pet tn Tatty
= 1.325%"
Aa = 64k iy ee nol
shy we ARCO AST
Apg = 2238 10 +2 hy
bp = ORT ba) ep le
Bgg = S804 Ba Iip
Ar= Apt He Agr)
Gus = bae7 + 1 CS-8e4)
A> 0 96s]
Aye UNG + ogee ( 2238)
= 239 44 kT |b
Une Apo PV SB 2391-94 — 190K) OD
= 2242-4] ka | bp
Wm Ore6e CI) X I rms ay e&)nn
pwr= RO
Idx Cosi)” = 3 Chior
Totany 1p om aida we 5h
ne in ( lo)
An (7-b1793)
yn
Wy = }3on % O-IS] ~ 130 -@ (> (302.
Visy =)
= 344. 0S ka) kp
YW, = 2242p — 209)-3 = — BNE 89 tay
Wd,
% = & 4) te
Ve aug. ag -rauq0r = OTe tole
By Mellie daagwm.
Sion com be, homed by & eer
vitesecliin oleh
andl potunatum pe (4 >17-
7 A
Sta) Lime
“Prom Gate £, o eepe (sg) slen
a pl intent
Qa | Bbor cue -
From Mother Duyror Is
a =! Die miley Me Lamy wer
Ay = 2700 bo) by A, > 23¢5:0 kal
Be 6S kalye Amos boltyr
® , PES Ge 26
7 aa =
i OW = Tvey Maso wegeh N= Jo)
Tatory 499 of 4
| wy Pech jamxo-le
| \ ae PEG
= BT Yr ka lig
w= ARB =
[30 x /12
by —J
2790 — [3u0y 0-16 = AED Ah
Ups Ap hwe = 28 [30K PDS
(wo )=
2229 hol hy
— 353 ha bay
= (Uw) +
y (ve y) 2
asa ¢ 87142
Ie ya ao} ey
Q7 In a steam jacketed cylinder, steam from 5 bar to 1.2 bar expands according to law Pv''!=c.
Assuming that the initial dryness fraction 0.9, calculate the work done, heat supplied and change of
entropy during the expansion.
Sobukur State |1-
Pas bar,
BH)
® 0°9 (03%)
m= or3a7s ™m8/ hp.
A, = bYor2+ 09 (2108-5)
= 2597 es RI ky
hy bs)
237 Fe — SON 0-337T
Us
= 286-1 ko],
Ave Ir Bot4 0-904 96)
= 62259 ba] k,
my sod
From Steam tables
AT S-0 bow
a 0-375m3/ sa
hy = bYor2 bal yy al Doss ly
bee Velho} k, Byy? 961k
T
Sbar
Ibo.
@s%aim pth a= pall yf apebay
1:2 (ws) = 48H + O-teuG (ary 2)
= 24%-Y ba V hy
tee Aacpathe = 2380-4 —I20 x 2287)
= 2232-2 holy
doc. \:361 4 0-8649 (0:93%)
6 4se ka lie
Wo = Pity = Pee
n-)
SHR 0-387 — 120 RK} 2387
ea eee, ee
lu-)
= 2os-3K ko \ty
28\
(usu, ) = 2132-2 ~23@-)
i —\36-9 kg Vy
a = Gy) +
= 136-9 + 2.4
= bur ka |ep
M-A= 6-99 bt259
= ONT Rage
Q8 Steam at 14 bar is passed through a throttle valve with a pressure drop of 10 bar, The
temperature after throttling is 150 °C. Determine (i) dryness fraction before throttling (ji) specific
internal energy of steam before throttling.
Selutin stare (i Pye ben, Rim ha
Stotiz- Pra4ba, Thea Ive
| Becaun Ata 2 3 daguned Complatey
(Ly Hoe dndapendient Joroportia) |
Hwe andl plank be quastin AMM
| prte 2.
Gok 2:- Rekba B=!sve
From Steam Urey T abe
ta = 0-471 an [by
Ayam 2ISr-& kanye q we
Slob dy~ ebay, Ay adr Z
Aya 282-8 49 hyhia Ant % (Assy)
2752-¢= &30:3 + % (1904 D)
my = 9-4)
BX % Vz)
~ o-ge (oln)
= O19e32m Ty
ws Ay pw, =
= as-is koly
By Mots. Dapston
Statc 2 con ve ated by
sndescctum of, Pre Uborn wre
ond Tee Isvr'e . Cte
Thon deus a Aoiryontal Hove
pom Shas: 2 by duck rob
unterresd> Po IW bar awwe -
Fm Met dapamn -
a= OFesr
A, = 2790 nolty
Ue Ay - be, =
= Lesy holy
From. Steam Totes
Ar 14-0 bay
Ay =
1 Aye = 1aste7 ka bhp
Lys Ot m5 | ep
30-3 kal ke
27582-% — [Yor % 013832
A
ag
B= OY (ty
2980 — yuoK OLY
309 A rigid vessel of volume |_m? contains steam at 19 bar and 300 °C, The vessel is cooled until the
steam is just dry and saturated, Caleulate the mass of steam in the vessel, the final pressure of the
‘steam and the heat removed during the process,
Satis '- P= bar, T= 300°C.
From Steam Tele of 19bar
=O iY =
se otsay milty hye B026-Yeohy B= O-132u mee.
AS 026-4 holy
S30ve.
we ahh
= Borb-4 —[9und-192y¥ ae
= 2774-84 fa [te
3
lma¥ = lo, = TTS bp
| - + 7
| % O-way Pike
|
Sta 21- B= B, % =)
Wy = 01324 in, = Vpn
Sn Atom textos fer natwaked Ottom, Be value cf My 70am,
v te of |S bow From Shon Table (abba)
PL = IS bar Ag = 2792-2 olny
Aye 2792-2 haley
ws hh he
= LJ9v2 —Isevnois2
= 94-2 ka | yy T
S WAU, = 2342-27748
= = 130-64 ko] ky
8, = m4, )= 7-sv3 (-l8-64)
| SS _18by 87 Rg
“Prem _Metdu2s Dupom:- Sa L & boo
by wtesectur of Re ISbox ET Hew amyFon Stab 4, drow wee bn whic *&
unreureds paturclin Lume (1,= 1)
Ay = Bolo ksfly Ar= 2790 kolhy
Baw, = 0-12 dig Ps ISbow
A, PB, = Bolo [9veK0 1d
= 2763 bol
2730 —ISow0-13
Vy
ups Meo bY
= esas ka ly
y \o 5 7-692 by
BONS
= T1692 (ase 2763) = —128%" ed
O= ™ Cu-41)
Q10 Wet steam at 4bar is enclosed in a rigid chamber and heated. When the pressure reaches 10 bar,
the temperature is found to be 200 °C. Estimate the initial dryness fraction. The steam is now
5 4 bar, Estimate the final conditions. Also
expanded according to law pv'? = C till the pressure ii
compute the work done, the heat transferred and change in entropy in both the process.
Solum State (2- Pa4baw |
got 2'- Pe = lobo , T= 200°C
gan 3 i= Ppa dbor, — Pata = BON
Prot \-2! Cone volume haakmp
atin Pv oe
Becoun Atate 2 DB dokmast 5
Coenpulely ( dy wo Adupendent
prepertis ) wwe hove BD Atak
pom dete 2 rT
P= lobar Tr= 2ove
Stose 21-
wo = 0-2060 08 | kp Bat went *
Ape 2227-9 Ko Ip. At lobar & 20v%€
Ar = 6 694 ha] by Wy = 0/2060 MS) Ke
AL= 2927.9 bull
uae Aah fy = 6-694 ae i
& 2927-4 — ura x 02060
= 2621-9 kg ly| State yp
PraY bor, Bie,
WH = B.=0-20607™S
BR Hy, From Stam table
bt 40 baw
02060 x 7%4(0-48S) By = O° Ue am Bl
| % =o-vuyg he = bou-7 balip
Arg = 2163-8 kyl
fia bow zy oruung ( 2403-4) & = ee
| = Isyog oy, Ag 2S N9 Ralep k
Ave 1-777 + o-uyus (e119)
= Yrosy ra} hy
Us AyrR®, = 1554-08 — YoOR 0.2060
= U7), 6g ka Thy
Gate 8-4 bm, mS Pal
400% %!7 = loon x (0.2060)?
ss (12)"¥= or2060 = onan),
Wy Vay
O-Wyr & %y (O-UES) =) % XO GSue
hye 604-7 + 0 -45ure (2133'&)
= 2by27. 0 RI Tey
use tahdg = 2b¥2-0 —UOORO-HY2
= dosa ely
4s
»
\ 777 + 0-98uTe CSI) = 6. OY
ko
Bye
Proms (ot =P 34 2
yr
b-by = 6 IY —4ose =
Proven 2-3
pi Be
ws > © Bes
Wa = Ite bo | kp
f° = sta) + as
2 -loT7 aaltp
by by = bboy — b6IY =
Uw, 2626S — Fury ep = 11S0-22 KI] py |
aby ka hy k
p= Hemme |
tooo %_0:206
(ar)
: byes = 2601-9) ++ Ib
a 0:03 RI
few
QIIA vessel having a capacity of 0.6 m’ contains steam at 15 bar and 250 °C. Steam is blown off
until the pressure drops to 4 bar,
after which the valve is closed and steam is allowed to cool until the
pressure is 3 bar. Assuming that the expansion of the steam remaining in the vessel is isentropic
during blown-off period, calculate
(i) The mass of steam blown off.
(Gi) The dryness of steam after cooling.
(iii) The heat transferred during cooling process.
Stuhon = Ta = IS
Sto 21- Pp = 4b ,
State 3!- Py = Bbor
T22sve
Arad)
Vy Ur
Procos 1-2 Blolmp off procera (Baerdacbe)
2-3!
Stat i P= Sh Tre 20°C
Pum Stow alles at ISbar
& 2sn°e ~
®, = Oviszond [Ap
A, ama. 3 ho | ky
a. = 6-709 Rs/by K
Comatant volume. cooly
ON
2
a
3
34Sur 2 Rs Abor, 42>)
bo = 6708 Ro |e =A)
Prom sreamtattts of 4:0 bar
GIos—= N77 -4ACONG) | ye = 9.463 ntl
Ae = O-9GNF bp =P TIT hating
beg = SN kal iy
BS Lepr hy = Cow karly
% 0963 47( O'W) Ay = 188 hal
XT O'We am day
Ar = boW-7 +4 0-962u7 (21338)
= 260-S5 baliey
| Ur ahbhwh > 2AbbosD — Yoox Owes
|
= augat) Raley
Bye Ba = Oe mB/ kp
Stan 2: ee SbmM, a
| From Steam. fblts of 3 -Obta
|
|
|
|
VX wVya Vy = 0-606 m4 ily
ONG % % (0406) Ae SS ta lky
Ay = O-7389F hypo 2N6a-8 arly
ye SUS 0-787 62-9)
= Dsu-0 ka ly
Uy = 2STy — SV KOUUS
= 2020°2 ka) iy(a) mars ok beam —ewn off > Ma
_ Ob = 394
Mm, = 5 - olse 7 ’ ‘t
vob 134s by
™M > oS Owe
Hy -M, B97 — 1NS
= 2-602 ky
(8) dynam oh Atenrn afin, Corley =
Mz a 0 'T8SBF
un = Q
€) pas wonsponed dating ore Pe ~
4, = Ug Ua
* = p20 2. — WNED- 1)
~eeoey Ip blty
= mG )= 18 CHM
== 62), 2789Engineering Thermodynamics
Tutorial Sheet 3
First Law-Steady Flow & Unsteady Flow
QI. An air compressor is designed to compress atmospheric air( assumed to be at 100 kPa, 293 K) to
‘a pressure of 1 MPa. Heat losses to the environment are anticipated to be equal to 10% of the power
‘input to the compressor. The air enters at 50 m/s where the inlet area is 90 cm? and leaves at 120 m/s
through an area of 5 cm?, Determine the following, a) Exit air temperature. B)Power input to the
‘compressor.
Selurun At Tait i= P= look Pa T= 2k CLs sams
AL= 400 = Fox joctm™
ac Bribie Pe = tooo kPa Ce= f20™/s
Be = Some
-- Ww.
yao te
Aw eR 2 Joo RU, = OTK 2B
ca
a, = o-suog mI hy
: “4 ~
meohe&e = Foxe KSO Oss] ee
Be 0 84053
mo hee - osisis BSR KID0
Be > Be.
Wo oll m Ikp
Pe We=RTe =) Jove KON = 0-278 Te
Te = M0466 KW
2
=e 2 Ce! Plane
SPER py G + eee ter Bt ee ¢
P-8
charges ww Be amd PE
Negackup
” rot uw »
Ayr hed + ne +¥
»
GOT Te) + an Gigs lw_ 24% —390'66 sp? [20
Wo }oos (2 ) + aoa Ta (oe
Nw = - 104-07
an Wa 946% thy
Wa anw = 0-537 * (794-63)
=D bY kahee
Q2 Ina steady flow apparatus, 135 kI of work is done by each kg of fluid. The specific volume,
Pressure and velocity at the inlet are 0.37m'/kg , 600 kPa and l6m/s, It leaves the system at a
specific volume of 0.62 m'rkg, pressure of 100kPa, a velocity of 270mv/s. The inlet is 32m above the
floor, and the discharge pipe is at floor level, The heat loss between the inlet and discharge is ki/kg
of fluid, Determine the change in specific internal energy.
Syutur Ae Tet P= Goo ka B= O37 mS/ky Ge long
pr ourer(Be’) = fe lov kla Vem osim/iy Caz bron,
w= 12 kale 2,-Ze = 32%
a= —gkslhy
PEE. 2 gt
Am tee Ss ft taylt v
at qze 4W
= pet te t Sat (eo
- ww
a yea) 440
eth = (p.m -k¥) 4 CoS 4 ie
a, 9 8l ay
( Gooeo 37 — 100” a) + Ibert
dete =
ecad~ 09)
Se, ye 0 bol
38Q3 At inlet to a certain nozzle, the fluid parameters are:
Specific enthalpy = 2850 ki/kg, Velocity
Omn/s, Area = 0.1m’ Specific volume =0.18m'/kg.
‘At the discharge end, the specific enthalpy is 2650 kJ/kg and specific volume is 0.49m"/kg, The
‘nozzle is horizontal and there is negligible, heat loss from it. Calculate 4) Velocity of fluid at exiét
from the nozzle ¥) Mass flow rate of fluid.j) Exit area of the nozzle.
Sotuitaon
“tars C= Somls Aye OTM ™
he resvtly = orlemly
/ 29
| etd - Cee 2 &
he = 2650 bo ly
Sree fet rage
Be =0 saan iy
ua
220 4 SD
Lu
Co
= Um + Fes
co GSH HS M/S
Gi) oh Ane
E O:] «SD 27-78 wi
Be Orly
. : 2778 = Aer bi
Gi) me =) 0 +49
Ae = d-ouus me
39Q4 A steam turbine operates under steady flow conditions receiving steam at following state:-
Pressure =I Sbar, specific internal energy = 2700ki/kg,
specific volume = 0.17m*/kg Velocity =100m/s
‘The exhaust of steam from the turbine is at 0.1 bar, with specific internal energy ~ 2175 ki/kg,,
specific volume =15m°/kg and velocity = 300 mis. The intake is 3m above the exhaust, The turbine
develops 35kW and heat loss over the surface of turbine is 20 ki/kg. determine the steam flow rate
through the turbine.
At uilek P= Iso kPa UL_= 210d Aa |hp
DLS Lo Fly Cee ms
Ar er fos tok Pa Yes HIS pally
we = Ismify Ce Some |
as bhee 3 RS |
Zrte= om We Th Rpfpee RC
ISDORONT + 2262 + FE [ood
see ar et
waa
ft. aS, pigs the GER AMT Tee
Des + yee 4 WS |
{ose |
yor yp 9 81KS +(e) |
200 3S |
ot ap IE =
= lors 42198 S80 tm
-W)
oo SF Crores +0
2s 4 2IO® + as
SW FIT TIT Fae
om = 010614 ky [sew¥
Q5 A centrifugal air compressor delivers 15 kg of air/min. ‘The inlet and outlet conditions of air
a mis, P=I bar, vj=0.5 m’/kg, C.=80 m/s, P.=7 bar, ve"
enthalpy of air passing through the compressor is 160 kI/kg and heat loss to the
surrounding is 720 ki/min, Assuming that inlet and outlet are at same level, find(.) motor power
required to drive the compressor (_) ratio of inlet and outlet pipe diameters
Sotuhon Drs P= tow kha
Ee i- fee Too koe,
Cu=lom/s
Coz Bom/y,
herby = 60 roly /
B, =0.-0mS),
Bea O-is mS hy,
£3 /mn!
= ome = ek
y 1S by fama ‘e hy
chomp Ww PE ww Qo on antler amd earch are ar
Ao devel
2 a
we Arrke )+ ose meh
ws
2 2
= —|b60 +(e = 90 eto
we —2lnis ke hy
. . (mun HOR DRY
wea 2s AL x ES x Ghee =
7 Ae Ce
Gi) ome Aue Be
By
go 0's?
Ce Ke a
a 7 a ee Jo no-1S
e we a
Yyae 26 667-
AL 26-66 F re
Be. +
ae \ obs
ale.)
alQ 6 The mass rate of flow into a steam turbine is 1.5 kg/s, and the heat transfer from the turbine is
8.5 kW.The following data are known for the steam entering and leaving the turbine. Determine the
power output of the turbine.
Inlet Conditions Outlet Conditions
Pressure 2.0 MPa 0.1. MPa
‘Temperature 350°C |
Qual TO0%
‘Velocity 50 mis 200 mis
Elevation from reference plane 6m. 3m.
Selukun ft unot:- p= Oba TL = BSE
Ce sons Zpa om
From — Akeomtalt oF fl ee.
ALS BIBT 0 RT Wy [1mm = obo]
ye Bek Po = Abow, ‘pee t
Co = 26v™/§ Ze = 3™
Prom leon toile, of dba 2nd
he = MIT
SPER Ce” pZe WH
hee Ge + fe += fhe Soe *
2600 (get
ai bo [hp
ABS Thee Stet ly,
bs hee =
2 7 -3 S667
9, obo aeix (6 -
BIBT 0 + SOT 1
= uses +
42We STIL RT| hy
We Wr ye!
= 655°7 kW
Q.7 Steam at a pressure of 1.4 MPa, 300 ° C is flowing in a pipe. Connected to this pipe through a
valve is an evacuated tank. The valve is opened and the tank fills with steam until the pressure is 1.4
MPa, and then valve is closed. The process takes place adiabatically and kinetic energies and
potential energies are negligible. Determine the final temperature of the steam.
aus takomit Cm, rm) | 4 Me - BM, 0 "0
nor atonce F zo
Ce
Qey em, Chet er qa) = SMe Chet Seed
& 4 WwW,
+ [mala + oa 0925) — miu 7D ey ‘ ©
= = ~™ =>
Qu =o, Wey =8, meso ont (MM). =O
Cranypo we KE Omd PE are magpie
May Mhalomce egualim Fe? _
trong O me le
Enoxpy Botener quoi gee
fan 7@) any, OM Cao¥o4 —4,) = VY (2040-4 ~ 2549)
By os2y
ow (20¥0-u —Ur) = 37s+)
fore) = Ot (QomH—ay) =2761
5
Boo"C aeo°< —
we
onle23, : .
My D- 2003 O 217g
| h Boyo-y Syg.¢ 3257-6
sly
uw 2952-6
Why
few 24-8
bk.
Fiery, some. dee eo volun of FOU) tek the dete uF
% dear bear the Vous of Fombrrotua (any behveon 20%
and 499°C
45fiom unoar prterpdtoruss (ar (tbar & 340%)
= ONMGT Ply A= 3127-66 Koly
we 205203 Roly onc £Cyv) = 740
D Temperature fais Sehweon YORE and BSVC
vt Iba & 242°e ay = Orla? |y
Ap sev ksly we WSS br thy
pra Tempore = Tha 342°C, M2 = Jos tara. = 2026
mon g nkeorntfusws wis fhe tom = Ma = My -M) = 2-024— O-WUE
= [262 ky
Q9 Ina steady flow system, a substance flows at the rate of 300 kg/min. It enters at a pressure of 6
bar, a velocity of 300 mvs, specific internal energy 2000 ki/kg and specific volume 0.4 m'/kg. It
leaves the system at a pressure of 0.1 MPa, a velocity of 150 m/s, specific internal energy 1600 ki/kg,
and specific volume 1.2 m’vkg. The inlet is 10m above the outlet. During its passage through the
system, the substance has work transfer of 3 MW to the surroundings. Determine the heat transfer in
kI/see.
Solus) pt Tre - = SoD Rha , C, = Bovm/s
Us 20k} P= ous | hy
= OIMPe = Iovkla, , Ce= Iso m/s
At Brit .
Me = les ko \ey oe =homsly
Zp-Ze = 1m om 2 20° K/min = © “bee
jre 2éMw. 2ooo Pilbee gos kily
Spee Shp faee
Spee \- a!
ic Zp
Qe UR + Set 4yv
4 Ww
7 Ze
= Pete te + 4 ee
we
2
= (sp2—2
q= (Goxr2 — borrow) ae Clb —2050.) + pia
+ tein Cle) +, 400
\oso
Yo wWrls wale
46= Yous ks s
7 eo
= 230-76 kW
Q10. Air flows steadily at the rate of 0.4 kg/see through an air compressor entering at 6 m/s with a
pressure of | bar, specific volume 0.85 m'/kg. and leaving at 4.5 m/s, pressure of 7 bar and speci
volume 0.16 m'/kg. The internal energy of the air leaving is 90 greater than that of air entering.
Cooling water in a jacket surrounding the cylinder absorbs heat from the air at the rate of 60 ki/see.
Calculate the following(a)Power required to drive the compressor(b) Inlet and outlet pipe cross-
sectional area,
Sotutus -- At Tater P= wore , me ote hy
C.= mis
at ct fee Tokla, Ye= ouemily Ce= WS mis
ah = OUR fee Ue Me = 90 bay
“to kslsec a Id kT [ty
ou kpfsec
A Pee
Negle chap De one / i Wy
W a
Pe Up Ce Ga het © Fei +
2 ae
ate
w- Ge feise)) 4 Cu-Me) + as tL
2 L
Gus C1)
we [er vor ermrorid) + (90) + OSES
we -267 kg
%
Wa eee de ot be
aec
—lob6-F kW
47YY.
Q.11 An insulated tank of volume 1 m° contains dry saturated steam at 0.2 MPa. The tank is
connected to a line carrying steam at 350 °C and 3 MPa and is filled with steam till the pressure
reaches 3 MPa, Calculate the mass of steam in the tank at the end of filling operation and its
temperature.
Sdubm'- Man ens
(m,-™, )t Sme- Em =0 @
Raton
L
Q, + em(he Se g2u) = me Che + &', 92e)
Lu
8 [m (us Cog G22) — mC + 492) thy,
Me=o | Qy =O, Wyo
Chomgea om kG. and PE. Qe
mee cred
Eqpotws () gut
mM, -M = Me ®
Ruan ©) peo
mA, = mum 4, o
Cony = MUM,
ms Chp—Ur) =m (An -U,)D ®
Flom Steon fetos oF 2M (2bar) orol %, o/
ascieoatee blip bys 27067 rol y
Tes che, = 2706-7 — 200% 0-886 -
= pore ASN ty
Ae} SMP (Bdbar) ond Igoe
48