0% found this document useful (0 votes)
319 views13 pages

Ques. Vector - (PART 1)

The document contains 28 problems related to vector algebra. Problem 20 asks about a quadrilateral ABCD where the position vectors of points A, B, C, and D satisfy a + c = b + d. The possible shapes given are square, rhombus, rectangle, and parallelogram. Problem 39 describes an isosceles right triangle ABC and forces acting along its sides, asking for the magnitude of the resultant force.

Uploaded by

Sourabh kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
319 views13 pages

Ques. Vector - (PART 1)

The document contains 28 problems related to vector algebra. Problem 20 asks about a quadrilateral ABCD where the position vectors of points A, B, C, and D satisfy a + c = b + d. The possible shapes given are square, rhombus, rectangle, and parallelogram. Problem 39 describes an isosceles right triangle ABC and forces acting along its sides, asking for the magnitude of the resultant force.

Uploaded by

Sourabh kumar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 13

8 Vector Algebra

10. If the position vectors of the vertices of a triangle 20. If a, b, c, d be the position vectors of the points A,
be 6i  4j  5k, 4i  5j  6k and 5i  6j  4k, B, C and D respectively referred to same origin O
then the triangle is such that no three of these points are collinear
(a) Right angled (b) Isosceles and a  c  b  d, then quadrilateral ABCD is a
(c) Equilateral (d) None of these (a) Square (b) Rhombus
11. The perimeter of the triangle whose vertices have (c) Rectangle (d) Parallelogram
the position vectors (i  j  k), (5i  3j  3k) 21. If the position vectors of A and B are i  3j  7k
and (2i  5j  9k), is given by and 5i  2j  4k, then the direction cosine of
[MP PET 1993] AB along y-axis is
(a) 15 (b) 15  [MNR 1989]
157 157
4 5
(c) 15  157 (d) 15  157 (a) (b) 
162 162
12. The position vectors of two points A and B are
(c) – 5 (d) 11
i j k and 2i  j  k respectively. Then
22. If the resultant of two forces is of magnitude P and
| AB |  [BIT Ranchi 1992] equal to one of them and perpendicular to it, then
(a) 2 (b) 3 the other force is
(c) 4 (d) 5 [MNR 1986]
13. The magnitudes of mutually perpendicular forces (a) P 2 (b) P
a, b and c are 2, 10 and 11 respectively. Then the (c) P 3 (d) None of these
magnitude of its resultant is 23. The direction cosines of vector a  3i  4j  5k in
[IIT 1984]
the direction of positive axis of x, is
(a) 12 (b) 15 [MP PET 1991]
(c) 9 (d) None 3 4
14. The system of vectors i, j, k is (a)  (b)
50 50
(a) Orthogonal (b) Coplanar
3 4
(c) Collinear (d) None of these (c) (d) 
15. The direction cosines of the resultant of the 50 50
vectors (i  j  k), (i  j  k), (i  j  k) and 24. The point having position vectors 2i  3j  4k,
(i  j  k), are 3i  4j  2k, 4i  2j  3k are the vertices of
[EAMCET 1988]
 1 1 1   1 1 1 
(a)  , , (b)  , ,  (a) Right angled triangle (b) Isosceles triangle
 2 3 6   6 6 6  (c) Equilateral triangle (d) Collinear
 25. Let  ,  ,  be distinct real numbers. The points
1 1 1   1 1 1 
(c)   , ,  (d)  , , with position vectors
 6 6 6  3 3 3  i  j  k, i  j  k, i  j  k
16. The position vectors of P and Q are 5i  4j  ak [IIT Screening 1994]
and i  2j  2k respectively. If the distance (a) Are collinear
between them is 7, then the value of a will be (b) Form an equilateral triangle
(a) – 5, 1 (b) 5, 1 (c) Form a scalene triangle
(c) 0, 5 (d) 1, 0 (d) Form a right angled triangle
17. A zero vector has 26. If | a|  3, | b |  4 and | a  b |  5, then
(a) Any direction (b) No direction | a  b| 
(c) Many directions (d) None of these [EAMCET 1994]
(a) 6 (b) 5
 (c) 4 (d) 3
18. A unit vector a makes an angle with z-axis. If
4 27. If OP = 8 and OP makes angles 45o and 60o
a  i  j is a unit vector, then a is equal to with OX-axis and OY-axis respectively, then
[IIT 1988]
OP 
i j k i j k
(a)   (b)   (a) 8 ( 2i  j  k) (b) 4 ( 2i  j  k)
2 2 2 2 2 2
1 1
i j k (c) ( 2i  j  k) (d) ( 2i  j  k)
(c)    (d) None of these 4 8
2 2 2 28. If a and b are two non-zero and non-collinear
19. A force is a vectors, then a + b and a – b are
[MP PET 1997]
(a) Unit vector (b) Localised vector
(a) Linearly dependent vectors
(c) Zero vector (d) Free vector
(b) Linearly independent vectors
(c) Linearly dependent and independent vectors
9 Vector Algebra
(d) None of these 37. If the position vectors of the vertices A, B, C of a
29. If the vectors 6i  2j  3k, 2i  3j  6k and triangle ABC are 7j  10k, i  6j  6k and
3i  6j  2k form a triangle, then it is 4i  9j  6k respectively, the triangle is
[Karnataka CET 1999] [UPSEAT 2004]
(a) Right angled (b) Obtuse angled (a) Equilateral
(c) Equilteral (d) Isosceles (b) Isosceles
30. If the resultant of two forces of magnitudes P and (c) Scalene
Q acting at a point at an angle of 60o is 7Q, (d) Right angled and isosceles also
then P/Q is 38. The figure formed by the four points
[Roorkee 1999] i  j  k, 2i  3j, 3i  5j  2k and k  j is
3 [MP PET 2004]
(a) 1 (b) (a) Rectangle (b) Parallelogram
2
(c) Trapezium (d) None of these
(c) 2 (d) 4
39. ABC is an isosceles triangle right angled at A.
31. The direction cosines of the vector 3i  4j  5k
Forces of magnitude 2 2, 5 and 6 act along
are
[Karnataka CET 2000] BC, CA and AB respectively. The magnitude
of their resultant force is
3 4 1 3 4 1
(a) , , (b) , , [Roorkee 1999]
5 5 5 5 2 5 2 2 (a) 4 (b) 5
3 4 1 3 4 1 (c) 11 2 2 (d) 30
(c) , , (d) , ,
2 2 2 5 2 5 2 2 40. If ABCDEF is a regular hexagon and
32. The position vectors of A and B are 2i  9j  4k AB  AC  AD  AE  AF   AD, then  
[RPET 1985]
and 6i  3j  8k respectively, then the
(a) 2 (b) 3
magnitude of AB is
(c) 4 (d) 6
[MP PET 2000]
41. If P and Q be the middle points of the sides BC and
(a) 11 (b) 12
CD of the parallelogram ABCD, then AP  AQ 
(c) 13 (d) 14
33. If the position vectors of
P and Q are 1
(a) AC (b) AC
(i  3j  7k) and (5i  2j  4k), then | PQ | 2
is [MP PET 2001, 03] 2 3
(c) AC (d) AC
(a) 158 (b) 160 3 2
(c) 161 (d) 162 42. P is a point on the side BC of the  ABC and Q
34. If a is non zero vector of modulus a and m is a is a point such that PQ is the resultant of
non-zero scalar, then ma is a unit vector if AP, PB, PC. Then ABQC is a
[MP PET 2002]
(a) Square (b) Rectangle
(a) m  1 (b) m  | a|
(c) Parallelogram (d) Trapezium
1 43. In the figure, a vector x satisfies the equation
(c) m  (d) m   2
| a| x  w  v . Then x = A
35. The position vectors of the points A, B, C are
(2i  j  k), (3i  2j  k) and (i  4j  3k) a
c
respectively. These points b
[Kurukshetra CEE
2002] B C
w D v
(a) Form an isosceles triangle
(b) Form a right-angled triangle (a) 2a  b  c (b) a  2b  c
(c) Are collinear
(c) a  b  2c (d) a b c
(d) Form a scalene triangle
44. A vector coplanar with the non-collinear vectors a
36. The vectors AB  3i  4k,and
and b is
AC  5i  2j  4k are the sides of a triangle
ABC. The length of the median through A is
(a) a b (b) a  b
[AIEEE 2003] (c) a. b (d) None of these
(a) 18 (b) 72
(c) 33 (d) 288
Vector Algebra 10
45. If ABCD is a parallelogram, AB  2 i  4 j  5 k 53. In a trapezium, the vector BC   AD. We will
and AD  i  2 j  3 k, then the unit vector in then find that p  AC  BD is collinear with
the direction of BD is [Roorkee 1976] AD, If p   AD, then
1 1 (a)     1 (b)     1
(a) (i  2j  8k) (b) (i  2j  8 k)
69 69 (c)     1 (d)   2  
1 54. If a  2i  j  8k and b  i  3j  4k, then the
(c) (i  2j  8k) (d)
69 magnitude of a  b  [MP PET 1996]
1 13
(i  2j  8 k) (a) 13 (b)
69 3
46. If a, b and c be three non-zero vectors, no two of
3 4
which are collinear. If the vector a  2b is (c) (d)
collinear with c and b  3c is collinear with a, 13 13
then (  being some non-zero scalar) a  2b  6c 55. A, B, C, D, E are five coplanar points, then
is equal to [AIEEE 2004] DA  DB  DC  AE  BE  CE is equal to [RPET
1999]
(a) a (b) b
(a) DE (b) 3 DE
(c) c (d) 0
(c) 2 DE (d) 4 ED
47. If a  2i  5j and b  2i  j, then the unit
56. If a  3i  2j  k, b  2i  4j  3k and
vector along a  b will be
[RPET 1985, 95] c  i  2j  2k, then a  b  c is
[MP PET 2001]
ij
(a) (b) i  j (a) 3i  4j (b) 3i  4j
2
(c) 4i  4j (d) 4i  4j
ij
(c) 2 (i  j) (d) 57. Five points given by A, B, C, D, E are in a plane.
2 Three forces AC, AD and AE act at A and
48. What should be added in vector a  3i  4j  2k three forces CB, DB, EB act at B. Then their
to get its resultant a unit vector i resultant is [AMU 2001]
[Roorkee 1977]
(a) 2AC (b) 3AB
(a)  2i  4j  2k (b) 2i  4j  2k
(c) 3DB (d) 2BC
(c) 2i  4j  2k (d) None of these
58. The sum of two forces is 18 N and resultant whose
49. If a  i  2j  3k, b  i  2j  k and c  3i  j, direction is at right angles to the smaller force is
then the unit vector along its resultant is 12N. The magnitude of the two forces are
[Roorkee 1980] [AIEEE 2002]
3i  5j  4k (a) 13, 5 (b) 12, 6
(a) 3i  5j  4k (b)
50 (c) 14, 4 (d) 11, 7
59. The unit vector parallel to the resultant vector of
3i  5j  4k
(c) (d) None of these 2i  4j  5k and i  2j  3k is
5 2 [MP PET 2003]
50. In a regular hexagon ABCDEF, AE  [MNR 1984] 1 i jk
(a) (3i  6j  2k) (b)
(a) AC  AF  AB (b) AC  AF  AB 7 3
(c) AC  AB  AF (d) None of these i  j  2k 1
(c) (d) (i  j  8k)
51. 3 OD  DA  DB  DC  6 69
[IIT 1988] 60. If a, b, c are the position vectors of the vertices A,
(a) OA  OB  OC (b) OA  OB  BD B, C of the triangle ABC, then the centroid of
 ABC is
(c) OA  OB  OC (d) None of these
[MP PET 1987]
52. p  2a  3b, q  a  2b  c, r  3a  b  2c;
where a, b and c being non-zero, non-coplanar a b c 1 b c
(a) (b) a 
vectors, then the vector 2a  3b  c is equal to 3 2 2 
7q  r b c a b c
(a) p  4q (b) (c) a  (d)
5 2 2
(c) 2p  3q  r (d) 4p  2r
11 Vector Algebra
61. If in the given figure OA  a, OB  b and 69. If the position vector of one end of the line
AP : PB  m : n, then OP  [RPET 1981; segment AB be 2i  3j  k and the position
MP PET 1988] vector of its middle point be 3(i  j  k), then
A P B the position vector of the other end is
(a) 4i  3j  5k (b) 4i  3j  7k
(c) 4i  3j  7k (d) 4i  3j  7k
70. If G and G' be the centroids of the triangles ABC
and A' B' C' respectively, then
ma  n b O n a  mb
(a) (b) AA' BB'  CC ' 
m n m n 2
(a) GG' (b) GG'
ma  n b 3
(c) ma  n b (d)
m n (c) 2GG' (d) 3GG'
62. If D, E, F be the middle points of the sides BC, CA 71. If O be the circumcentre and O' be the orthocentre
and AB of the triangle ABC, then AD  BE  CF of the triangle ABC, then O' A  O' B  O' C 
is (a) OO' (b) 2 O' O
(a) A zero vector (b) A unit vector
(c) 2OO' (d) 0
(c) 0 (d) None of these
63. If a and b are the position vectors of A and B 72. If the vectors represented by the sides AB and BC
respectively, then the position vector of a point C of the regular hexagon ABCDEF be a and b, then
on AB produced such that AC  3AB is the vector represented by AE will be
[MNR 1980; MP PET 1995, 99] (a) 2 b  a (b) b a
(a) 3a  b (b) 3b  a (c) 2 a  b (d) a b
(c) 3a  2b (d) 3b  2a 73. The position vector of a point C with respect to B is
64. The position vectors of A and B are i  j  2k and i  j and that of B with respect to A is i  j. The
3i  j  3k. The position vector of the middle position vector of C with respect to A is
[MP PET 1989]
point of the line AB is [MP PET 1988]
(a) 2 i (b) 2 j
1 1 5 (c) – 2 j (d) – 2 i
(a) i jk (b) 2i  j  k
2 2 2 74. A and B are two points. The position vector of A is
3 1 3 6b  2a. A point P divides the line AB in the ratio
(c) i j k (d) None of these 1 : 2. If a  b is the position vector of P, then the
2 2 2
position vector of B is given by
65. If ABCD is a parallelogram and the position vectors [MP PET 1993]
of A, B, C are i  3j  5k, i  j  k and
(a) 7a  15b (b) 7a  15b
7i  7j  7k, then the position vector of D will be
(c) 15a  7b (d) 15a  7b
(a) 7i  5j  3k (b) 7i  9j  11k
75. If the position vectors of the points A and B are
(c) 9i  11j  13k (d) 8i  8j  8k i  3j  k and 3i  j  3k, then what will
66. P is the point of intersection of the diagonals of be the position vector of the mid point of AB
the parallelogram ABCD. If O is any point, then [MP PET 1992]
OA  OB  OC  OD  [RPET 1989; J & K (a) i  2j  k (b) 2i  j  2k
2005]
(c) 2i  j  k (d) i  j  2k
(a) OP (b) 2 OP
76. If C is the middle point of AB and P is any point
(c) 3 OP (d) 4 OP outside AB, then
67. If the position vectors of the point A, B, C be i, j, k [MNR 1991; UPSEAT 2000; AIEEE 2005]
respectively and P be a point such that (a) PA  PB  PC (b) PA  PB  2 PC
AB  CP , then the position vector of P is
(c) PA  PB  PC  0 (d) PA  PB  2 PC  0
(a) i  j  k (b) i  j  k
77. If in a triangle AB  a, AC  b and D, E are the
(c) i  j  k (d) None of these
mid-points of AB and AC respectively, then DE is
68. If the position vectors of the points A, B, C, D be equal to
2i  3j  5k, i  2j  3k,  5i  4j  2k and [RPET 1986]
i  10j  10k respectively, then
a b a b
[MNR 1982] (a)  (b) 
(a) AB  CD (b) AB | | CD
4 4 2 2
(c) AB  CD (d) None of these
Vector Algebra 12
b a b a (a)  i  j  k (b) i  j  k
(c)  (d) 
4 4 2 2 (c) i  j  k (d) i  j  k
78. In the triangle ABC, AB  a, AC  c, BC  b , 86. If a and b are P.V. of two points A and B and C
then divides AB in ratio 2 : 1, then P.V. of C is
[RPET 1996]
[RPET 1984]
(a) a b c  0 (b) a b c  0 a  2b 2a  b
(a) (b)
(c) a  b  c  0 (d)  a  b  c  0 3 3
79. ABCDE is a pentagon. Forces a 2 a b
(c) (d)
AB, AE, DC, ED act at a point. Which force 3 2
should be added to this system to make the 87. If A, B, C are the vertices of a triangle whose
position vectors are a, b, c and G is the centroid of
resultant 2 AC [MNR 1984]
the ABC, then GA  GB  GC is
[Karnataka CET 2000]
(a) AC (b) AD
(a) 0 (b) A  B  C
(c) BC (d) BD
80. Let A and B be points with position vectors a and a b c a b c
(c) (d)
b with respect to the origin O. If the point C on OA 3 3
is such that 2AC  CO, CD is parallel to OB 88. If O is origin and C is the mid point of A(2,  1)
and | CD |  3| OB |, then AD is equal to
and B(4, 3) . Then value of OC is
a a [RPET 2001]
(a) 3b  (b) 3b 
2 2 (a) i + j (b) i – j
(c) – i + j (d) – i – j
a a
(c) 3b  (d) 3b  89. If ABCDEF is regular hexagon, then
3 3
AD  EB  FC 
81. In a
triangle ABC, if 2AC  3CB, then
[Karnataka CET
2OA  3OB equals 2002]
[IIT 1988; Pb. CET 2003] (a) 0 (b) 2AB
(c) 3AB (d) 4 AB
(a) 5OC (b)  OC 90. If position vectors of a point A is a + 2b and a
(c) OC (d) None of these divides AB in the ratio 2 : 3 , then the position
vector of B is [MP PET 2002]
82. If AO  OB  BO  OC, then A, B, C form [IIT
1983] (a) 2a – b (b) b – 2a
(a) Equilateral triangle (b) Right angled triangle (c) a – 3b (d) b
(c) Isosceles triangle (d) Line 91. If D, E, F are respectively the mid points of
83. The sum of the three vectors determined by the AB, AC and BC in ABC , then BE
medians of a triangle directed from the vertices is  AF  [EAMCET 2003]
[MP PET 1997]
(a) 0 (b) 1 1
(a) DC (b) BF
1 2
(c) – 1 (d)
3 3
(c) 2BF (d) BF
84. The position vector of the points which divides 2
internally in the ratio 2 : 3 the join of the points 92. If 4i  7j  8k, 2i  3j  4k and 2i  5j  7k
2a  3b and 3a  2b, is are the position vectors of the vertices A, B and C
[AI CBSE 1985] respectively of triangle ABC. The position vector of
12 13 12 13 the point where the bisector of angle A meets BC
(a) a b (b) a b is
5 5 5 5
[Pb. CET 2004]
3 2 1 2
(c) a b (d) None of these (a) (6i  13j  18k) (b) (6i  12j  8k)
5 5 3 3
85. If position vector of points A, B, C are respectively
1
i, j, k and AB  CX , then position vector of (c) (6i  8j  9k) (d)
point X is
3
[MP PET 1994] 2
(6i  12j  8k)
3
13 Vector Algebra
93. If a  i  j and b  i  k , then a unit vector 103. Three points whose position vectors are
coplanar with a and b and perpendicular to a is a  b, a  b and a  kb will be collinear, if the
(a) i (b) j value of k is [IIT 1984]
(c) k (d) None of these (a) Zero
94. If the position vectors of the points A, B, C be (b) Only negative real number
i  j, i  j and a i  b j  c k respectively, then (c) Only positive real number
the points A, B, C are collinear if (d) Every real number
(a) a  b  c  1 104. If the position vectors of A, B, C, D are 2 i  j,
(b) a  1, b and c are arbitrary scalars i  3 j, 3 i  2 j and i  j respectively and

(c) a  b  c  0 AB|| CD , then  will be


[RPET 1988]
(d) c  0, a  1 and b is arbitrary scalars
(a) – 8 (b) – 6
95. If the points a  b, a  b and a  k b be (c) 8 (d) 6
collinear, then k = 105. If the vectors 3 i  2 j  k and 6 i  4xj  yk are
(a) 0 (b) 2 parallel, then the value of x and y will be
(c) – 2 (d) Any real number [RPET 1985, 86]
96. If the position vectors of the points A, B, C be (a) – 1, – 2 (b) 1, – 2
a, b , 3a  2b respectively, then the points A, (c) – 1, 2 (d) 1, 2
B, C are 106. If (x, y, z)  (0, 0, 0) and
[MP PET 1989] (i  j  3 k) x  (3i  3j  k)y
(a) Collinear (b) Non-collinear (4i  5j) z   (xi  yj  zk), then the value
(c) Form a right angled triangle(d) None of these
of  will be [IIT 1982; RPET 1984]
97. If a, b, c are non-collinear vectors such that for
(a) – 2, 0 (b) 0, – 2
some scalars x, y, z, xa  yb  zc  0, then (c) – 1, 0 (d) 0, – 1
[RPET 2002]
107. The vectors a, b and a + b are
(a) x  0, y  0, z  0 (b) x  0, y  0, z  0 (a) Collinear (b) Coplanar
(c) x  0, y  0, z  0 (d) x  0, y  0, z  0 (c) Non-coplanar (d) None of these
98. The vectors 3 i  j  5 k and a i  b j  15k are 108. If a, b, c are the position vectors of three collinear
collinear, if points, then the existence of x, y, z is such that
[RPET 1986; MP PET 1988] (a) xa  yb  zc  0, x  y  z  0
(a) a  3, b  1 (b) a  9, b  1 (b) xa  yb  zc  0, x  y  z  0
(c) a  3, b  3 (d) a  9, b  3 (c) xa  yb  zc  0, x  y  z  0
99. The points position vectors 60i  3 j ,
with (d) xa  yb  zc  0, x  y  z  0
40i  8j, , a i  52j are collinear, if a  109. If a  (2, 5) and b  (1, 4), then the vector
[RPET 1991; IIT 1983; MP PET 2002]
parallel to (a  b) is
(a) – 40 (b) 40
(a) (3, 5) (b) (1, 1)
(c) 20 (d) None of these
(c) (1, 3) (d) (8, 5)
100. If O be the origin and the position vector of A be
4 i  5 j, then a unit vector parallel to OA is 110. The vectors a and b are non-collinear. The value of
x for which the vectors c  (x  2)a  b and
4 5
(a) i (b) i d  (2x  1)a  b are collinear, is
41 41
1
1 1 (a) 1 (b)
(c) (4 i  5 j) (d) (4 i  5 j) 2
41 41
1
101. If the position vectors of the points A and B be (c) (d) None of these
2 i  3 j  k and 2 i  3 j  4 k, then the line 3
AB is parallel to 111. The vectors i  2j  3k, i  4j  7k,
(a) xy-plane (b) yz-plane 3i  2j  5k are collinear, if  equals
(c) zx-plane (d) None of these [Kurukshetra CEE 1996]
(a) 3 (b) 4
102. The points with position vectors
10i  3 j, 12i  5 j a i  11j (c) 5 (d) 6
and are
112. The position vectors of four points P, Q, R, S are
collinear, if a  2a  4c, 5a  3 3 b  4c,  2 3b  c and
[MNR 1992; Kurukshetra CEE 2002]
(a) – 8 (b) 4
2a  c respectively, then
[MP PET 1997]
(c) 8 (d) 12
(a) PQ is parallel to RS
Vector Algebra 14
(b) PQ is not parallel to RS (c) 0 (d) None of these
(c) PQ is equal to RS 2. If r. i  r. j  r. k and | r|  3, then r 
(d) PQ is parallel and equal to RS 1
(a)  3(i  j  k) (b)  (i  j  k)
113. If a  (1,  1) and b  ( 2, m) are two 3
collinear vectors, then m = 1
[MP PET 1998] (c)  (i  j  k) (d)  3 (i  j  k)
3
(a) 4 (b) 3
3. If a, b, c are non-zero vectors such that
(c) 2 (d) 0
a . b  a . c, then which statement is true
114. If three points A, B, C are collinear, whose position
[RPET 2001]
vectors are i  2j  8k, 5i  2k and
(a) b = c (b) a  (b  c)
11i  3 j  7k respectively, then the ratio in
which B divides AC is [RPET 1999] (c) b  c or a  (b  c) (d) None of these
(a) 1 : 2 (b) 2 : 3 4. If a and b be unlike vectors, then a . b =
(c) 2 : 1 (d) 1 : 1 (a) | a | | b | (b) – | a | | b |
(c) 0 (d) None of these
115. If a and b are two non-collinear vectors and
xa yb  0 5. If a, b, c are unit vectors such that a  b  c  0,
[RPET 2001] then a . b  b . c  c . a 
[MP PET 1988; Karnataka CET 2000; UPSEAT 2003, 04]
(a) x  0 , but y is not necessarily zero
(a) 1 (b) 3
(b) y  0 , but x is not necessarily zero (c) – 3/2 (d) 3/2
(c) x  0, y  0 6. If a, b, c are mutually perpendicular vectors of
(d) None of these equal magnitudes, then the angle between the
116. If three points A, B and C have position vectors vectors a and a  b  c is
(1, x, 3), (3, 4,7) and (y,  2,  5)  
(a) (b)
respectively and if they are collinear, then 3 6
(x, y)  [EAMCET 2002]
1 1 
(a) (2, – 3) (b) (– 2, 3) (c) cos (d)
3 2
(c) (2, 3) (d) (– 2, – 3)
7. If a, b, c are mutually perpendicular unit vectors,
117. a and b are two non-collinear vectors, then
then | a  b  c |  [Karnataka CET 2002, 05;
xa  yb (where x and y are scalars) represents a
J & K 2005]
vector which is
[MP PET 2003] (a) 3 (b) 3
(a) Parallel to b (b) Parallel to a (c) 1 (d) 0
(c) Coplanar with a and b (d) None of these 8. If | a|  | b | | c | and a  b  c, then the angle
118. If a, b, c are three non-coplanar vectors such that between a and b is
a b c   d and b  c  d   a, then 
(a) (b) 
a  b  c  d is equal to 2
(a) 0 (b) a (c) 0 (d) None of these
(c)  b (d) (   )c 9. If a has magnitude 5 and points north-east and
vector b has magnitude 5 and points north-west,
119. The value of k for which the vectors a  i  j and then | a  b | 
b  2i  k j are collinear is [MNR 1984]
[Pb. CET 2004] (a) 25 (b) 5
1 (c) 7 3 (d) 5 2
(a) 2 (b)
2 10. If  be the angle between the unit vectors a and b,
1 
(c) (d) 3 then cos  [MP PET 1998;
3 2
Pb. CET 2002]

Scalar or Dot product of two vectors and its 1 1


(a) | a  b| (b) | a  b|
applications 2 2
| a  b| | a  b|
(a. i)i  (a. j)j  (a. k)k  (c) (d)
1. | a  b| | a  b|
[Karnataka CET 2004]
(a) a (b) 2 a
15 Vector Algebra
11. If | a|  3, | b|  4, | c |  5 and a  b  c  0, scalar product of F1  F2  F3 and AB will be
then the angle between a and b is [MP PET 1989; [Roorkee 1980]
Bihar CEE 1994] (a) 3 (b) 6
 (c) 9 (d) 12
(a) 0 (b)
6 20. If the moduli of a and b are equal and angle
between them is 120o and a. b   8, then | a
 
(c) (d) | is equal to [RPET 1986]
3 2 (a) – 5 (b) – 4
12. If | a  b|  | a  b|, then the angle between a (c) 4 (d) 5
and b is 21. If | a|  3, | b |  4 and the angle between a and
(a) Acute (b) Obtuse
b be 120o , then | 4a  3b| 

(c) (d)  (a) 25 (b) 12
2 (c) 13 (d) 7
13. If a, b, c are three vectors such that a  b  c and 22. A vector whose modulus is 51 and makes the
the angle between b and c is  / 2, then i  2j  2k  4i  3k
same angle with a  , b
[EAMCET 2003] 3 5
(a) a2  b2  c 2 (b) b2  c 2  a2 and c  j, will be
(c) c 2  a2  b2 (d) 2a2  b2  c 2 [Roorkee 1987]
(a) 5i  5j  k (b) 5i  j  5k
(Note : Here a  | a|, b | b|, c | c |)
(c) 5i  j  5k (d)  (5i  j  5k)
14. If the angle between the vectors a and b be  and 23. If a, b, c are coplanar vectors, then [IIT 1989]
a. b  cos , then the true statement is
a b c
(a) a and b
are equal vectors (a) b c a  0 (b)
(b) a and b
are like vectors c a b
(c) a and b
are unlike vectors
a b c
(d) a and b
are unit vectors
a. a a. b a. c  0
15. If the vector i  j  k makes angles  ,  ,  with
b. a b. b b. c
vectors i, j, k respectively, then
a b c
(a)      (b)     
(c) c.a c. b c.c  0 (d)
(c)      (d)     
b. a b. c b. b
16. (r . i)2  (r . j)2  (r . k)2 
a b c
(a) 3r 2 (b) r 2 a. b a. a a. c  0
(c) 0 (d) None of these c.a c.c c.b
17. The value of b such that scalar product of the 
24. If  is a unit vector perpendicular to plane of
vectors (i  j  k) with the unit vector parallel to vector a and b and angle between them is , then
the sum of the vectors (2i  4j  5k) and a . b will be
[RPET 1985]
(bi  2j  3k) is 1, is  
(a) | a | | b | sin  (b) | a| | b | cos 
[MNR 1992; Roorkee 1985, 95; Kurukshetra CEE 1998;
UPSEAT 2000] (c) | a| | b| cos (d) | a| | b| sin
(a) – 2 (b) – 1 25. If p  i  2j  3k and q  3i  j  2k, then a
(c) 0 (d) 1 vector along r which is linear combination of p
18. If a unit vector lies in yz–plane and makes angles and q and also perpendicular to q is
[MNR 1986]
of 30o and 60o with the positive y-axis and z-
(a) i  5j  4k (b) i  5j  4k
axis respectively, then its components along the
co-ordinate axes will be 1
(c)  (i  5j  4k) (d) None of these
3 1 3 1 2
(a) , ,0 (b) 0, ,
2 2 2 2 26. If d   (a  b)   (b  c)   (c  a) and

3 1 1 3 1
(c) , 0, (d) 0, , [a b c]  , then      is equal to
2 2 2 2 8
19. If F1  i  j  k, F2  i  2j  k, F3  j  k, (a) 8d.(a  b  c) (b) 8d (a  b  c)
 
A  4i  3j  2k and B  6i  j  3k, then the
Vector Algebra 16
d d (a) a  (a . i) i  (a . j) j  (a . k) k
(c) .(a  b  c) (d)  (a  b  c)
8 8 (b) a  (a  i)  (a  j)  (a  k)
27. The horizontal force and the force inclined at an (c) a  j (a . i)  k (a . j)  i (a . k)
angle 60o with the vertical, whose resultant is in
(d) a  (a  i) i  (a  j) j  (a  k) k
vertical direction of P kg, are
[IIT 1983] 36. If vectors a, b, c satisfy the condition
(a) P, 2P (b) P, P 3  a b
| a  c || b  c | , then (b  a).  c   is
(c) 2P , P 3 (d) None of these  2 
28. If a and b are mutually perpendicular vectors, equal to [AMU 1999]
then (a  b)2  [MP PET 1994; Pb. CET 2002] (a) 0 (b) –1
(c) 1 (d) 2
(a) a b (b) a b
37. (a .b) c and (a.c) b are [RPET 2000]
(c) a2  b2 (d) (a  b)2 (a) Two like vectors
29. a. b  0, then [RPET 1995] (b) Two equal vectors
(a) a  b (c) Two vectors in direction of a
(d) None of these
(b) a || b
38. If a  (1,  1, 2), b  (2, 3, 5) ,
(c) Angle between a and b is 60o
c  (2,  2, 4) and i is the unit vector in the x-
(d) None of these
direction, then (a  2b  3c). i 
30. If | a|  3, | b |  1, | c |  4 and a  b  c  0,
[Karnataka CET 2001]
then a. b  b . c  c . a  [MP PET 1995; RPET
(a) 11 (b) 15
2000]
(a) – 13 (b) – 10 (c) 18 (d) 36
(c) 13 (d) 10 39. For any three non-zero vectors r1, r2 and r3 ,
31. If ABCDEF is regular hexagon, the length of whose r1 . r1 r1 . r2 r1 . r3
1 2
side is a, then AB . AF  BC  r2 . r1 r2 . r2 r2 . r3  0 . Then which of
2
r3 . r1 r3 . r2 r3 . r3
(a) a (b) a2
the following is false [AMU 2000]
(c) 2a2 (d) 0 (a) All the three vectors are parallel to one and
32. If in a right angled triangle ABC, the hypotenuse the same plane
AB  p, then AB . AC  BC . BA  CA . CB (b) All the three vectors are linearly dependent
is equal to (c) This system of equation has a non-trivial
solution
p2
(a) 2p2 (b) (d) All the three vectors are perpendicular to each
2 other
(c) p2 (d) None of these 40. Let a, b and c be vectors with magnitudes 3, 4
and 5 respectively and a + b + c = 0, then the
33. A, B, C, D are any four points, then
values of a.b + b.c + c.a is
AB . CD  BC . AD  CA . BD  [MNR [IIT 1995; DCE 2001; AIEEE 2002; UPSEAT 2002;
1986] Kerala (Engg.) 2005]
(a) 2 AB . BC . CD (b) AB  BC  CD (a) 47 (b) 25
(c) 5 3 (d) 0 (c) 50 (d) – 25
41. If a and b are adjacent sides of a rhombus, then
34. The vector a coplanar with the vectors i and j, [RPET 2001]
perpendicular to the vector b  4i  3j  5k such (a) a.b = 0 (b) a × b = 0
that | a| | b | is (c) a.a = b.b (d) None of these
(a) 2 (3i  4j) or  2 (3i  4j) 42. If x and y are two unit vectors and  is the angle
(b) 2 (4i  3j) or  2 (4i  3j) 1
between them, then | x  y| is equal to
2
(c) 3 (4i  5j) or  3 (4i  5j)
[UPSEAT 2001]
(d) 3 (5i  4j) or  3 (5i  4j) (a) 0 (b)  / 2
35. If a is any vector in space, then (c) 1 (d)  / 4
[MP PET 1997]
17 Vector Algebra
43. If a. i  a.(i  j)  a.(i  j  k) , then a = then the angle between the vectors AB and
[EAMCET 2002] CD is
(a) i (b) k  
(c) j (d) i + j + k (a) (b)
4 3
44. If i, j, k are unit vectors, then

[MP PET 2001]
(c) (d) 
(a) i . j 1 (b) i . i 1 2
(c) i  j  1 (d) i  (j  k)  1 52. If  be the angle between the unit vectors a and b,
then a  2 b will be a unit vector if  
45. If | a| | b|, then (a  b) . (a  b) is [MP PET
2002]
 
(a) (b)
(a) Positive (b) Negative 6 4
(c) Zero (d) None of these  2
(c) (d)
46. a,b,c are three vectors, such that a  b  c  0 , 3
3
| a|  1,| b|  2,| c|  3 , then a.b b.c  c.a is 53. If the angle between a and b be 30o , then the
equal to angle between 3 a and – 4 b will be
[AIEEE 2003]
(a) 0 (b) – 7 (a) 150o (b) 90o
(c) 7 (d) 1 (c) 120o (d) 30o
47. A unit vector which is coplanar to vector
54. The angle between the vectors i j k and
i  j  2k and i  2j  k and perpendicular to
i  2j  k is
i  j  k, is
[BIT Ranchi 1991]
[IIT 1992; Kurukshetra CEE 2002]
ij  j k 1  1  1  4 
(b)    (a) cos  (b) cos 
15  15 
(a) 
2  2   
ki i j k 1  4  
(c) (d) (c) cos   (d)
2 3  15  2
48. If | a |  3, | b |  4 then a value of  for which 55. The position vector of vertices of a triangle ABC
are 4i  2j, i  4j  3k and i  5j  k
a  b is perpendicular to a  b is
[Karnataka CET 2004] respectively, then ABC 
(a)
9
(b) [RPET 1988, 97]
16

3 (a)  / 6 (b)  / 4
4 (c)  / 3 (d)  / 2
3 4 56. The value of x for which the angle between the
(c) (d) vectors a  xi  3j  k, b  2xi  xj  k is acute
2 3
and the angle between the vectors b and the axis
49. a, b and c are three vectors with magnitude of ordinate is obtuse, are
| a|  4, | b|  4, | c |  2 and such that a is (a) 1, 2 (b) – 2, – 3
perpendicular to (b  c), b is perpendicular to (c) x > 0 (d) None of these
(c  a) and c is perpendicular to (a  b). It 57. If a and b are unit vectors and a  b is also a unit
follows that | a  b  c | is equal to vector, then the angle between a and b is
[UPSEAT 2004] [RPET 1991; MP PET 1995; Pb. CET 2001]
(a) 9 (b) 6  
(c) 5 (d) 4 (a) (b)
4 3
50. The angle between the vectors 3 i  j  2 k and
 2
2 i  2 j  4 k is [MP PET 1990] (c) (d)
2 3
1 2 1 2
(a) cos (b) sin 58. If  be the angle between two vectors a and b,
7 7 then a.b  0 if
1 2 1 2 [MP PET 1995]
(c) cos (d) sin
5 5 
(a) 0     (b)  
51. If the position vectors of the points A, B, C, D be 2
i  j  k, 2 i  5 j, 3 i  2 j  3k and i  6 j  k,

(c) 0    (d) None of these
2
Vector Algebra 18
59. If a  i  2j  3k and b  3i  j  2k, then the 67. If  be the angle between the vectors
angle between the vectors a  b and a  b is a  2i  2j  k and b  6i  3j  2k , then
[Karnataka CET 1994; Orissa JEE 2005] [MP PET 2001, 03]

(a) 30 o (b) 60 o 4 3
(a) cos  (b) cos 
21 19
(c) 90o (d) 0o
2 5
60. The value of x for which the angle between the (c) cos  (d) cos 
vectors a   3i  xj  k and b  xi  2xj  k is 19 21
acute and the angle between b and x-axis lies 68. If a and b are two unit vectors such that a  2 b
between  / 2 and  satisfy and 5a  4b are perpendicular to each other,
[Kurukshetra CEE then the angle between a and b is
1996] [IIT Screening 2002]
(a) x0 (b) x0 (a) 45 o (b) 60o
(c) x  1 only (d) x  1 only
1  1 1  2
61. The angle between the vectors (2i  6j  3k) (c) cos   (d) cos  
 3  7
and (12i  4j  3k) is [MP PET 1996]
69. Let a and b be two unit vectors inclined at an
1  1  1  9  angle  , then sin( / 2) is equal to
(a) cos   (b) cos  
 10   11 [BIT Ranchi 1991; Karnataka CET 2000, 01;
UPSEAT 2002]
1  9  1  1
(c) cos   (d) cos   1 1
 91  9 (a) | a  b| (b) | a  b|
2 2
62. If the angle between two vectors i  k and (c) | a  b| (d) | a  b|
i  j  ak is  / 3, then the value of a 
70. The angle between the vectors a + b and a – b,
[MP PET 1997]
when a  (1,1, 4) and b  (1,  1, 4) is
(a) 2 (b) 4
[Karnataka CET 2003]
(c) – 2 (d) 0
(a) 90o (b) 45o
63. If three vectors a, b, c satisfy a  b  c  0 and
| a|  3, | b|  5, | c |  7, then the angle (c) 30o (d) 15o
between a and b is 71. A vector of length 3 perpendicular to each of the
[Kurukshetra CEE 1998; UPSEAT 2001; vectors 3 i  j  4 k and 6 i  5 j  2 k is
AIEEE 2002; MP PET 2002]
(a) 2 i  2 j  k (b)  2 i  2 j  k
(a) 30o (b) 45o
(c) 2 i  2 j  k (d) None of these
(c) 60o (d) 90o
72. If a  0, b  0 and | a  b| | a  b|,then the
64. If a, b and c are unit vectors such that vectors a and b are [Roorkee 1986; MNR 1988; IIT
a  b  c  0, then the angle between a and b is Screening 1989;
[Roorkee Qualifying 1998; MP PET 1999; MP PET 1990, 97; RPET 1984, 90, 96, 99; KCET 1999]
UPSEAT 2000; RPET 2002] (a) Parallel to each other
(a)  / 6 (b)  / 3 (b) Perpendicular to each other
(c)  / 2 (d) 2 / 3 (c) Inclined at an angle of 60o
65. If the sum of two unit vectors is a unit vector, then (d) Neither perpendicular nor parallel
the magnitude of their difference is
73. The vector 2 i  a j  k is perpendicular to the
[Kurukshetra CEE 1996; RPET 1996]
vector 2 i  j  k, if a 
(a) 2 (b) 3 [MP PET 1987]
1 (a) 5 (b) – 5
(c) (d) 1
3 (c) – 3 (d) 3
74. If a  2 i  2 j  3 k, b  i  2 j  k and
66. The angle between the vector 2i  3j  k and
c  3 i  j, then a  t b is perpendicular to c if
2i  j  k is
[MNR 1990; UPSEAT 2000] t
[MNR 1979; MP PET 2002]
(a)  / 2 (b)  / 4
(a) 2 (b) 4
(c)  / 3 (d) 0
(c) 6 (d) 8
19 Vector Algebra
75. The vector 2i  j  k is perpendicular to 1
84. The vector (2i  2j  k) is
i  4j  k, if   3
[MNR 1983; MP PET 1988] [IIT Screening 1994]
(a) 0 (b) – 1 (a) A unit vector
(c) – 2 (d) – 3 
(b) Makes an angle with the vector
76. The vectors 2 i  3 j  4 k and a i  b j  c k 3
are perpendicular, when 2i  4j  3k
[MNR 1982; MP PET 1988; MP PET 2002]
1
(a) a  2, b  3, c  4 (b) (c) Parallel to the vector  i  j  k
2
a  4, b  4, c  5
(d) Perpendicular to the vector 3i  2j  2k
(c) a  4, b  4, c   5 (d) None of these
85. If the vectors ai  2j  3k and i  5j  ak are
77. A unit vector in the xy  plane which is perpendicular to each other, then a  [MP PET
perpendicular to 4i  3j  k is 1996]
[RPET 1991] (a) 6 (b) – 6
ij 1 (c) 5 (d) – 5
(a) (b) (3i  4j) 86. Which of the following is a true statement
2 5 [Kurukshetra CEE 1996]
1 (a) (a  b)  c is coplanar with c
(c) (3i  4j) (d) None of these
5 (b) (a  b)  c is perpendicular to a
78. If l a  mb  n c  0, where l, m, n are scalars (c) (a  b)  c is perpendicular to b
and a, b, c are mutually perpendicular vectors, (d) (a  b)  c is perpendicular to c
then
87. If a  i  2j and b  2i  j are parallel, then 
(a) l  m n  1 (b) l  m n  1 is
(c) l  m  n  0 (d) l  0, m  0, n  0 [RPET 1996]
(a) 4 (b) 2
79. The unit normal vector to the line joining i  j
(c) – 2 (d) – 4
and 2 i  3 j and pointing towards the origin is
88. If ai  6j  k and 7i  3j  17k are
[MP PET 1989]
perpendicular vectors, then the value of a is
4i  j 4 i  j [Karnataka CET 2001]
(a) (b) (a) 5 (b) – 5
17 17
1
2i  3 j  2i  3 j (c) 7 (d)
(c) (d) 7
13 13 89. If 4i  j  k and 3i  mj  2k are at right angle,
80. If the vectors a i  2j  3k and 3i  6j  5k are then m 
perpendicular to each other, then a is given by [MP [Karnataka CET
PET 1993] 2002]
(a) 9 (b) 16 (a) – 6 (b) – 8
(c) – 10 (d) – 12
(c) 25 (d) 36
90. If the vectors 3i   j  k and 2i  j  8k are
81. The value of  for which the vectors 2i  j  k
perpendicular, then  is
and 2j  k are perpendicular, is [Kerala (Engg.) 2002]
[MP PET 1992] (a) – 14 (b) 7
(a) None (b) – 1 (c) 14 (d) 1/7
(c) 1 (d) Any value 91. If a and b are two non-zero vectors, then the
component of b along a is
82. If the vectors ai  bj  ck and pi  qj  rk are [MP PET 1991]
perpendicular, then [RPET 1989] (a. b) a (a . b) b
(a) (a  b  c)(p  q  r)  0 (b) (a) (b)
b. b a. a
(a  b  c)(p  q  r)  1 (a . b) b (a. b) a
(c) (d)
(c) ap  bq  cr  0 (d) ap  bq  cr  1 a. b a. a
83. If a  2i  4j  2k and b  8i  3j  k and 92. A vector of magnitude 14 lies in the xy-plane and
a  b, then value of  will be makes an angle of 60o with x-axis. The
[RPET 1995] components of the vector in the direction of x-axis
(a) 2 (b) – 1 and y-axis are
(c) – 2 (d) 1 (a) 7, 7 3 (b) 7 3, 7
Vector Algebra 20
(c) 14 3, 14 / 3 (d) 14 / 3, 14 3 (c) 5 (d) 6
93. If a  4i  6j and b  3 j  4 k, then the 100. The projection of the vector i  2j  k on the
component of a along b is vector 4i  4j  7k is [RPET 1990; MNR
[IIT Screening 1989; 1980; MP PET 2002;
MNR 1983, 87; UPSEAT 2000] UPSEAT 2002; Pb. CET 2004]
18 18 5 6 19
(a) (3j  4k) (b) (3j  4k) (a) (b)
10 3 25 10 9
18 9 6
(c) (3j  4k) (d) (3j  4k) (c) (d)
3 19 19
94. Let b  3j  4k, a  i  j and let b1 and b2 be
component vectors of b parallel and perpendicular
3 3
to a. If b1  i  j , then b2 
2 2
[MP PET 1989]
3 3 3 3
(a) i  j  4k (b)  i  j  4k
2 2 2 2
3 3
(c)  i  j (d) None of these
2 2
95. The component of i  j along j  k will be
ij j k
(a) (b)
2 2
ki
(c) (d) None of these
2
96. The projection of vector 2i  3j  2k on the
vector i  2j  3k will be
[RPET 1984, 90, 97, 99; Karnataka CET 2004]
1 2
(a) (b)
14 14
3
(c) (d) 14
14
97. If vector a  2i  3j  6k and vector
b  2i  2j  k, then
Projectionof vector
a on vectorb

Projectionof vector
b on vectora
[MP PET 1994, 99; Pb. CET 2000]
3 7
(a) (b)
7 3
(c) 3 (d) 7
98. The projection of a along b is
[RPET 1995]
a. b a b
(a) (b)
| a| | a|
a. b a b
(c) (d)
| b| | b|
99. If a  2i  j  2k and b  5i  3j  k, then the
projection of b on a is [Karnataka CET
2002]
(a) 3 (b) 4

You might also like