0% found this document useful (0 votes)
313 views7 pages

TRI

The document discusses basic trigonometric identities, important trigonometric ratios, trigonometric functions of allied angles, trigonometric functions of the sum or difference of two angles, factorization of sums or differences of sines and cosines, multiple angles and half angles, three angles, and maximum and minimum values of trigonometric functions.

Uploaded by

Sumanth S
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
313 views7 pages

TRI

The document discusses basic trigonometric identities, important trigonometric ratios, trigonometric functions of allied angles, trigonometric functions of the sum or difference of two angles, factorization of sums or differences of sines and cosines, multiple angles and half angles, three angles, and maximum and minimum values of trigonometric functions.

Uploaded by

Sumanth S
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

KEY CONCEPTS

BASIC TRIGONOMETRIC IDENTITIES :


2 2
(a) sin 9 + c o s 9 = 1 ; -l<sin9<l; -l<cos9<l V 9eR
(b) sec2 9 - tan2 9 = 1 ; | sec 0 | > 1 V 9 e R
(c) cosec2 9 - cot2 9 = 1 ; |cosec9|>l V 9 e R
IMPORTANT T' RATIOS :

(a) sinn7t = 0 ; cosn7T = (-l) n ; tann7t = 0 where n e I


;
(b) . (2n +
sin- l)7i
(-l) n & cos (2n + 1)Tt = Q where n e I

V3-1 __ 5n
(c) sin 15° or sin —r=- = cos 75 0 or cos —
12 2V2 12
V3+1 . _.0 . 5 7X
cos 15° or cos — —r=~ = sm 75° or sin —
12 2V2 12

tan 15° = — - = 2-V3 = cot 75° ; tan75°= = 2+V3 =cot 15°


V3 + 1 V3 - 1

. 11 vJ2 - ^ 71 1/2 + V 2 71 r- 3tt rz ,


(d) sm = • cos — = J L - — - ; tan - = V2 - 1 ;
— tan — = V2 + 1
8 8

• 100 _ V
18 = 5 - 1
71

(e) sm — or sin &
P
cos ICO
36 or cos —
71
= V J + l
10 4 5 4

TRIGONOMETRIC FUNCTIONS O F ALLIED ANGLES :


If 9 is any angle, then - 9, 90 ±9 , 180 ±9 , 270 ±9 , 360 ±9 etc. are called ALLIED ANGLES

(a) sin ( - 9) = - sin 9 ; cos ( - 9) = cos 9


sine & c o s e c
(b) sin (90°- 9) = cos 9 ; cos (90° - 9) = sin 9 only + v e All + v e

(c) sin (90°+ 9) = cos 9 ; cos (90°+ 9) = - sin 9


(d) sin(180°-9) = sin9 ; cos (180°-9) = - c o s 9
(e) sin (180°+ 9) = - sin9 ;cos(180°+9) = - c o s 9 tan & cot cos & sec
only + v e only + v e
(f) sin (270°- 9) = - cos 9 ; cos (270°- 9) = - sin 9
(g) sin (270°+ 9) = - cos 9 ; cos (270°+9) = sin9
4. TRIGONOMETRIC FUNCTIONS O F SUM O R DIFFERENCE O F T w o ANGLES

(a) sin (A ± B) = sinA cosB ± cosA sinB


(b) cos (A ± B) = cosA cosB + sinA sinB
(c) sin2A - sin2B = cos2B - cos2A = sin (A+B). sin (A- B)
(d) cos2A - sin2B = cos2B - sin2A = cos (A+B). cos (A - B)
tanA ± tanB cotA cotB + 1
(e) tan (A ± B) : (f) cot (A ± B) =
1 + t a n A tanB " ~ ' cotB + cotA

5. FACTORISATION O F T H E S U M O R DIFFERENCE O F T w o SINES O R COSINES :

C + D C D
(a) sinC + sinD = 2sin C + P
cos——— (b) sinC - sinD = 2 cos sin—
2

D C + D C - D
(c) cosC + cosD = 2 cos C + D
cos (d) cosC-cosD = - 2 s i n sm

^Bansal Classes Trig.-<t>-1 or , ^ ^ Sin [2]


TRANSFORMATION O F PRODUCTS INTO SUM O R DIFFERENCE O F SINES & COSINES:
(a) 2 sinA cosB = sin(A+B) + sin(A-B) (b) 2 cosA sinB = sin(A+B) - sin(A-B)
(c) 2 cosA cosB = cos(A+B) + cos(A-B) (d) 2 sinA sinB = cos(A-B) - cos(A+B)
MULTIPLE ANGLES A N D H A L F ANGLES :

9 9
(a) sin 2A = 2 sinA cosA ; sin9 = 2 s i n - c o s -
(b) cos 2 A = cos2A - sin2A = 2cos2A - 1 = 1 - 2 sin2A;

cos 6 = cos2— - sin2-^ = 2cos2^- - 1 = 1 - 2sin2^-.


2 2 2 2

. l-cos2A
2 cos2A = 1 + cos 2A, 2sin2A = 1 - cos 2A ; tan2A =
l + cos2A
9 9
2 cos2— = 1 + cos 9 , 2 sin2— = 1 - cos9.
2 2
2? t T
an A ^ tanf
(c)
w
tan2A= ?2 ; tan9= , ~ri
1 - tan A 1 - tan T

2tanA
(d)
W
sin2A = , cos2A= 1 - t a a [ A (e) sin3A = 3 sinA-4 sin3A
1 + tan A 1 + tan A

3 tan A - tan 3 A
(f)
w
cos 3A = 4 cos3A - 3 cosA (g) tan 3A , „ ,
1 - 3 tan'A

8. THREE ANGLES :
tanA + tanB + tanC - tanA tanB tanC
(a) tan (A+B+C) =
1 - tanA tanB - tanB tanC - tanC tanA
N O T E IF : (i) A+B+C = n then tanA+tanB + tanC = tanA tanB tanC
(ii) A+B+C = ~ then tanA tanB + tanB tanC + tanC tanA= 1
(b) If A + B + C = 7t then: (i) sin2A + sin2B + sin2C = 4 sinA sinB sinC
(ii)
ABC
sinA + sinB + sinC = 4 cos — cos — cos —
v
' 2 2 2

9. MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC FUNCTIONS:


2 2 2 2
(a) Min. value of a tan 9 + b cot 9 = 2ab where 9 € R
(b) Max. and Min. value of acos9 + bsin9 are ,j a 2 52 and—^Ja 2 + ^2
(c) If f(9) = acos(a + 9) + bcos(B + 9) where a, b, a and P are known quantities then
-•\Ja2 + b2 + 2abcos(ct-p) <f(9)< ^/a2 +b 2 + 2abcos(a - (3)

(d) If(x,B e [0,-7 j and a + p = a (constant) then the maximum values of the expression
cosa cosp, cosa + cosp, sina + sinP and sina sinp
a
occurs when a = P = —.

(e) If a,p e fn —J
A and a + p = a(constant) then the minimum values of the expression
o
seca + seep, tana + tanp, coseca + cosecp occurs when a = P = —.
(f) IfA, B, C are the angles of a triangle then maximum value of
sinA + sinB + sinC and sinA sinB sinC occurs when A=B = C = 60°
(g) In case a quadratic in sin9 or cos9 is given then the maximum or minimum values can be interpreted
by making a perfect square.

^Bansal Classes Trig.-(f>-I [3]


10. Sum of sines or cosines of n angles,

/ \ si•n^n
Bf- (, n-1
sin a + sin (a + P) + sin (a + 2p ) + + sin ^a + n - i p j = sin I a +-—-p
sin ^
n

s i n• P /
/ — ( n-1
cos a + cos (a + P) + cos(a + 2p ) + + cos la + n-1 pi = 1- cos a + ——
sin j V 2
EXERCISE-I
Q.l Prove that cos2a + cos2 (a + P) - 2cos a cos p cos (a + P) = sin2P
Q.2 Prove that cos 2a = 2 sin2P + 4cos (a + P) sin a sin p + cos 2(a + P)
Q.3 Prove that, tan a + 2 tan 2a + 4 tan 4a + 8 cot 8 a - cot a .
Q.4 Prove that : (a) tan 20° . tan 40° . tan 60° . tan 80° = 3

(b) tan9° -tan27° -tan63° + tan81° = 4 . (c) sin 4 ~ + sin 4 ^ + sin 4 ~ + sin 4 ~ = |
16 16 16 16 2

Q.5 Calculate without using trigonometric tables :


2 cos40° - cos20°
(a) cosec 10° - S sec 10° (b) 4 cos 20° - V3 cot 20° (c)
sin20°

sec 5° cos 40° . 27t 4TI 671


(d) 2V2 sin 10° 2sin35 (e) c o s — + c o s — + cos
2 sin 5° 7

(f) tan 10° - tan 50° + tan 70°


Q.6 (a) Showthat 4 sin 17° . sin 43° . sin 77° = sin 51°
(b) Prove that sin2120 + sin221° + sin2390 + sin 2 48°= l+sin 2 9° + sin218° .

cot7
Q.7 Showthat: (a) y or tan 82 y = (V3 + V2) (V2 + 1) or V2+V3+V4+V6

(b) t a n l 4 2 y =2 +V2-V3-V6 .

m +n
Q.8 If mtan(9-30°) = ntan(6+ 120°), show that cos20 2(m - n)

cosu
Q.9 If cos9= —— , prove that, tan— = ± tan— .
1-ecosu 2 V1 _ e 2

4 5 7
1
Q.10 If cos (a + P) = j ; sin (a - P) = — & a , P lie between 0 & — , then find the value of tan
2a .
Q.ll Prove that if the angles a & P satisfy the relation p) = ~ (M > lnl) then
. tang

1 + tana _ 1 - tana tanP


m+n m-n
Q.12 (a) If y = 10 cos2x - 6 sin x cos x + 2 sin2x, then find the greatest & least value of y.
(b) If y = 1 + 2 sin x + 3 cos2 x, find the maximum & minimum values of y V x e R.
(c) If y = 9 sec2x +16 cosec2x, find the minimum value of y V x 6 R.

y'vfl/ < a ses Trig.-(f>-1 [4]


Q.13 (a) Prove that 3 cos (e + y j + 5 cos 0 + 3 lies from - 4 & 10 .

(b) Prove that (2V3 + 4) sin 0 + 4 cos 0 lies between - 2(2 + Vs ) & 2(2 + VJ).
Q.14 If a + p = c where a, p > 0 each lying between 0 and 7i/2 and c is a constant, find the maximum or
minimum value of
(a) sin a + sin p (b) sin a sin p
(c) tan a + tan p (d) cosec a + cosec p

Q.15 Let A,., A 2 , , An be the vertices of an n-sided regular polygon such that ;
1
+ —-— . Find the value of n.
A.j A2 ^•i .A] A.^

Q. 16 Prove that: cosec 0 + cosec 20 + cosec 22 0 + + cosec 2 n " 1 0 = cot (0/2) - cot 2 n " ! 0

Q.17 For all values of a , p , y prove that ;

cos a + cos p + cos y + cos (a + p + y)x = 4, cos a+B . cos——


P+Y . cos Y+a .
2 .: 2 .2
18 Sh th t *+ + C0S
^ - 2sinA-2sinB
Q.18 Showthat C0Sj^ 1 - sinB sin(A-B) + cosA - cosB

A i n , _ t a n a + tan y . . s i n 2 a + sin2y
Q.19 IIf( tan QP = — , prove that sin 2B = ; 7-^ •
1 + tana.tany 1 + s i n 2 a . sm2y

Q.20 If a + p = y , prove that cos2 a + cos2 p + cos2 y = 1 + 2 cos a cos P cos y .


( l - t a n f ) ( l - t a n f ) |i l - t a n | j ' _ s i n a + sin(3 + siny — 1
Q.21 If a + p + y = | , show that
(l + t a n f ) (l + tan f)ll 1 + t a n i c o s a + cosp + cosy

Q.22 If A + B + C = 7t and cot0 = cot A + cot B + cot C, showthat,


sin (A - 0). sin (B - 0). sin (C - 0) = sin30 .

% 3n 571 17TC
Q.23
V IfP= cos— + cos— + cos— + + cos and
19 19 19 19
271 47t 6tz 20n
Q= cos—+ cos—+ C
OS—+ + cos-^-? then find P - Q.

- *
Q.24 Without using the surd value for sin 18° or cos 36°, prove that 4 sin 36° cos 18° — V5

Q.25 For any three angles a , p and y prove that:

' cos(a + P) cos(a + y)V ( sin(a + P) sin(a + y)^ 2


cos(a - P) cos(a - y )J \ cos(a - P) cos(a - y)>
= sec2(a - p) • sin2(P - y) • sec2(y - a)

Bamal Classes Trig.-</>-! [5]


EXERCISE-II
Q.l If tana = p/q where a = 6p , a being an acute angle, prove that ;
- (p cosec 2 P - q sec 2 P) = ^/p2 + q2 .

Q.2 If +— = +— = 1, where 9 & 5 do not differ by an even multiple of n, then prove


cosa sina cosa sina

cosB . cos5 sin9 . sin5


that i + —— +1=0.
cos a sm a
cos 30 + cos3(j)
Q.3 Prove that 2 c o s ( 0 - <j)) - 1 = (cosO + cos<j)) cos(9 + <j>) - (sin9 + sin<()) sin(9 + <j>)

^ ^
Q.4 TX- tan
If * — fn + j-
y) = +tani3 (n— +A- * •siny = •sinxI 3 -—„
prove^that
+ sin2 x
.,
v
U 2J v4 2/ 1 + 3 sm x

Q.5 Show that, J ™ L + + = I (tan27x -tanx)


cos3x cos9x cos27x 2

Q.6 Prove that; cosec x. cosec 2x. sin 4x. cos 6x . cosec 1 Ox =
cos3x cos5x cos7x cos9x
sin2xsin4x
+ s— r:—r~:
in4xsin6x sin6x sin8x
+ sin8xsinl0x

Q.7 If 9= - j , prove that tan9 ,tan29 + tan29 ,tan49 + tan49 ,tan9 = - 7 .


7T CD^Y
Q.8 For 0 < x < - prove that, — r — — > 8.
4 sin x(cosx - sinx)

Q.9 (a) If a = prove that, sin a + sin 2a + sin4a = ~ (b) siny . sin-^- . s i n ^ =

Q.10 For all 9 in show that cos(sin9)>sin(cos9).

3
Q.ll Prove that the value of cos A + cos B + cos C lies between 1 & — where A + B + C = tc.
Q.12 If m2 + m'2 + 2mm'cos9 = l , n2 + n,2 + 2nn'cos9= 1 and
mn + m' n' + (mn' + m' n) cos 9 = 0, then prove that m2 + n2 = cosec2 9.

Q.13 If cos2 9 = m
?
1
& t a n 3 = tan a , prove that cos2/3 a + sin2/3 a = f-^j

Q 14. If V2cosA=cosB + cos3B & sin A = sinB-sin 3 B , showthat sin(A-B) = ± i .

sin a a
Q.15 Prove thatfromthe equality + = — f o l l o w s the relation; s i " 3 a + a
= -—
*

Q.16 Prove that the triangle ABC is equilateral iff, cotA+cotB + cotC= S .
cos a s
Q.17 If ( = ' n ( a3 — = m ^ th e n show that m2 + m cos a = 2 .
cos 9 sin 9
1/2
Q. 18 Prove that: 4 sin 27° = (5 + VJ) - (3 - V?) .

Q.19 If A+B+C = TT ; provethat t a n 2 Y + t a n 2 | + t a n 2 Y >1. [Hint: E t a n - . t a n | = 1]

feBansal Classes Trig.- [6]


Q.20 If A+B+C = n (A, B , C > 0), prove that sin^ • sinf . sin^ < ^ .
2 2 2 8

Q.21 Show that eliminating x&y from the equations, sinx + siny = a ;
8a b
cosx + cosy = b & tanx + tany = c gives =c
4a'

2 s e c 6 + 3 t a n 6 + 5sin 9 - 7 c o s 0 + 5 l-cos0
Q.22 Show that
2 t a n 8 + 3sec 0 + 5 c o s 9 + 7 s i n 0 + 8 sin 0

. x
, tan —
Q.23 Evaluate : £ 2n
n=12n-1COS• 2 n X
-l

f p+ y-a^| rynh a -
Q.24 If a + (3+y = 7t & tan • tan • tan = 1, then prove that;
I 4 J V 4 I 4 j
1 + cos a + cos P + cos y = 0 .

Q.25 V x e R, find the range of the function, f (x) = cos x (sin x + ^sin 2 x + sin2 a ) ; a e [0, n]
EXERCISE-III
Q.l (a) sec29 = 4xy
, is true if and only if :
(X + y ) 2

(A) x+y*0 (B) x = y , x * 0 (C) x = y (D) x * 0 , y * 0


(b) Find all values of 9 in the interval ~ s a t i s f y i n g the equationn;;
(1 - tan 9) (1 + tan 9) sec2 9 + 2tan2 9 = 0 . [JEE'96,1 + 2]

Q.2 (a) Let n be an odd integer. If sin n9 = £ b sinr 9, for every value of 9, then:
r= 0
(A) b0 = 1, b, = 3 (B) bQ = 0, bj = n
(C) b0 = - 1, bj = n (D) b0 = 0, bj = n2 - 3n + 3
(b) Let A0 Aj A2 A3 A4 A5 be a regular hexagon inscribed in a circle of unit radius.
Then the product of the lengths of the line segments A0 Aj, A0 A2 & A0 A4 is :

(B)3V3 (C) 3 (D) ^


(c) Which of the following number(s) is/are rational ?
(A) sin 15° (B) cos 15° (C) sin 15° cos 15° (D) sin 15° cos 75°
(d) Prove that a triangle ABC is equilateral if & only if tan A+tan B + tan C = 3 V3 •
[JEE '98,2 + 2 + 2 + 8 = 14outof200]

Q.3 9 (1+ sec9)(1+ sec29)(1+sec49)....(1 + sec2n9) Then


For a positive integer n, let.fn (9) = ttan—

n f n
(A)/2^]=l (B ) / 3, V32. = 1 WfAm.
1 [JEE '99,3]
Q.4
(a) Let f(9) = sin9 (sin9 + sin 3 9). Then f(9)
(A) > 0 only when 9 > 0 (B) < 0 for all real 9
(C) > 0 for all real 9 (D) < 0 only when 9 < 0.
[ JEE 2000 Screening. 1 out of 35 ]
Bansal Classes Trig.-(j>-1 m
A B C A B C
(b) Ei any triangle A B C , prove that, c o t — + cot — + cot — = cot — cot — cot — .
Z* Z* Zi Zi Zi

[ JEE 2000 Mains, 3 out of 100 ]


Q.5
(a)
Find real values of x for which, 27 cos2x . 81sul2x is minimum. Also find this minimum value.
(b) Find the smallest positive values of x & y satisfying, x - y = — , cot x + cot y = 2 .
[ REE 2000, 3 + 3 ]
71
Q.6 If a + (3 = — and p + y = a then tana equals
(A) 2(tanP + tany) (B) tanp + tany (C) tanp + 2tany (D) 2tanP + tany
[JEE 2001 (Screening), 1 out of 35 ]
1 1
Q.7 If 9 and (j) are acute angles satisfying sin9 = —, cos <>| = —, then 9 + § e
r
7C 71 f n 2%^ 2n 5nx 571
(A)
3'2 (B) [ 2'T (C)
T'T (D) v6 .
[JEE 2004 (Screening)]
Q. 8(a) In an equilateral triangle, 3 coins of radii 1 unit each are kept so that they A
touch each other and also the sides of the triangle. Area of the triangle is
(A) 4 + 2 V3 (B) 6 + 4 V3

(C) 12 +
7V3 7V3
(D)3 + 4
4 ir
(h) cos(a - P) = 1 and cos(a + P)= 1 /e, where a, P e [ - n, 7t], numbers of pairs of a, P which satisfy both
the equations is
(A)0 (B)l (C) 2 (D)4
[JEE 2005 (Screening)]
ANSWER SHEET
EXERCISE-I
Q 5. (a) 4 (b) -1 (c) V3 (d) 4 (e) (f) fi Q10. | |
13
Q12- (a> ymax= 11
i ymm = 1
(b) ymax= y ; y min
mm = - \ ,' v(c)49
'
2
Q14. (a) max = 2 sin (c/2), (b) max. = sin (c/2), (c) min = 2 tan (c/2), (d) min = 2 cosec (c/2)
Q 15. n = 7 Q23. 1
EXERCISE -II
1
Q 23. Q-25 - V1 + sin2 a ^ y ^ Vl + sin
si a
sin2x n_I X
2 sin n-1

EXERCISE-III
Q.l (a) B (b) ± Q.2 (a) B, (b) C, (c) C Q.3 A, B, C, D Q.4 (a) C
5
Q.5 (a) Minimum value = 3 ~5; maximum value = 3 5 ,(b) x= — ; y = — Q.6 C
7Z 71
Q.7 B
12 6
Q.8 (a) B, (b)D

^Bansal Classes Trig.-1 [8]

You might also like