0% found this document useful (0 votes)
30 views11 pages

Solution 1291916

The document is a question bank focused on trigonometry ratios and identities for JEE main Mathematics. It includes various problems with detailed explanations and solutions, covering a range of topics within trigonometry. Each question is numbered and provides the correct answer along with a step-by-step breakdown of the reasoning behind it.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views11 pages

Solution 1291916

The document is a question bank focused on trigonometry ratios and identities for JEE main Mathematics. It includes various problems with detailed explanations and solutions, covering a range of topics within trigonometry. Each question is numbered and provides the correct answer along with a step-by-step breakdown of the reasoning behind it.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Solution

TRIGONOMETRY RATIO AND IDENTITIES QUESTIONS BANK

JEE main - Mathematics

1.
(c) 3
Explanation: tan 20° tan 40° tan 60° tan 80°

= tan 20° tan (60° - 20°) ⋅√3⋅ tan (60° + 20°)
– – –
= √3 tan 60° = √3 × √3 = 3
2. (a) 3

Explanation: We have, cos2 10o - cos 10o cos 50o + cos2 50o
= [2 cos 10 − 2 cos 10 cos 50 + 2 cos 50 ]
1

2
2 ∘ ∘ ∘ 2 ∘

= 1

2
[1 + cos 20

− (cos 60
∘ ∘
+ cos 40 ) + 1 + cos 100 ]

[∵ 2 cos2 A = 1 + cos 2A and 2 cos A cos B = cos (A + B) + cos(A - B)]


= [2 + cos 20 + cos 100 − − cos 40 ] [∵ cos 60 = ]
1

2
∘ ∘ 1

2
∘ ∘ 1

1 3
= 2
[
2
+ (cos 20

− cos 40 ) + cos 100 ]
∘ ∘

∘ ∘ ∘ ∘
20 + 40 20 − 40
= 1

2
[
3

2
− 2 sin
2
sin
2
+ cos 100 ]

E_
C+D C−D
[∵ cos C − cos D = −2 sin sin ]
2 2

= 1

2
[
3

2
− 2 sin 30

sin(− 10 ) + cos(90
∘ ∘
+ 10 )]

3
= 1 ∘ ∘
[∵ cos(90 ∘
]
JE
[ + sin 10 − sin 10 ] + θ) = − sin θ
2 2

3 3
= 1

2
×
2
=
4

3. (a) sec A cosec A + 1


Explanation: Given expression is tan A
+
cot A
e
1−cot A 1−tan A

= sin A
×
sin A
+
cos A
×
cos A
vin

cos A sin A−cos A sin A cos A−sin A


3 3
sin A− cos A
= sin A−cos A
1
{
cos A sin A
}

2 2
sin A+sin A cos A+ cos A
= sin A cos A
1+sin A cos A
= sin A cos A
= 1 + sec A cosec A
Di

4.
(c) 2
Explanation: 2
√3−1
5. (a)
2√2

√3−1
Explanation:
2√2

6.
2 2
p −q
(c) 2 2
p +q

Explanation: sin x + cos y = p and x cos x + sin y = q


⇒ p2 + q2 = (sin2 x + cos2 x) + (cos2 y + sin2 y) + 2 sin x cos y + 2 cos x sin y
⇒ p2 + q2 = 2 + 2 sin(x + y) ...(i)
Also, p2 - q2 = (sin2 x - cos2 x) + (cos2 y - sin2 y) + 2 sin x cos y - 2 cos x sin y
⇒ p2 - q2 = - cos 2x + cos 2y + 2sin (x - y) = 2 sin (x - y) [sin (x + y) + 1]
2 2

p2 - q2 = 2 sin(x - y).(
p +q

2
) ...[From (i)]
2 2
p −q
⇒ sin(x - y) = 2 2
p +q

7.
(d) 0

1 / 11
Explanation: One of the factor of the given expression is cos90° and cos 90° = 0
⇒ cos 1°. cos 2°. cos 3°... cos 179° = 0

8.
(b) cot α
Explanation: Add and subtract cot α ,
cot α + (tan α - cot α ) + 2 tan 2α + 4 tan 4α + 8 cot 8α
2 2
cos α− sin α
= cot α - ( sin α cos α
) + 2 tan 2α + 4 tan 4α + 8 cot 8α
= cot α - 2 cot 2α + 2 tan 2α + 4 tan 4α + 8 cot 8α
= cot α + 2 (tan 2α - cot 2α ) + 4 tan 4α + 8 cot 8α
= cot α + 2 (-2 cot 4α ) + 4 tan 4α + 8 cot 8α
= cot α + 4 (tan 4α - cot 4α ) + 8 cot 8α
= cot α + 4 (-2 cot 8α ) + 8 cot 8α
= cot α
9.
(c) 0
Explanation: a sin θ + b cos θ = a
+
b

sin θ cos θ

⇔ a sin2 θ cos θ + b cos2 θ + sin θ


= a cos θ + b sin θ
⇔ a(1 - cos2 θ) cos θ + b(1 - sin2 θ) sin θ

E_
= a cos θ + b sin θ
⇔ -(a cos3 θ + b sin3 θ) = 0
Required expression = (a cos3 θ + b sin3 θ)2
JE
=0
10.
(b) 9

16
e

Explanation: 9

16
vin

11. (a) − 1

​ 3

2 cos y−1
Explanation: cos x

1
=
2−cos y

1+cos x 2−cos y+2 cos y−1


⇔ =
1−cos x 2−cos y−2 cos y+1
Di

2 x
2 cos
2 1+cos y
⇔ x =
2 3−3 cos y
2 sin
2
y
2
2 cos
2 x 1 2
⇔ cot = ( y
)
2 3 2
2 sin
2

x y 1
⇒ cot( ) tan( )= ±
2 2 √3

x π π y
0 <
2
<
2
and 2
<
2
< π
y
⇒ cot
x

2
tan 2
= −
1

√3

12.
1
(d) 16

Explanation: We have, sin 10o sin 30o sin 50o sin 70o = sin (30o)[sin (10o) sin (50o) sin (70o)]
= [sin(10 ) sin(60 − 10 ) sin(60 + 10 )]
1

2
∘ ∘ ∘ ∘ ∘

= 1

2
[
1

4
sin(3 (10 ))]

[∵ sin θ sin(60 ∘
− θ) sin(60

+ θ) = 1

4
sin 3θ ]
= 1

8
sin 30

=
1

8
×
1

2
=
1

16

13.
(c) 4
Explanation: Given expression = 4 - 4 cos2 x + 3 cos2 x
= 4 - cos2 x ≤ 4
⇒ Maximum value = 4

2 / 11
14.
(d) 6
Explanation: 6
15.
−−
(c) √19
Explanation: Given expression 3 cos θ + 5 sin(θ − π

6
)

π π
= 3 cos θ + 5 (sin θ cos 6
− sin
6
cos θ)

√3
= 3 cos θ + 5 ( 2
sin θ −
1

2
cos θ)

5√3
= 3 cos θ − 5

2
cos θ +
2
sin θ

5√3
= 1

2
cos θ +
2
sin θ
−−−−−−
∵ The maximum value of a a cos θ + b sin θ is √a 2
+ b
2

5√3
So, maximum value of 1

2
cos θ +
2
sin θ
−−−−−−−−−−−−
2
2 −−−−−− −−
5√3 −−
= √( 1

2
) + (
2
) = √
1

4
+
75

4
= √
76

4
= √19

16.
(c) 2
Explanation: 2
17.

_
2
1 √5−1
(c) ( )
2

Explanation: Let
4

cos

sin
π

20

20
= a,

= b
} ⇒ a2 + b2 = 1
EE
Then, x = a4 - b4
eJ
= (a2 - b2)(a2 + b2)
= a2 - b2
and y = a4 + b4
vin

= (a2 - b2)2 + 2a2b2


2

⇒ y = x2 + 2

4
(2 sin
π

20
cos
20
π
)

y - x2 = 1 2 π 1 2 2π
Di

⇒ sin = cos
2 10 2 5

= 1

4
(1 - cos 4π

5
)
2
√5−1
= 1

2
(
4
)

18.
(b) -1
Explanation: -1
19. (a) 0
Explanation: 0
20.
(b) − 7

Explanation: We have
5 tan2 x - 5 cos2 x = 2(2 cos2 x -1) + 9
⇒ 5 tan2 x - 5 cos2 x = 4 cos2 x - 2 + 9
⇒ 5 tan2 x = 9 cos2 x + 7
⇒ 5(sec2 x - 1) = 9 cos2 x + 7
5
Let cos 2
x = t ⇒
t
− 9t − 12 = 0

⇒ 9t2 + 12t - 5 = 0 ⇒ 9t2 + 15t - 3t - 5 = 0


⇒ (3t - 1)(3t + 5) = 0 ⇒ t = as t ≠ − 1 5

3 3

3 / 11
cos 2x = 2 cos2x - 1 = 2 ( 1

3
) − 1 = −
1

cos2 2x
1 7
cos 4x = 2 - 1 = 2(− 3
) − 1 = −
9

21. (a) 3

Explanation: 3

22. (a) 4
Explanation: 4
23. (a) -2 sec α
−−−−− −−−−−
1−sin α 1+sin α
Explanation: √ 1+sin α
+ √
1−sin α

1−sin α+1+sin α
=
√1− sin2 α

= 2
= -2 sec α ...[∵ cos α < 0 in ( π

2
, π) ]
| cos α|

24.
(c) cot A cot B cot C = cot D
cos(A+B) sin(C−D)
Explanation: cos(A−B)
=
sin(C+D)

cos(A+B)+cos(A−B) sin(C−D)+sin(C+D)
⇔ =
cos(A+B)−cos(A−B) sin(C−D)−sin(C+D)

2 cos A cos B 2 sin C cos D


⇔ =
−2 sin A sin B −2 cos C sin D

cot A cot B cot C = cot D

_

25.
(d) (1, √2]

Explanation: 0 < θ < π

2
⇒ 0 < sin θ < 1 and 0 < cos θ < 1
EE
0 < sin θ < 1 ⇒ sin θ > sin2 θ ...(i)
eJ
and 0 < cos θ < 1 ⇒ cos θ > cos2 θ ...(ii)
Adding inequations (i) and (ii), we get
sin θ + cos θ > 1 ...(iii)
−−−−−−
Since, a sin θ + b cos θ ≤ √a + b
vin

2 2


∴ sin θ + cos θ ≤ √2 ...(iv)

(Equality occurs only when sin θ = 1


, cos θ = 1
,θ=
π

4
)
√2 √2


(iii) and (iv) give the set of all values of sin θ + cos θ as (1, √2]
Di

26.
1
(b) 9 2

Explanation: sin2 85° = [sin (90° - 5°)]2 = cos2 5°


⇒ sin2 5° + sin2 85° = sin2 5° + cos2 5° = 1
sin2 5° + sin2 10° + sin2 15° +... + sin2 85° + sin2 90°
= (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + ... + (sin2 40° + sin2 50°) + sin2 90° + sin2 45°
= (1 + 1 +1 + 1 + 1 + 1+ 1+ 1)+ 1 + = 9 1

2
1

27.
(c) 1
Explanation: tan 1° tan 2° tan 3° ... tan 89°
= (tan 1° tan 89°) (tan 2° tan 88°)... (tan 44° tan 46°) tan 45°
= (tan 1° cot 1°) (tan 2° cot 2°)... (tan 44° cot 44°) ... [∵ tan (90° - θ) = cot θ]
= 1 × 1 × 1 × ... × 1 ... [∵ tan θ cot θ = 1]
=1
28.
(b) 1

2√2

Explanation: cos 3 π

8
[4 cos
3 π

8
− 3 cos
π

8
] + sin
3 π

8
[3 sin
π

8
− 4 sin
3 π

8
]

= 4 cos 6 π

8
− 4 sin
6 π

8
− 3 cos
4 π

8
+ 3 sin
4 π

4 / 11
= 4 [(cos 2 π

8
− sin
2 π

8
)]

4 π 4 π 2 π 2 π 2 π 2 π 2 π 2 π
[(sin + cos + sin cos )] −3 [(cos − sin ) (cos + sin )]
8 8 8 8 8 8 8 8

= cos π

4
[4 (1 − sin
2 π

8
cos
2 π

8
) − 3]

= 1
[1 −
1

2
] =
1

√2 2√2

29.

(b) cot(7 1

2
)

Explanation: We know that,


1+cos 2 A
cot A = sin 2 A

Putting A = (7 1

2
) , we get
∘ ∘
1+cos 15
cot(7 1

2
) =
sin 15

√3+1
1+
2√2
= √3−1

2√2

2√2+ √3+1 √3+1


= ×
√3−1 √3+1

– – – –
= √6 + √2 + √3 + √4
30.
(d) 16
5

Explanation: sin 36° sin72° sin 108° sin 144°

E_
= sin 36° sin 72° sin(180° - 72°) sin(180° - 36°)
= sin 36° sin 72° sin 72° sin 36° ...[∵ sin (180° - θ) = sin θ]
= sin2 36° sin2 72°
JE
2 2
√10−2√5 √10+2√5

=[ 4
] [
4
]

(10−2√5) (10+2√5)
= ⋅
e
16 4
100−4×5
= 16×16
=
16×16
80
vin

= 5

16

31.
(c) 1
Explanation: 1
Di

32.
1
(b) 2

Explanation: 1

33.
(b) − 1

Explanation: Given trigonometric equation is


2π 4π 6π
cos + cos + cos
7 7 7

2π 6π 4π
= (cos( ) + cos( )) + cos( )
7 7 7

4π 2π
= cos( ) [2 cos( ) + 1]
7 7

4π 2 π
= cos( ) [2 (1 − 2 sin ( ) + 1]
7 7

π
sin(3× )

=
4π 2 π 7 4π
= cos( ) [3 − 4 sin ( )] π
× cos( )
7 7 sin 7
7

Multiply both side by 2



2 sin( )
7 4π
= π
× cos( )
2 sin 7
7

Apply 2 sin A cos B = sin(A + B) + sin(A - B)

5 / 11
7π −π
sin( )+sin( )

Here, sin(π ) = 0
7 7
= π ,
2 sin
7
π
− sin
7 1
= π
= −
2 sin 2
7

34.
(d) 4
∘ ∘
√3 cos 10 − √3 sin 10
Explanation: sin 10
1


cos 10

=
sin 10
∘ ∘
cos 10

1 √3
∘ ∘
( cos 10 − sin 10 )
2 2

= 1 ∘ ∘
(sin 10 cos 10 )
2
∘ ∘ ∘ ∘
4(sin 30 cos 10 −cos 30 sin 10 )
= ∘
sin 20
∘ ∘
4 sin( 30 − 10 )
= sin 20


4 sin 20
= sin 20
∘ =4
35.
√3(1− √5)
(c) 4

Explanation: Given trigonometric equation is


sin 12o + sin 12o - sin 72o
= sin 12o - 2 cos 42o sin 30o
= sin 12o - sin (90o - 48o) = sin 12o - sin 48o

_
= -2 cos 30o sin 18o = −2 ×
√3 √5−1 √3 –
× = (1 − √5)

36.
(c) sin 1 > sin 1°
2 4 4
EE
Explanation: Since, 1 radian = 57° nearly
eJ
and sin 57° > sin 1° ⇒ sin 1 > sin 1°
37.
(b) 4
vin

Explanation: 4
38.
(b) 1

Explanation: 1
Di

39.
(d) 2
Explanation: 2
40.
4
(b) 3
1
Explanation: sin x + sin y = 2

x+y x−y
⇒ 2 sin ( 2
) cos ( 2
) =
1

2
...(i)
cos x + cos y = 1
x+y x−y
⇒ 2 sin ( 2
) cos ( 2
) = 1 ...(ii)
Dividing (i) by (ii), we get
x+y
tan ( 2
) =
1

x +y
2 tan( )

Now, tan (x + y) =
2

x +y
2
1− tan ( )
2

1
2( )

=
2 4
=
1 3
1−
4

41.
(b) 36
Explanation: Let x = π

9
or 5π

9
or 7π

6 / 11
⇔ 3x = π

3
or 5π

9
or 7π

⇒ cos 3x = 1

⇔ 4 cos3 x - 3 cos x = 1

Dividing by cos3 x, we get


sec3 x +6 - 8 = 0, sec2 x
which is a cubic equation in sec x whose roots
are sec , sec , sec
π

9

9

Let a = sec π

9
, b = sec 5π

9
, c = sec 7π

9
,
then a + b + c = -6 and ab + bc + ca = 0
Required expression = a2 + b2 + c2
= (a + b + c)2 - 2(ab + bc + ca)
= (- 6)2 - 2(0) = 36
42.

(d) 2(√2 + 1)

Explanation: 2(√2 + 1)
43.
(b) 9

Explanation: Let α = π
or 5π
or 7π

_
9 9 9

⇒ 3α =
π

3
or 5π

9
or 7π


cos 3 α =
(4 cos3 α - 3 cos α )2 -
1

2
⇒ cos2 3 α =
1

4
=0
1

4
EE
⇔ 64 cos6 α - 96 cos4 α + 36 cos2 α - 1 = 0,
eJ
which is a cubic equation in cos2 α
whose roots are cos2 π

9
, cos2 5π

9
, cos2 7π

Let a = cos2 π
, b = cos2 5π
, c = cos2 7π
,
vin

9 9 9

then a + b + c = 96

64
=
3

and ab + bc + ca = 36

64
=
9

16

Required expression = a2 + b2 + c2
Di

= (a + b + c)2 - 2(ab + bc + ca)


2

=( 3

2
) − 2(
16
9
)

= 9

4

9

8
=
9

44.
(b) M = 1
+
1

2
cos
π

8
2√2

Explanation: L + M = 1 − 2 sin 2 π

8
= cos
π

4
=
1
...(i)
√2

π
and L - M = − cos 8
...(ii)
From eq. (i) and (ii),
1 1 π 1 1 π 1 1 π 1 1 π
L= 2
( − cos
8
) = −
2
cos
8
and M = 2
( + cos
8
) = +
2
cos
8
√2 2√2 √2 2√2

45.

(c) 2√3
Explanation: 16 sin 20o sin 40° sin 80o
= 16 sin 40o sin 20o sin 80o
= 4(4 sin (60 - 20) sin(20) sin (60 + 20))
= 4 × sin (3 × 20o) [∵ sin 3θ = 4 sin(60 − θ) × sin θ × sin(60 + θ)]
= 4 × sin 60o
√3 –
= 4 × = 2√3
2

7 / 11
46.
(d) 19π

24

Explanation: tan (A - B) = 1
⇒ tan (A - B) = tan
π

⇒ A-B= π

4
...(i)
and sec (A + B) = 2

√3

⇒ sec (A + B) = sec 11π

⇒ A+B= 11π

6
...(ii)
From (i) and (ii), we get
B= 19π

24

47. (a) 3

4
3
Explanation: 4

48.

(c) 2√3
Explanation: tan 75° - cot 75°
= tan (90° - 15°) - cot 75°
= cot 15° - cot 75°
– –
= (2 + √3) - (2 - √3)

= 2√3

_
49.
(c) cosec 1o cot 1o
Explanation: cosec 1o cot 1o
EE
50. (a) 2
eJ
Explanation: 2
51. 1
Explanation:
vin

3π π
Let y = 3 [ sin 4
(
2
− α) + sin (3π + α)]
4
- 2 [sin 6
(
2
6
+ α) + sin (5π − α)] , then we have

y = 3(cos4 α + sin4 α ) - 2(cos6 α + sin6 α )


= 3(1 - 2 sin2 α cos2 α ) - 2(1 - 2 sin2 α cos2 α )
Di

= 3 - 6 sin2 α cos2 α - 2 + 6 sin2 α cos2 α = 1


52. 0.5
Explanation:
13 1
Given: cos x = 14
and cos y = 7
π
To prove: (x - y) = − 3
−−−−−−−−−−−
−−−−−−−−
−−−−−−−− − 2
13 196−169
Now, 2
sin x = √(1 − cos x) = √(1 − (
14
) ) ⇒ √(
196
)

−−−−−
27 3√3
= √( ) ⇒
196 14

−−−−−−−−−−
−−−−−− −−−−
−−−−−−−− − 2
49−1 48 4√3
2 1
sin y = √(1 − cos y) ⇒ √(1 − ( ) ) = √( ) = √( ) =
7 49 49 7

Hence, cos (x - y) = cos x.cos y + sin x.sin y


3√3 4√3 13+36
=
13

14

1

7
+
14

7
=
98
=
49

98
= 0.5
53. 1
Explanation:
NA
54. 0
Explanation:
Given: sin θ + sin θ + sin θ = 3
1 2 3

As we know that Sine function can take the maximum value of 1.

8 / 11
If sin θ 1 + sin θ2 + sin θ3 = 3

sin θ1 = 1
π
⇒ θ1 =
2

Similarly,
π
θ2 = θ3 =
2

⇒ cos θ1 = cos θ2 = cos θ3 = 0

⇒ cos θ1 + cos θ2 + cos θ3 = 0

55. -0.8
Explanation:
We have to find the value of cos(A + B)
It is given that,
cos A = − and cos B =
24

25
3

5
−−−−−−− − −−−−−−− −
2
∴ sin A = − √1 − cos A
2
sin B = − √1 − cos B ∵ and [ In the 3rd and 4th quadrant sinθ is negative]
−−−− −−−−−− −−− −−−−−
2 2

⇒ sin A = − √1 − (−
24

25
) and sin B = −√1 − ( 3

5
)

−−−−−− −−−−−
576 9
⇒ sin A = − √1 −
625
and sin B = −√1 − 25

−−
− −−
49 16
⇒ sin A = − √
625
and sin B = −√ 25

7
⇒ sin A = −
25
and sin B = − 4

_
Now,
cos(A + B) = cos A cos B - sin A sin B
= −

= −
24

25

72
×


3

28
− (−
7

25
) × (−
4

5
)
EE
125 125
−72−28
=
eJ
125
−100 −4
=
125
=
5
= -0.8
56. 9
Explanation:
vin

NA
57. 2
Explanation:
NA
Di

58. 6
Explanation:
NA
59. 3
Explanation:
NA
60. 5
Explanation:
NA
61. 250
Explanation:
We have,
10 sin4 α + 15 cos4 α = 6
2
4 4 2 2
⇒ 10 sin α + 15 cos α = 6(sin α + cos α)

[Dividing both sides by cos4 α ]


2
4 2
⇒ 10 tan α + 15 = 6(tan α + 1)
2
2
⇒ (2 tan α − 3) = 0

9 / 11
2 3
⇒ tan α =
2

∴ 27 cosec6 a + 8 sec6 a = 27 (1 + cot2 α )3 + 8 (1 + tan2 α )3


3 3

27(1 +
2

3
) + 8(1 +
3

2
) = 27 ×
125

27
+ 8 ×
125

8
= 250.

62. 253
Explanation:
NA
63. -7
Explanation:
NA
64. 2
Explanation:
NA
65. 2
Explanation:
NA
66. 4
Explanation:
4

_
67. 218
Explanation:
218
68. 23
EE
Explanation:
23
eJ
69. 80
Explanation:
∘ 1 ∘ ∘ ∘ ∘ ∘ ∘ ∘
sin 10 ( ⋅ 2 sin 20 sin 40 ) ⋅ sin 10 sin(60 − 10 ) sin (60 + 10 )
vin

2
∘ 1 ∘ ∘ 1 ∘
= sin 10 (cos 20 − cos 60 ) ⋅ sin 30
2 4
1 1 1 ∘ ∘ 1
= ⋅ ⋅ ⋅ sin 10 (cos 20 − )
2 4 2 2
1 1 ∘ ∘ ∘
= ⋅ (2 sin 10 cos 20 − sin 10 )
16 2
1 ∘ ∘ ∘
Di

= (sin 30 − sin 10 − sin 10 )


32
1 1 ∘
= − (sin 10 )
64 16

Hence α = 64
1
⇒ α
−1
= 64

Hence, 16 + α −1
= 80

70. 1
Explanation:
−−−−−
2

√2 sin α 1− cos β
=
1

7
and √ 2
=
10
1

√2 cos α

√2 sin β 1
⇒ =
√2 √10

∴ tan α =
1

7
and sin β = 1

√10

1
tan β =
3
1 2
2⋅
2 tan β 3 3 3
∴ tan 2β = = = =
2 1 8 4
1− tan β 1−
9 9

tan α+tan 2β
tan(α + 2β) =
1−tan α tan 2β

10 / 11
1 3 4+21
+
7 4 28
= = = 1
1 3 25
1− ⋅
7 4 28

71. 17
Explanation:
17
72. 16
Explanation:
1
tan A ⋅ tan B =
2
1
⇒ tan A =
2 tan B

2 1
⇒ tan A=
2
4 tan B

Now, (5 − 3 cos2A)(5 − 3 cos2B)


2 2
1− tan A 1− tan B
= (5 − 3 ( 2
)) (5 − 3 (
2
))
1+ tan A 1+ tan B
2 2 2 2
5+5 tan A−3+3 tan A 5+5 tan B−3+3 tan B
=( 2
)(
2
)
1+ tan A 1+ tan B
2 2
2+8 tan A 2+8 tan B
=( 2
)(
2
)
1+ tan A 1+ tan B
2 2
1+4 tan A 1+4 tan B
=4×( 2
)(
2
)
1+ tan A 1+ tan B

1
⎛ 1+4( ) ⎞
2 2
1+4 tan B
=4×⎜
4 tan B
⎟( )
2
1+ tan B

_
1
⎝ 1+( ) ⎠
4 tan2 B

2 2
4(1+ tan B)

=4×(

= 4 × 4 = 16
1+4 tan
2
B
)(
1+4 tan

1+ tan
2
B
B
)
EE
73. 4
eJ
Explanation:

Given expression = √3cosec 20 ∘
− sec 20
∘ ∘ ∘
= tan 60 cosec 20

− sec 20
∘ ∘ ∘ ∘
sin 60 cos 20 −cos 60 ⋅sin 20
=
vin

∘ ∘ ∘
cos 60 ⋅sin 20 ⋅cos 20
∘ ∘ ∘
sin( 60 − 20 )
= ∘
cos 60 ⋅sin 20 ⋅cos 20
∘ ∘
= 1
sin 40

∘ ∘
⋅sin 20 cos 20
2
∘ ∘
2 sin 20 cos 20
= 1 ∘ ∘
= 4
sin 20 cos 20
2

74. 4
Di

Explanation:
Given, tan9o - tan 27o - tan 63o + tan 81o
= tan 9o + cot 9o - tan 27o - cot 27o
2 2 2×4 2×4
= ∘
− ∘
= − = 4
sin 18 sin 54 √5−1 √5+1

75. 11
Explanation:
11

11 / 11

You might also like