ROUTE SURVEYING
EARTHWORKS
Intended Learning Outcomes
1. Identify the methods in
calculating the area and volume
of cross sectional area for
earthworks
Intended Learning Outcomes
2. Determine the various types of
cross sectional areas used in
calculating areas and volumes
of earthworks
EARTHWORKS
Earthworks
Excavation
Earthworks
Embankment
Earthworks
Volume
Volume of Earthworks
𝐿
𝑉𝑒𝑛𝑑 = 𝐴1 + 𝐴2
2
End Area Method
Volume of Earthworks
𝐿
𝑉𝑝 = 𝐴1 + 4𝐴𝑚 + 𝐴2
6
Prismoidal Formula
Volume of Earthworks
𝑉𝑝 = 𝑉𝑒𝑛𝑑 − 𝐶𝑣
Prismoidal Formula
Volume of Earthworks
𝐿
𝐶𝑣 = 𝑐2 − 𝑐1 𝑑2 − 𝑑1
12
Prismoidal Correction
Earthworks
Area
AREA
COMPUTATIONS
Area Computations
Counting Squares
Method
Area Computations
Geometric
Method
Geometric Method
𝑏ℎ
𝐴=
2
Area of a Triangle
Geometric Method
2𝐴 = 𝑏ℎ
Double Area of a Triangle
Geometric Method
𝑏1 + 𝑏2
𝐴=ℎ
2
Area of a Trapezoid
Geometric Method
2𝐴 = ℎ 𝑏1 + 𝑏2
Double Area of a Trapezoid
EXAMPLE
#1
Geometric Method
Geometric Method
5.7 x 4.0
= 22.8m 2
2A of Triangle AJK
Geometric Method
5.2 x (5.7+6.0)
= 60.8m 2
2A of Triangle ABJ
Geometric Method
9.3 x (5.2+4.2)
= 87.4m 2
2A of Trapezoid BCIJ
Geometric Method
15.0 x (4.2+4.7)
= 133.5m 2
2A of Trapezoid CDHI
Geometric Method
4.8 x (4.7+1.5)
= 29.8m 2
2A of Trapezoid DEGH
Geometric Method
1.5 x 4.5
= 6.8m 2
2A of Triangle EFG
Geometric Method
22.8 + 60.8 + 87.4 + 133.5
+ 29.8 + 6.8
= 341.1m 2
Total Double Area (2A)
Geometric Method
341.1/2
= 170.5m 2
Area of the Cross Section
Area Computations
Double Meridian Distance
Method
(DMD)
Double Meridian Distance (DMD)
elevations
(latitudes)
Double Meridian Distance (DMD)
distance from centerline
(departures)
EXAMPLE
#2
Double Meridian Distance (DMD)
Double Meridian Distance (DMD)
if the path goes up, +lat.
if the path goes down, -lat.
Sign Convention for Latitudes
Double Meridian Distance (DMD)
if the path goes right, +dep.
if the path goes left, -dep.
Sign Convention for Departure
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
H–G -0.9 -22.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
H–G -0.9 -22.0
G–A +0.8 -15.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
H–G -0.9 -22.0
G–A +0.8 -15.0
A–B +0.1 -5.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
H–G -0.9 -22.0
G–A +0.8 -15.0
A–B +0.1 -5.0
B–C -1.1 -15.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0
E–F +1.5 +30.0
F–I -1.5 +30.0
I–H -1.8 +7.0
H–G -0.9 -22.0
G–A +0.8 -15.0
A–B +0.1 -5.0
B–C -1.1 -15.0
C–D +1.9 -14.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0 4.0
E–F +1.5 +30.0 38.0
F–I -1.5 +30.0 98.0
I–H -1.8 +7.0 135.0
H–G -0.9 -22.0 120.0
G–A +0.8 -15.0 83.0
A–B +0.1 -5.0 63.0
B–C -1.1 -15.0 43.0
C–D +1.9 -14.0 14.0
Total
Double Area:
Course Latitude Departure DMD Double Area (2A)
D–E +1.0 +4.0 4.0 4.0
E–F +1.5 +30.0 38.0 57.0
F–I -1.5 +30.0 98.0 -147.0
I–H -1.8 +7.0 135.0 -243.0
H–G -0.9 -22.0 120.0 -108.0
G–A +0.8 -15.0 83.0 66.4
A–B +0.1 -5.0 63.0 6.3
B–C -1.1 -15.0 43.0 -47.3
C–D +1.9 -14.0 14.0 26.6
Total 385.0
Double Area:
Double Meridian Distance
385m /2
2
= 192.50m 2
Area of the Cross Section
TYPES OF CROSS
SECTIONS
Different Cross Sections of Land
Area Computations
Three-Level
Section
Different Cross Sections of Land
Different Cross Sections of Land
Different Cross Sections of Land
EXAMPLE
#3
Three Level Section
Example #3
The following data are
cross-section notes of the
ground which will be
excavated for a roadway:
Three Level Section
Example #3
Station 4+120
8.00 0 9.20
+2.00 +3.20 +2.80
Three Level Section
Example #3
Station 4+160
9.50 0 10.70
+3.00 +2.60 +3.80
Three Level Section
Example #3
the base of the road is 10m
and the side slopes are
1.5:1
Three Level Section
Example #3
a.
find the volume of excavation
by end area method
Five Level Section
Example #3
𝑐1 𝑏
𝐴𝑟𝑒𝑎1 = 8 + 9.2 + 2 + 2.8
2 2
Three Level Section
Example #3
3.2 10
𝐴𝑟𝑒𝑎1 = 8 + 9.2 + 2 + 2.8
2 2
Three Level Section
Example #3
3.2 10
𝐴𝑟𝑒𝑎1 = 8 + 9.2 + 2 + 2.8
2 2
𝟐
𝐴𝑟𝑒𝑎1 = 𝟑𝟗. 𝟓𝟐𝒎
Three Level Section
Example #3
2.6 10
𝐴𝑟𝑒𝑎2 = 9.5 + 10.7 + 3 + 3.8
2 2
Three Level Section
Example #3
2.6 10
𝐴𝑟𝑒𝑎2 = 9.5 + 10.7 + 3 + 3.8
2 2
𝟐
𝐴𝑟𝑒𝑎2 = 𝟒𝟑. 𝟐𝟔𝒎
Three Level Section
Example #3
40
𝑉𝑒𝑛𝑑 = 39.52 + 43.26
2
𝟑
𝑉𝑒𝑛𝑑 = 𝟏𝟔𝟓𝟓. 𝟔𝒎
Three Level Section
Example #3
b.
compute the volume by
prismoidal formula
Five Level Section
Example #3
Station 4+120
8.00 0 9.20
+2.00 +3.20 +2.80
Station 4+160
9.50 0 10.70
+3.00 +2.60 +3.80
Three Level Section
Example #3
Station 4+140
Horizontal Distance
8.00+9.50 0+0 9.20+10.70
2 2 2
Vertical Distance
2.00+3.00 3.20+2.60 2.80+3.80
2 2 2
Three Level Section
Example #3
Station 4+140
8.75 0 9.95
+2.50 +2.90 +3.30
Three Level Section
Example #3
2.9 10
𝐴𝑟𝑒𝑎𝑚 = 8.75 + 9.95 + 2.5 + 3.3
2 2
Three Level Section
Example #3
2.9 10
𝐴𝑟𝑒𝑎𝑚 = 8.75 + 9.95 + 2.5 + 3.3
2 2
𝟐
𝐴𝑟𝑒𝑎𝑚 = 𝟒𝟏. 𝟔𝟐𝒎
Three Level Section
Example #3
𝐿
𝑉𝑝 = 𝐴1 + 4𝐴𝑚 + 𝐴2
2
Three Level Section
Example #3
40
𝑉𝑝 = 39.52 + 4 41.62 + 43.26
2
Three Level Section
Example #3
40
𝑉𝑝 = 39.52 + 4 41.62 + 43.26
2
𝟑
𝑉𝑒𝑛𝑑 = 𝟏𝟔𝟔𝟏. 𝟕𝟑𝒎
Three Level Section
Example #3
c.
determine the prismoidal
correction
Five Level Section
Example #3
𝐿
𝐶𝑣 = 𝑐2 − 𝑐1 𝑑2 − 𝑑1
12
Three Level Section
Example #3
𝑑1 = 8 + 9.20 = 17.2𝑚
Three Level Section
Example #3
𝑑1 = 8 + 9.20 = 17.2𝑚
𝑑2 = 9.5 + 10.7 = 20.2𝑚
Three Level Section
Example #3
𝑑1 = 8 + 9.20 = 17.2𝑚
𝑑2 = 9.5 + 10.7 = 20.2𝑚
40
𝐶𝑣 = 2.6 − 3.2 20.2 − 17.2
12
Three Level Section
Example #3
𝑑1 = 8 + 9.20 = 17.2𝑚
𝑑2 = 9.5 + 10.7 = 20.2𝑚
40
𝐶𝑣 = 2.6 − 3.2 20.2 − 17.2
12
𝐶𝑣 = −𝟔𝒎𝟑
Three Level Section
Area Computations
Special Case
Three-Level Section
Different Cross Sections of Land
Different Cross Sections of Land
Different Cross Sections of Land
Area Computations
Five-Level
Section
Different Cross Sections of Land
Different Cross Sections of Land
Different Cross Sections of Land
EXAMPLE
#4
Five Level Section
Example #4
it is required to determine the
earthwork volume on a portion
of road construction grading
work based on the following
cross-section notes:
Five Level Section
Example #4
Station 7+460
+0.32 +0.60 +1.92 +1.52 +1.32
4.14 3.50 0 3.50 6.14
Five Level Section
Example #4
Station 7+500
2.70 3.20 1.60 2.0 2.40
8.90 3.50 0 3.50 8.30
Five Level Section
Example #4
Example #4
a.
determine the area of the first
section
Five Level Section
Example #4
Area1
1 −3.5 −4.14 −3.5 0 3.5 6.14 3.5
2 0 0.32 0.60 1.92 1.52 1.32 0
Five Level Section
Example #4
Area1
−3.5𝑥0.32 + (−4.14𝑥0.6)
+ −3.5𝑥1.92 + (3.5𝑥1.32)
1
2
− 0.32𝑥 − 3.5 − (1.92𝑥3.5)
− 1.52𝑥6.14 − (1.32𝑥3.5)
Five Level Section
Example #4
Area1 = 12.63m 2
Five Level Section
Example #4
b.
determine the area of the
second section
Five Level Section
Example #4
Area2
1 −3.5 −8.9 −3.5 0 3.5 8.3 3.5
2 0 2.7 3.2 1.6 2 2.4 0
Five Level Section
Example #4
Area2
−3.5𝑥2.7 + (−8.9𝑥3.2)
+ −3.5𝑥1.6 + (3.5𝑥2.4)
1
2
− 2.7𝑥 − 3.5 − (1.6𝑥3.5)
− 2𝑥8.3 − (2.4𝑥3.5)
Five Level Section
Example #4
Area1 = 28.14m 2
Five Level Section
Example #4
c.
compute the volume of
excavation using end area
method
Five Level Section
Example #4
𝐿
𝑉𝑒𝑛𝑑 = 𝐴1 + 𝐴2
2
Five Level Section
Example #4
40𝑚
𝑉𝑒𝑛𝑑 = 12.63 + 28.14
2
Five Level Section
Example #4
𝑉𝑒𝑛𝑑 = 𝟖𝟏𝟓. 𝟒𝟎𝒎𝟑
Five Level Section
Area Computations
Irregular
Section
Different Cross Sections of Land
Different Cross Sections of Land
Different Cross Sections of Land
Area Computations
Levelled
Section
Different Cross Sections of Land
Different Cross Sections of Land
Different Cross Sections of Land
CUT AND FILL
SECTIONS
EXAMPLE
#5
Cut and Fill Section
Example #5
Given the following cross-sections:
Base for Cut = 9m Sideslope = 1:1
Base for Fill = 8m Sideslope = 1.5:1
Cut and Fill Section
Example #5
Station 3+000
5.48 0 5.00
+0.98 +3.05 +0.50
Cut and Fill Section
Example #5
Station 3+060
6.76 0 4.63
+0.98 −1.22 −0.42
Cut and Fill Section
Example #5
the base of the road is 10m
and the side slopes are
1.5:1
Cut and Fill Section
Example #5
a.
compute the volume of cut
using end area method
Cut and Fill Section
Example #5
5.05 9
𝐴𝑟𝑒𝑎1 = 5.48 + 5 + 0.98 + 0.5
2 2
Cut and Fill Section
Example #5
5.05 9
𝐴𝑟𝑒𝑎1 = 5.48 + 5 + 0.98 + 0.5
2 2
𝟐
𝐴𝑟𝑒𝑎1 = 𝟏𝟗. 𝟑𝟏𝒎
Cut and Fill Section
Example #5
1.22 8
𝐴𝑟𝑒𝑎2 = 6.76 + 4.63 + 1.84 + 0.42
2 2
Cut and Fill Section
Example #5
1.22 8
𝐴𝑟𝑒𝑎2 = 6.76 + 4.63 + 1.84 + 0.42
2 2
𝟐
𝐴𝑟𝑒𝑎2 = 𝟏𝟏. 𝟒𝟕𝒎
Cut and Fill Section
Example #5
42.86
𝑉𝑐𝑢𝑡 = 19.31
2
𝟑
𝑉𝑐𝑢𝑡 = 𝟒𝟏𝟑. 𝟖𝟏𝒎
Cut and Fill Section
Example #5
b.
find the volume of fill using
end area method
Cut and Fill Section
Example #5
60 − 42.86
𝑉𝑓𝑖𝑙𝑙 = 0 + 11.47
2
𝟑
𝑉𝑓𝑖𝑙𝑙 = 𝟗𝟖. 𝟑𝟎𝒎
Cut and Fill Section
EXAMPLE
#6
Cut and Fill Section
Example #6
From station 0+200 with center
height of 1.4m in fill, the ground line
makes a uniform slope of +5% to
station 0+260 whose center height
is 2.8m in cut.
Cut and Fill Section
Example #6
Assuming both sections to be
trapezoidal with a roadway of 10m
and side slope of 2:1
Cut and Fill Section
Example #6
a.
compute the grade of the
finished roadway
Cut and Fill Section
Example #6
1.20
𝐺𝑟𝑎𝑑𝑒𝑟𝑜𝑎𝑑 =
60
𝐺𝑟𝑎𝑑𝑒𝑟𝑜𝑎𝑑 = 𝟎. 𝟐𝟎
Cut and Fill Section
Example #6
b.
how far from station 0+200
will the filling extend?
Cut and Fill Section
Example #6
𝑥 60 − 𝑥
=
1.4 2.8
𝑥 = 𝟐𝟎𝒎
Cut and Fill Section
Example #6
c.
what is the elevation of the
section at station 0+250?
Cut and Fill Section
Example #6
𝑦 2.8
=
30 40
𝑦 = 𝟐. 𝟏𝒎
Cut and Fill Section
BORROW PIT
COMPUTATION
Borrow Pit
an area where material
(usually soil, gravel or sand)
has been dug for use at
another location
Borrow Pit
𝐴
𝑉𝑝𝑖𝑡 = ℎ1 + 2 ℎ2 + 3 ℎ3 + 4 ℎ4
4
Volume of Borrow Pit
Borrow Pit
Elevation (h1)
Borrow Pit
Elevation (h2)
Borrow Pit
Elevation (h3)
Borrow Pit
Elevation (h4)
Borrow Pit
𝐴
𝑉𝑝𝑖𝑡 = ℎ1 + 2 ℎ2 + 3 ℎ3 + 4 ℎ4
4
Volume of Borrow Pit
EXAMPLE
#7
Borrow Pit
Example #7
A 90m x 90m square lot is to be
divided into 9 square sections. The
following data are the elevations at
the corners of the square sections
on the ground surface of the lot.
Volume of Borrow Pit
Example #7
If the ground is to be leveled at
elevation 5m, find the total volume
of earthworks to be excavated.
Volume of Borrow Pit
Example #7
A = 3.3m B = 7.9m C = 10.8m D = 6.8m
E = 7.6m F = 9.2m G = 10.6m H = 8.6m
I = 7.2m J = 10.2m K = 9.4m L = 6.9m
M = 7.2m N = 6.2m O = 9.6m P = 8.9m
Volume of Borrow Pit
A B C D
E F G H
I J K L
M N O P
A = 3.3m B = 7.9m C = 10.8m D = 6.8m
E = 7.6m F = 9.2m G = 10.6m H = 8.6m
I = 7.2m J = 10.2m K = 9.4m L = 6.9m
M = 7.2m N = 6.2m O = 9.6m P = 8.9m
Example #7
ℎ1 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝐴 𝐷 𝑀 𝑃
Volume of Borrow Pit
Example #7
ℎ1 = 3.3 + 1.8 + 3.9 + 2.2
Volume of Borrow Pit
Example #7
ℎ1 = 11.2m
Volume of Borrow Pit
Example #7
ℎ2 = 𝑒𝑙𝑒𝑣. 𝑎𝑡 𝐵 𝐶 𝐻 𝐿 𝑂 𝑁 𝐼 𝐸
Volume of Borrow Pit
Example #7
ℎ2 = 2.9 + 5.8 + 3.6 + 1.9
+ 4.6 + 1.2 + 2.2 + 2.6
Volume of Borrow Pit
Example #7
ℎ2 = 24.8m
Volume of Borrow Pit
Example #7
ℎ3 = 𝑁𝑂𝑁𝐸
Volume of Borrow Pit
Example #7
ℎ4 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝐹 𝐺 𝐾 𝐽
Volume of Borrow Pit
Example #7
ℎ4 = 4.2 + 5.6 + 5.2 + 4.4
Volume of Borrow Pit
Example #7
ℎ4 = 19.4m
Volume of Borrow Pit
Example #7
𝐴
𝑉𝑝𝑖𝑡 = ℎ1 + 2 ℎ2 + 3 ℎ3 + 4 ℎ4
4
Volume of Borrow Pit
Example #7
2
30
𝑉𝑝𝑖𝑡 = 11.2 + 2 24.8 + 4 19.4
4
Volume of Borrow Pit
Example #7
2
30
𝑉𝑝𝑖𝑡 = 11.2 + 2 24.8 + 4 19.4
4
𝑉𝑝𝑖𝑡 = 𝟑𝟏𝟏𝟒𝟎𝒎𝟑
Volume of Borrow Pit