Bab2 PDF
Bab2 PDF
Bab2 PDF
Modul PdPc
• Kembangan ungkapan algebra ialah hasil pendaraban satu atau dua Tip Penting
.
ungkapan dalam kurungan.
hd
Expansion of algebraic expression is a product of one or two expression in brackets. a(x + y) = ax + ay
• Kembangan ungkapan algebra boleh dilakukan dengan mendarabkan
sebutan di luar kurungan dengan setiap sebutan di dalam kurungan. (a + b)(x + y)
.B
The expansion of algebraic expressions can be performed by multiplying the term outside of
the brackets with each term inside the brackets. = a(x + y) + b(x + y)
= ax + ay + bx + by
dn
1. Cari kembangan bagi setiap yang berikut berdasarkan jubin algebra yang diberikan.
S
TP2
Find the expansion of each of the following based on the given algebraic tiles.
gi
Contoh PdPc (a) 3x(2 + x) (b) (x + 5)(2x + 1)
5(x + 3)
an
2 x x 5
x 3
2x 2x2 10x
3x 6x 3x2
l
5 5x
Pe
15
1 x 5
Luas jubin
Area of tile
5(x + 3) (x + 5)(2x + 1)
3x(2 + x)
n
= 5x + 15 = 2x2 + 10x + x + 5
= 6x + 3x2
= 2x2 + 11x + 5
ta
bi
(x – 1)(x + 2) 2x 3 3x
x 2 8x –12 2x – 3
x–2 2x2 – 4x 3x – 6
n
x
2x
x–1 x2 – x 2x – 2 2 9x – 12 12 3
Pe
1 3x – 4 4
(2x + 3)(x – 2)
(x – 1)(x + 2) = 2x2 – 4x + 3x – 6
(3x – 4)(2x – 3)
= x2 – x + 2x – 2 = 2x2 – x – 6
= 6x2 – (9x – 12) – (8x – 12) – 12
= x2 + x – 2 = 6x2 – 9x + 12 – 8x + 12 – 12
Tip Penting = 6x2 – 17x + 12
–(a + b) = –a – b
–(a – b) = –a + b
–(–a + b) = a – b
–(–a – b) = a + b
.
hd
.B
3. Kembangkan setiap yang berikut. TP2 Tip Penting
Expand each of the following.
(a + b)(x + y) = a(x + y) + b(x + y)
= ax + ay + bx + by
dn
Contoh PdPc (a) (a – 2b)(11 – b) (b) (k – l)(k + 2l)
(x + 1)(x + 5) = a(11 – b) – 2b(11 – b) = k(k + 2l) – l(k + 2l)
S
= x(x + 5) + 1(x + 5) = 11a – ab – 22b + 2b2 = k2 + 2kl – kl – 2l2
= x2 + 5x + x + 5
gi = k2 + kl – 2l2
= x2 + 6x + 5
l an
(f ) (4a + 5b)(a – 2b) (g) (–7h + 3)(h – 5) (h) (9p + 6)(7 – 4p)
er
= 4a(a – 2b) + 5b(a – 2b) = –7h(h – 5) + 3(h – 5) = 9p(7 – 4p) + 6(7 – 4p)
= 4a2 – 8ab + 5ab – 10b2 = –7h2 + 35h + 3h – 15 = 63p – 36p2 + 42 – 24p
n
.
hd
(iii) (u + w)(u – w) (e) (2a + 9)(2a – 9) (f ) (5p – 3r)(5p + 3r)
= u2 – w2 = (2a)2 – 92 = (5p)2 – (3r)2
= 4a2 – 81 = 25p2 – 9r2
.B
dn
5. Permudahkan setiap yang berikut. TP3
Simplify each of the following.
S
Contoh PdPc
(i) (4p – 1)(3p – 2) – 12p Lakukan kembangan bagi (ii) (c – 3d)2 + 2cd
gi
menghapuskan kurungan.
= 12p2 – 8p – 3p + 2 – 12p =
Perfom expansion to remove the brackets. c2 – 6cd + 9d2 + 2cd
= 12p2 – 23p + 2 = c2 – 4cd + 9d2
an
Selesaikan sebutan serupa.
Solve the like terms.
l
= a + b + 8a + 8b = 25 – 40n + 16n² + 2 – 2n
= 9a + 9b = 27 – 42n + 16n²
n er
2
(g) –x(x + 3y) – (x + y)² (h) 10k(7p + k) – p(p – 2k)
= –x² – 3xy – (x² + 2xy + y²) 51
= – x2 – 3xy – x2 – 2xy – y² = 2k(7p + k) – p(p – 2k)
= –2x² – 5xy – y² = 14kp + 2k² – p² + 2kp
= 16kp + 2k² – p²
(a) Shao Kang membeli p buah buku latihan dengan (b) Seetha mempunyai sebidang tanah berbentuk
harga RM(q + 1) sebuah dan q buah buku rujukan segi empat tepat seperti yang ditunjukkan
dengan harga RM(p + 2) sebuah. Dia membayar dalam rajah di bawah. Cari luas, dalam m2, tanah
dengan harga RM5pq. Hitung baki wang yang itu. TP4
diterimanya, dalam RM. Seetha has a piece of rectangular land as shown in the
Shao Kang bought p exercises book at RM(q + 1) each and diagram below. Find the area, in m , of the land.
2
.
= 5pq – pq – p – pq – 2q
hd
= 3pq – p – 2q Luas tanah / Area of land (m2)
= (7x + 5)(4x + 3)
\ Baki wang/ Balance
.B
= 28x2 + 21x + 20x + 15
= RM(3pq – p – 2q)
= 28x2 + 41x + 15
dn
(c) Kelab Matematik sebuah sekolah ingin menjual roti sandwic sempena Hari Kantin. Mereka memerlukan
S
30 tin sardin dan 15 buku roti. Rajah di bawah menunjukkan harga sardin dan roti di dua buah pasar
raya. TP5 KBAT Menganalisis
gi
Mathematics Club of a school wants to sell sandwhich during Canteen’s Day. They need 30 cans of sardine and 15 loaves of bread.
The diagram shows the prices of sardine and bread in two supermarkets.
an
4
n
RMs RM(r + 1) RM –– (r + 1)
RM4s 5
ta
Hitung kerugian yang dialami jika mereka membeli barang di pasaraya yang menawarkan harga yang
bi
s and r.
Jumlah bayaran di Pasar Raya Ekstra/ Total payment in Pasar Raya Ekstra
n
= 30s + 15(r + 1)
Pe
= 30s + 15r + 15
Jumlah bayaran di Pasar Raya Bajet/ Total payment in Pasar Raya Bajet
= 5(4s) + 15 × 4 (r + 1)
30 tin/ cans
=5
5 6 tin/ cans
= 20s + 12(r + 1)
= 20s + 12r + 12
Pasar Raya Ekstra menawarkan harga yang lebih
mahal berbanding Pasar Raya Bajet.
Kerugian/ Loss = (30s + 15r + 15) – (20s + 12r + 12) Pasar Raya Ekstra offers more expensive price compared
= 30s + 15r + 15 – 20s – 12r – 12 to Pasar Raya Bajet.
= 10s + 3r + 3
(d) Rajah di bawah menunjukkan dua buah segi (e) Rajah di bawah menunjukkan sebuah rangka
empat tepat, ABCD dan EFCG. TP5 gambar yang diperbuat daripada kayu dan
The diagram shows two rectangles, ABCD and EFCG. plastik. Gambar tersebut berukuran 8 cm × 8 cm.
The diagram shows a picture frame made up from wood and
A (9x + 4) cm B plastic. The measurement of the picture is 8 cm × 8 cm.
(5x) cm
(5y + 1) cm Kayu
E F Wood
2y cm
D G 3x cm C
Plastik
Plastic
.
(x + 2) cm
hd
Wood
.B
Area of ABCD – Area of EFCG luas rangka kayu yang digunakan, dalam cm2.
= (9x + 4)(5y + 1) – (3x)(2y) If the width of the picture frame is the same, calculate the area
dn
of the wooden frame used, in cm2. TP5 KBAT Mengaplikasi
= 45xy + 9x + 20y + 4 – 6xy
Luas rangka kayu yang digunakan
= (39xy + 9x + 20y + 4) cm2 Area of the wooden frame used
S
= 2 × Luas trapezium
Area of trapezium
gi
=2× 12 × (5x + 8) × (x + 2) Hukum Kalis Sekutuan
Associative Law
= 5x + 10x + 8x + 16
2
an
x x
Pe
= 2x2 + 2xy
(x + y)2 = (x + y) × (x + y)
er
y xy xy
= x2 + xy + xy + y2
= x2 + 2xy + y2
n
Pe
(ii) Bantu Vivian dengan membina jubin algebra yang betul bagi kembangan (x + y)2.
Help Vivian by constructing correct algebraic tiles for the expansion of (x + y)2.
x y
x x2 xy
(x + y)2 = x2 + xy + xy + y2
xy y = x2 + 2xy + y2 2
y
Modul PdPc
• Pemfaktoran ialah proses mengenal pasti faktor sebutan dan ungkapan algebra. Tip Penting
Factorisation is the process of identifying the factors of an algebraic terms and algebraic expression.
Kembangan/ Expansion
• Faktor-faktor ini apabila didarabkan akan menghasilkan ungkapan asal.
These factors when multiplied together will form the original expression. p(p + q) = p2 + pq
• Pemfaktoran merupakan proses songsangan kepada kembangan.
Pemfaktoran/ Factorisation
Factorisation is the reversed process of an expansion.
.
Peta Buih
hd
Fill in the blanks of each of the following.
(a) (b)
.B
2 3
1 3 1 a
dn
Faktor Faktor
6x bagi 6x 6 3ab bagi 3ab b
Factors Factors
S
of 6x gi of 3ab
3x x ab 3a
2x 3b
an
8. Senaraikan semua faktor sepunya bagi setiap sebutan berikut. TP2 TP3
l
8y = 1 × 8y 8y2 = 1 × 8y2
2x = 1 × 2x 4xy = 1 × 4xy 2 × 4y 2 × 4y2
ta
2 × x 4 × xy 4 × 2y 4 × 2y2
2 × 2xy 8 × y 8 × y2
bi
2x × 2y y × 8y
x × 4y 2y × 4y
er
y × 4x
Faktor sepunya/ Common factors: Faktor sepunya/ Common factors:
n
SP 2.2.1 Menghubungkaitkan pendaraban ungkapan algebra dengan konsep faktor dan pemfaktoran, dan seterusnya menyenaraikan faktor bagi hasil darab
ungkapan algebra tersebut.
.
hd
10. Faktorkan setiap ungkapan berikut. TP3
Factorise each of the following expressions.
.B
4x + 16 (i) a2 – 1 (ii) 2w2 – 50 Tip Penting
Faktorkan
= a – 1
2 2
= 2(w – 25) a – b
2 2 2
dahulu.
dn
4 4x + 16 FSTB/ HCF = 4 = (a + b)(a – b)
= (a + 1)(a – 1)
Factorise first. = 2(w2 – 52)
x + 4 Maka/ Thus, = 2(w – 5)(w + 5)
4(x + 4)
FSTB/ HCF = 7m
Pe
Maka,
Thus,
7m(2 + 3m)
n
= 3(3m – 5)(3m + 5)
FSTB/ HCF = 16y
n
Maka,
Thus,
Pe
16y(y – 4)
(c) 15p2q – 21pq2 (f ) 169u2 – 225 (i) 243g3 – 48g
.
hd
y2 – 8y + 15 = (y – 3)(y – 5)
(a) p2 – 4p – 12 (f ) ab + ac + bd + cd
.B
= (p + 2)(p – 6) = (ab + ac) + (bd + cd)
= a(b + c) + d(b + c)
p +2 +2p
dn
(×) (+) = (b + c)(a + d)
p –6 –6p
p2 –12 –4p
(b) 6m2 – m – 2
S (g) pq – p2 + 3q – 3p
gi
= (3m – 2)(2m + 1) = (pq – p2) + (3q – 3p)
= p(q – p) + 3(q – p)
an
3m –2 –4m
(×) (+) = (q – p)(p + 3)
2m +1 +3m
6m2 –2 –m
l
Pe
(×) (+)
2x –1 +3x = (m – n)(b + c)
–6x2 +5 –7x
bi
er
(a) Luas sebuah padang berbentuk segi empat (b) Hasil darab umur dua orang adik-beradik ialah
sama ialah (4x2 – 12x + 9) m2. Hitung perimeter n2 – 1. Cari beza umur mereka. TP4
padang itu, dalam m. TP4 The product of the ages of two brothers is n2 – 1. Find the
The area of a square field is (4x2 – 12x + 9) m2. Calculate the difference in their ages.
perimeter of the field, in m.
n2 – 1 = (n + 1)(n – 1)
4x – 12x + 9
2
Beza umur
= (2x)2 – 2(2x)(3) + 32 Difference in ages
= (2x – 3)(2x – 3) = n + 1 – (n – 1)
Panjang sisi padang = (2x – 3) m = n + 1 – n + 1
Side length of field =2
.
hd
Perimeter = 4(2x – 3)
= (8x – 12) m
.B
(c) Di sebuah kedai buah-buahan, sebiji oren berharga RMy, sebiji epal berharga 10 sen kurang daripada
sebiji oren dan sebiji pear berharga 50 sen lebih daripada sebiji oren. Mr Smith membeli 10 biji oren,
8 biji epal dan 5 biji pear. Hitung jumlah wang yang dibelanjakan, dalam RM. TP4 KBAT Mengaplikasi
dn
At a fruit shop, an orange cost RMy, an apple cost 10 sen less than an orange and a pear cost 50 sen more than an orange. Mr Smith
bought 10 oranges, 8 apples and 5 pears. Calculate the total amount that he spent, in RM. Modul HEBAT M17
S
Buah/ Fruit Bilangan buah/ Number of fruits Harga sebiji/ Price per (RM) RM
= RM(23y + 1.7)
(d) Grace ingin memasang jubin pada lantai biliknya yang berbentuk segi empat tepat. Luas lantai biliknya
n
(ii) Cari bilangan jubin yang diperlukan untuk memasang seluruh lantai itu.
Find the number of tiles needed to cover the whole floor.
er
(i) 300xy – 150x + 900y – 450 (ii) 150 keping jubin / tiles
= 150(2xy – x + 6y – 3)
n
= 150(x + 3)(2y – 1)
Dimensi jubin / Dimension of a tile
= (x + 3) m × (2y – 1) m
(e) Su Lin ingin menghitung 79 × 81 tanpa menggunakan kalkulator. Terangkan bagaimana anda dapat
membantu Su Lin menghitung hasil darab itu dengan lebih mudah menggunakan (x – 1) dan (x + 1).
Su Lin was trying to solve 79 × 81 without using a calculator. Explain how you help Su Lin solve the product more easily using (x – 1)
and (x + 1). TP6 KBAT Mencipta
Contoh PdPc (a) (h + k)(h – k) – (h2 + k2) (b) (p + q)2 + (2p + 3q)(3p – 2q)
(i) Ungkapan algebra = h2 – k2 – h2 – k2 = p2 + 2pq + q2 + 6p2 – 4pq
Algebraic expressions = –2k2 + 9pq – 6q2
3x(x + y) + 5y(x – 2y) = 7p2 + 7pq – 5q2
= 3x2 + 3xy + 5xy – 10y2
= 3x2 + 8xy – 10y2
.
hd
(ii) Penyebut yang sama
Same denominators
(c) 3p + 2q – p – 5q (d) 4m – 3n + 3m – 4n
p – 2q p – 2q 2m + 3n 2m + 3n
.B
z – 5z = z – 5z 3p + 2q – p + 5q
2y 2y 2y = = 4m – 3n + 3m + 4n
p – 2q 2m + 3n
= –4z
dn
2p + 7q = 7m + n
2y =
p – 2q 2m + 3n
= – 2z
y
S
(iii) Penyebut dengan gandaan
gi
(e) 3n 2 + 5n2 (f ) 3h – 7h
2 2
12m2 10k
= 5 – 3 × 2
Samakan
penyebut.
4c 2c × 2 = 18n2 = 8h
2
Equalise the
12m 10k
= 5 – 6 = – 1
denominators
4c 4c 4h 2
n
=
5k
ta
3 + 5
= 4c – 15d = 6 + 35
2
4u 3v
20cd 42z
n
= 3 × 3v + 5 × 4u
4u × 3v 3v × 4u = 41
Pe
42z
= 9v + 20u
12uv
= 3y × 3 + 5z × 2
2x 4x, 6x
2, 3 30qr 6m n
4x × 3 6x × 2 GSTK/ HCF
9y + 10z = 2x × 2 × 3
=
12x = 12x
SP 2.3.1 Melaksanakan penambahan dan penolakan ungkapan algebra yang melibatkan kembangan dan pemfaktoran.
.
hd
(a) 3m × m2 + m – 6 (e) 4a – 4b ÷ a – b
m2 – 9 6m2 9b 18a
1 1 1 2
.B
= 3m × (m – 2)(m + 3) = 4(a – b) × 18a
(m – 3)(m + 3) 6m2 9b a–b
1 2m 1 1
= (m – 2) = 8a
dn
2m(m – 3) b
S
gi
p2 + p q+2 (f ) 3q – 1 ÷ q – 5
(b) ×
2pq + 4p 3p + 3 3q – 21 4q – 28
an
1 1
p(p + 1) 1 q+2 1
= ×
2p(q + 2) 3(p + 1) = 3q – 1 × 4(q – 7)
1 1 1 3(q – 7) q–5
l
1
= 1
Pe
6 = 4(3q – 1)
3(q – 5)
n
ta
1 (g) 3x + 3y ÷ 2x – y
2 2
(c) × xy + x2y
1 – x2 4z + 2 4z + 4z + 1
bi
1 1 1 1
= × xy(1 + x)
(1 – x)(1 + x) 1 = 3(x + y) × (2z + 1)(2z + 1)
2(2z + 1) (x + y)(x – y)
er
= xy 1 1
1–x = 3(2z + 1)
n
2(x – y)
Pe
my – ny x2 – y2 (y + 3)2 3y + 9
(d) × 2 (h) 2 ÷
x+y m – mn 16 – x 8 – 2x
1
y(m – n) 1 (x + y)(x – y) (y + 3)2 8 – 2x
= × = ×
x+y 1 m(m – n) 1 42 – x2 3y + 9
1 1
y(x – y) (y + 3)(y + 3) 2(4 – x)
= = ×
m (4 + x)(4 – x) 1 3(y + 3) 1
2(y + 3)
=
3(4 + x)
SP 2.3.2 Melaksanakan pendaraban dan pembahagian ungkapan algebra yang melibatkan kembangan dan pemfaktoran.
.
Equalise the
hd
y denominators.
.B
dn
(p + q)(p – 3q) + 3q2 (c) a + 2ab + b ÷ a + b + ab
2 2
(b)
4p – 8q 3c 3
S
1 1
p2 – 3pq + pq – 3q2 + 3q2
= (a + b)(a + b) × 3 + ab
=
gi
4(p – 2q) 3c a+b
1 1
an
p2 – 2pq
=
4(p – 2q) = a + b + ab
c
l
p(p – 2q) 1
= = a + b + abc
Pe
4(p – 2q) 1 c
p
=
4
n
ta
bi
m2 + 2m + 1 2
= – = x(2p + q) + y(2p + q) × (x + y)(x – y)
m –1
2
m+1 10(x + y) 4(2p + q)
Pe
m2 + 2m + 1 2(m – 1) 1 1
= –
(m + 1)(m – 1) (m + 1)(m – 1) = (x + y)(2p + q) × (x + y)(x – y)
10(x + y) 4(2p + q)
1 1
m2 + 2m + 1 – 2m + 2
=
m2 – 1 = (x + y)(x – y)
40
m2 + 3
=
= x – y
2 2
m2 – 1
40
SP 2.3.3 Melaksanakan gabungan operasi ungkapan algebra yang melibatkan kembangan dan pemfaktoran.
Bahagian A Bahagian B
a2 – b2 (a – b)(a + b)
.
2. (r – 5t)2 + r(7r – 2t) =
hd
A 7r 2 – 10rt + 25t 2 a2 – 1 (a – b)(a – b)
B 7r 2 + 12rt + 25t 2
C 8r 2 – 12rt + 25t 2
.B
a2 – 2ab + b2 a2 + 2ab + b2
D 8r 2 – 12rt – 25t 2
[4 markah/ 4 marks]
dn
3. Faktorkan 2. (a) Isi bulatan kosong dengan faktor bagi 8x.
Factorise Fill in the empty circles with the factors of 8x.
2m2 – 14m – 36
S
1
A 2(m – 9)(m + 2) 2
8x
gi
B 2(m + 9)(m – 2)
C (2m + 4)(2m – 9)
4x 8x 4
an
D (2m – 4)(2m + 9)
2x 8
4. Ungkapkan e – 9 ÷ e + 6e + 9 dalam bentuk
2 2
l
x
Pe
2g + 1 6g + 3
termudah.
e2 – 9 e2 + 6e + 9 [2 markah/ 2 marks]
Express ÷ in the simplest form.
2g + 1 6g + 3
(b) Pada ruang jawapan, kembangkan setiap
n
(e – 9)
A yang berikut.
(e + 9)
ta
Jawapan/ Answer :
3(e + 3)
C (a) 7(p + 1) 7p + 7
(e – 3)
er
3(e – 3)
D (b) y(m – 2) ym – 2y
(e + 3)
n
Pe
(b) Faktorkan 16(x – 2)2 – 25(y + 1)2 dengan (b) Ungkapkan 5 – 4g – 2 sebagai satu
selengkapya. 12k 24k
Factorise 16(x – 2)2 – 25(y + 1)2 completely. pecahan tunggal dalam bentuk termudah.
[3 markah/ 3 marks] 5 4g – 2
Express – as a single fraction in its simplest
12k 24k
Jawapan/ Answer : form.
[4(x – 2) + 5(y + 1)][4(x – 2) – 5(y + 1)] [3 markah/ 3 marks]
= (4x – 8 + 5y + 5)(4x – 8 – 5y – 5) Jawapan/ Answer :
= (4x + 5y – 3)(4x – 5y – 13) 5 – 4g – 2 = 10 – (4g – 2)
12k 24k 24k
= 10 – 4g + 2
(c) (i) Permudahkan. 24k
Simplify. 12 – 4g
4p(p – 12) – 64 =
24k
.
[2 markah/ 2 marks]
= 4(3 – g)
hd
Jawapan/ Answer : 24k
4p(p – 12) – 64 3 – g
=
= 4p2 – 48p – 64 6k
.B
= 4(p2 – 12p – 16)
(c) Rajah di bawah menunjukkan dua buah segi
dn
empat tepat, A dan B.
(ii) Botol A dan botol B mempunyai panjang The diagram below shows two rectangles A and B.
yang sama.
Bottle A and bottle B have the same length.
S (2y + 3) cm A
gi
1
an
3x 6 cm (4x – 1) cm
— x 18 cm
2
(7hx – 21h) cm
[2 markah/ 2 marks]
Jawapan/ Answer : Nyatakan hubungan panjang dan lebar
1 x + 18 = 3x + 6 antara kedua-dua segi empat tepat A dan B.
n
36 – 12 = 6x – x [3 markah/ 3 marks]
24 = 5x
Tip KBAT
bi
x = 4.8
Tulis perkaitan antara panjang dan lebar dalam
Matematik.
er
ab – 4b ÷ a2 – 16
Jawapan/ Answer :
Pe
5b 20
Hubungan panjang dan lebar ialah luas.
[4 markah/ 4 marks] The relationship of length and width is an area.
Jawapan/ Answer : Luas A = [(2y + 3)(4x – 1)] cm2
ab – 4b ÷ a2 – 16 Area of A
5b 20 Luas B = [(6hy + 18h)(7hx + 21h)] cm2
1 1 4 Area of B
= b(a – 4) × 20
5b (a – 4)(a + 4)
1 1 1
= 4
a+4
y
Master
KBAT
Rajah di sebelah menunjukkan sebidang tanah berbentuk segi empat tepat A 48 – 2x F (2x) m B
yang dijadikan sebuah ladang lembu. Panjang tanah tersebut ialah 56 m dan Kolam
(2x) m Pond
lebarnya ialah 48 m. Modul HEBAT M17
E
The diagram shows a rectangular land made as a cow farm. The length of the land is 56 m and the
width is 48 m. Ladang lembu
Cow farm
.
Jalan berturap
Luas ladang lembu/ Area of the cow farm
hd
Paved road
= Luas ABCD – Luas AFE – Luas CDE
Area of ABCD – Area of AFE – Area of CDE D C
.B
2 2
Tip KBAT
= 2 688 – x(48 – 2x) – 24(56 – 2x)
dn
= 2 688 – 48x + 2x2 – 1 344 + 48x (a) Luas ladang lembu
= (2x2 + 1 344) m2 = luas segi empat tepat – luas
kolam – luas jalan berturap
Area of cow farm
S
= area of rectangle – area of pond –
(b) Pemilik tanah itu akan membina pagar sepanjang EC. Nyatakan panjang, area of paved road
dalam m, pagar yang diperlukan. (b) Gunakan teorem Pythagoras
gi
The owner of the land will build a fence along EC. State the length, in m, of the fence needed. untuk mencari panjang EC.
Use the Pythagoras’ theorem to
EC2 = ED2 + DC2
an
find the length of EC.
(c) Bilangan pagar yang
EC =
(56 – 2x)2 + 482 digunakan boleh ditentukan
=
3 136 – 224x + 4x2 + 2 304 dengan jumlah perimeter
l
= 4x – 224x + 5 440
2
pagar dan jaraknya.
= 4(x2 – 56x + 1 360 The number of fences needed can
be determined using the total
= (2 x2 – 56x + 1 360 ) m perimeter divided by the total fence
n
(c) Jika pemilik tanah itu ingin memagari ABCD dengan keadaan setiap panjang pagar itu ialah 6 m dan berjarak
bi
2y
6 1
If the owner wants to fence ABCD such that the length of the fence is m and m away from each other. Calculate the number of the
5y 2y
fences needed.
n
= 208 m
Bilangan pagar yang diperlukan/ Number of fences needed
= 208 = 208
6 + 1 17
5y 2y 10y
= 208 = 208 × 10y
6×2 + 1×5 17
5y × 2 2y × 5
= 122 6 y
17
Praktis TIMSS/PISA
KUIZ 2
Mastery PT3
Bahagian A
= –12m + 4n 2g + 1 6g + 3
Jawapan / Answer : D = (e – 3)(e + 3) ÷ (e + 3)(e + 3)
2g + 1 3(2g + 1)
1 1
= (e – 3)(e + 13) × 3(2g + 1)
2g + 1 (e 1+ 3)(e + 3)
.
2. (r – 5t)2 + r(7r – 2t)
= 3(e – 3)
hd
= (r – 5t)(r – 5t) + r(7r – 2t) (e + 3)
= r2 – 5rt – 5rt + 25t2 + 7r2 – 2rt
= 8r2 – 12rt + 25t2 Jawapan / Answer : D
.B
Jawapan / Answer : C
dn
5. Perimeter / Perimeter
= 6(5p + 2q)
3. 2m2 – 14m – 36 = (30p + 12q) cm
= 2(m2 – 7m – 18)
S
= 2(m – 9)(m + 2)
gi Jawapan / Answer : C
m –9 –9m
(×) (+)
m +2 +2m
an
m2 –18 –7m
Jawapan / Answer : A
l
Pe
n
ta
bi
n er
Pe