5 - ACS550 Manual
5 - ACS550 Manual
User’s Manual
OPTION MANUALS
(Fieldbus Adapters, I/O Extension Modules etc., manuals
delivered with optional equipment)
Safety
Note! For more technical information, contact the factory or your local ABB sales
representative.
Safety
4 ACS550 User’s Manual
Safety
ACS550 User’s Manual 5
Table of Contents
Safety
Use of Warnings and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table of Contents
Installation
Installation Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Preparing for Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
EMC Instructions (Europe, Australia, and New Zealand) . . . . . . . . . . . . . . . . . . 9
Installing the Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Start-Up
Assistant Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Application Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Complete Parameter List for ACS550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Complete Parameter Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Diagnostics
Diagnostic Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Correcting Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Press the UP and DOWN buttons simultaneously. . . . . . . . . . . . . . . . . . . . . 123
Maintenance
Maintenance Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Main Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Technical Data
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Input Power (Mains) Cables and Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Cable Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Input Power (Mains) Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Motor Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Control Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Dimensions, Weights and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Degrees of Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Index
Table of Contents
6 ACS550 User’s Manual
Installation
PREPARE the Mounting Location "Prepare the Mounting Location" on page 14.
Installation
ACS550 User’s Manual 7
Drive Identification
Drive Labels
To determine the type of drive you are installing, refer to either:
• Serial number label attached on upper part of the chokeplate between the
mounting holes.
ACS550-U1-08A8-4
• Type code label attached on the heat sink – on the right side of the unit cover.
ABB Inc. Assembled in USA
Input U1 3~ 380...480 V
I1N / I1hd 8.3 A / 6.4 A
f1 48...63 Hz
Output U2 3~ 0...U1V
I2N / I2hd 8.8 A / 6.9 A
Ser. no. *2030700001*
f2 0...500 Hz
ACS550-U1-08A8-4
Type Code
Use the following chart to interpret the type code found on either label.
ACS550-U1-08A8-4+...
Voltage rating
2 = 208…240 VAC
4 = 380…480 VAC
Installation
8 ACS550 User’s Manual
Motor Compatibility
The motor, drive, and supply power must be compatible:
Motor
Verify Reference
Specification
Motor type 3-phase induction motor –
Nominal current 0.2…2.0 * motor nominal • Type code label on drive, entry for “Output I”
current Ihd (current), or
• Type code on drive and rating table in
"Technical Data" on page 127.
Nominal frequency 10…500 Hz –
Voltage range Motor is compatible with 208…240 V (for ACS550-X1-XXXX-2) or
the ACS550 voltage range. 380…480 V (for ACS550-X1-XXXX-4)
Tools Required
To install the ACS550 you need the following:
• Screwdrivers (as appropriate for the mounting hardware used)
• Wire stripper
• Tape measure
• Drill
• Mounting hardware: screws or nuts and bolts, four each. The type of hardware
depends on the mounting surface and the frame size:
Frame Size Mounting Hardware
R1…R4 M5 #10
R5 M6 1/4 in
R6 M8 5/16 in
Confirm that the enclosure is appropriate, based on the site contamination level:
• IP 21 / UL type 1 enclosure. The site must be free of airborne dust, corrosive
gases or liquids, and conductive contaminants such as condensation, carbon
dust, and metallic particles.
Installation
ACS550 User’s Manual 9
• The minimum space requirements for the drive are the outside dimensions (see
"Outside Dimensions" on page 132), plus air flow space around the unit (see
"Cooling" on page 131).
• The distance between the motor and the drive is limited by the maximum motor
cable length. See "Motor Connection" on page 130.
• The mounting site must support the drive’s modest weight and noise output. See
"Dimensions, Weights and Noise" on page 131.
Installation
10 ACS550 User’s Manual
Cabling Instructions
Keep individual un-screened wires between the cable clamps and the screw
terminals as short as possible. Route control cables away from power cables.
Motor Cable
Minimum Requirement (CE & C-Tick)
The motor cable must be a symmetrical three conductor cable with a concentric PE
conductor or a four conductor cable with a concentric shield, however, a symmetrical
Installation
ACS550 User’s Manual 11
Cable Core
* Input filters designed for ACS550 cannot be used in an isolated, or high impedance earthed industrial
distribution network.
Recommendation for Conductor Layout
The following figure compares conductor layout features in motor cables.
Recommended (CE & C-Tick) Allowed (CE & C-Tick)
Symmetrical shielded cable: three phase A separate PE conductor is required if the
conductors and a concentric or otherwise conductivity of the cable shield is < 50% of the
symmetrically constructed PE conductor, and a conductivity of the phase conductor.
shield
Shield
PE Shield
Conductor
and Shield PE
Shield
Not allowed for motor cables (CE & C-Tick)
A four-conductor system: three phase
conductors and a protective conductor, without a
shield.
Allowed for motor cables with phase
PE conductor cross section up to 10 mm2.
L1
Braided Metallic Screen L3
Clamp the cable shield into the gland plate at the drive end and twist the cable
screen wires together into a bundle not longer than five times its width and connect it
to the terminal marked (at the bottom right-hand corner of the drive), if you are
using cable without a separate PE conductor.
Installation
12 ACS550 User’s Manual
At the motor end the motor cable screen must be earthed 360 degrees with an EMC
cable gland or the screen wires must be twisted together into a bundle not longer
than five times its width and connected to the PE terminal of the motor.
EN61800-3 and AS/NZS 2064, 1997, Class A Compliant Motor Cables
To comply with EN61800-3, First and Second Environment, Restricted Distribution,
and AS/NZS 2064, 1997, Class A requirements, motor cables:
• less than or equal to 30 m (100 ft) do not require an RFI filter.
• longer than 30 m (100 ft) must be limited as specified in the table below. Follow
the instructions in the filter package for all cable screen connections.
Switching Frequency (Parameter 2606)
Drive Type Filter 1 or 4 kHz (1 or 4) 8 kHz (8)
Maximum motor cable length
ACS550-x1-03A3-4 ACS400-IF11-3 100 m –
(330 ft)
ACS550-x1-04A7-4
ACS550-x1-05A4-4
ACS550-x1-06A9-4
ACS550-x1-08A8-4
ACS550-x1-012A-4
ACS550-x1-016A-4 ACS400-IF21-3 100 m 100 m
(330 ft) (330 ft)
ACS550-x1-023A-4
ACS550-x1-031A-4 ACS400-IF31-3 100 m 100 m
(330 ft) (330 ft)
ACS550-x1-038A-4
ACS550-x1-044A-4 ACS400-IF41-3 100 m 100 m
(330 ft) (330 ft)
ACS550-x1-059A-4
ACS550-x1-072A-4
Installation
ACS550 User’s Manual 13
Control Cables
General Recommendations
Use shielded cables, temperature rated at 60 °C (140 °F) or above:
• Control cables must be multi-core cables with a braided copper wire screen.
• The screen must be twisted together into a bundle not longer than five times its
width and connected to terminal X1-1 (for digital and analog I/O cables) or to
either X1-28 or X1-32 (for RS485 cables).
Route control cables to minimize radiation to the cable:
• Route as far away as possible from the input power and motor cables (at least
20 cm (8 in)).
• Where control cables must cross power cables make sure they are at an angle as
near 90° as possible.
• Stay at least 20 cm (8 in) from the sides of the drive.
Use care in mixing signal types on the same cable:
• Do not mix analog and digital input signals on the same cable.
• Run relay-controlled signals as twisted pairs (especially if voltage > 48 V). Relay-
controlled signals using less than 48 V can be run in the same cables as digital
input signals.
Note! Never mix 24 VDC and 115/230 VAC signals in the same cable.
Analog Cables
Recommendations for analog signal runs:
• Use double shielded, twisted pair cable
• Use one individually shielded pair for each signal.
• Do not use a common return for different analog signals.
Digital Cables
Recommendations for digital signal runs:
• A double shielded cable is the best alternative, but single shielded twisted multi-
pair cable is also usable.
Control Panel Cable
If the control panel is connected to the drive with a cable, use only Category 5 Patch
ethernet cable.
Installation
14 ACS550 User’s Manual
Warning! Before installing the ACS550, ensure the input power supply to the
drive is off.
Note! Frame sizes R3 and R4 have four holes along the top. Use only two. If
possible, use the two outside holes (to allow room to remove the fan for
maintenance).
Note! ACS400 drives can be replaced using the original mounting holes. For R1 and
R2 frame sizes, the mounting holes are identical. For R3 and R4 frame sizes, the
inside mounting holes on the top of ACS550 drives match ACS400 mounts.
IP2000
Installation
ACS550 User’s Manual 15
Installation
16 ACS550 User’s Manual
Connection Diagrams
The layout of connection terminals is similar for all frame sizes (R1…R6). The only
significant layout difference is in the power and ground terminals for frame sizes R5
and R6. The following diagrams show:
• Power and ground terminal layout for frame sizes R5 and R6.
• Terminal layout for frame size R3, which, in general, applies to all frame sizes
except as noted above.
R6
R5
F2
F1
F2
PE GND
X0011
GND
Optional braking
Frame Terminal
Brake Options
Size Labels
R5, R6 UDC+, UDC-, • Braking unit
GND • Chopper and resistor
X0013
PE GND
Power Input Power Output to Motor
(U1, V1, W1) (U2, V2, W2)
Installation
ACS550 User’s Manual 17
J1 – DIP Switches
for Analog Inputs
J1
ON
AI1: (in Voltage Position)
ON
AI2: (in Current Position)
Panel Connector
X1 – Relay Outputs
Optional Module 1
J2/J5 – DIP Switches (Encoder or
for RS485 Termination Additional Relays)
J2 J5 J2 J5 X1 – Communications
(RS485)
ON ON
ON ON
Optional Module 2
off position on position (Fieldbus or 115/230 V
digital input module)
X0003
Optional braking
Frame Terminal
Brake Options
Size Labels
R1, R2 BRK+, BRK- Brake resistor
R3, R4 UDC+, UDC- • Braking unit
• Resistor and chopper
Installation
18 ACS550 User’s Manual
cables.
3. On the input power cable, strip the sheathing 6
back far enough to route individual wires.
7
4. On the motor cable, strip the sheathing back
far enough to expose the copper wire screen 6
4
so that the screen can be twisted into a pig- 3
tail. Keep the short pig-tail short to minimize
noise radiation. 8
IP2001
5. Route both cables through the clamps.
6. Strip and connect the power/motor wires, and 8
the power ground wire to the drive terminals.
See "Power Connections" on page 20.
7. Connect the pig-tail created from the motor
cable screen.
X0005
8. Install conduit/gland box and tighten the cable
clamps.
9. Install the cable clamp(s) for the control
cable(s). (Power/motor cables and clamps not
shown in figure.)
10. Strip control cable sheathing and twist the
copper screen into a pig-tail. 9
X0006
11. Route control cable(s) through clamp(s) and
tighten clamp(s).
12
12. Connect the ground screen pig-tail for digital
and analog I/O cables at X1-1. 14
IP2003
Installation
ACS550 User’s Manual 19
2 X0007
X0005
IP2005
Installation
20 ACS550 User’s Manual
Power Connections
Warning! Ensure the motor is compatible for use with the ACS550. The
ACS550 must be installed by a competent person in accordance with the
considerations defined in "Preparing for Installation" on page 7. If in doubt,
contact your local ABB sales or service office.
Floating Networks
For floating networks (also known as IT, ungrounded, or high impedance networks):
• Disconnect the internal RFI filter by removing both the EM1 and EM3 screws
(frame sizes R1…R4, see 17), or F1 and F2 screws (frame sizes R5…R6, see
16).
• Where EMC requirements exist, check for excessive emission propagated to
neighboring low voltage networks. In some cases, the natural suppression in
transformers and cables is sufficient. If in doubt, use a supply transformer with
static screening between the primary and secondary windings.
• Do NOT install an external filter, such as one of the kits listed in the filter table on
12. Using an RFI filter grounds the input power through the filter capacitors, which
could be dangerous and could damage the unit.
Control Connections
To complete the control connections, use:
• Following tables
• "Application Macros" on page 31
• "Complete Parameter Descriptions" on page 50
• Cable recommendations in "Control Cables" on page 13
Installation
ACS550 User’s Manual 21
X1 Hardware Description
1 SCR Terminal for signal cable screen. (Connected internally to chassis ground.)
2 AI1 Analog input channel 1, programmable. Default2 = frequency reference. Resolution
0.1%, accuracy ±1%.
ON
J1:AI1 OFF: 0…10 V (Ri = 312 kΩ)
J1:AI1 ON: 0…20 mA (R i = 100 Ω)
ON
3 AGND Analog input circuit common. (Connected internally to chassis gnd. through 1 MΩ)
4 +10 V 10 V/10 mA reference voltage output for analog input potentiometer, accuracy ±2%.
Analog I/O
5 AI2 Analog input channel 2, programmable. Default2 = not used. Resolution 0.1%,
accuracy ±1%.
ON
J1:AI2 OFF: 0…10 V (Ri = 312 kΩ)
J1:AI2 ON: 0…20 mA (R i = 100 Ω)
ON
6 AGND Analog input circuit common. (Connected internally to chassis gnd. through 1 MΩ)
7 AO1 Analog output, programmable. Default2 = frequency. 0…20 mA (load < 500 Ω)
8 AO2 Analog output, programmable. Default2 = current. 0…20 mA (load < 500 Ω)
9 AGND Analog output circuit common (Connected internally to chassis gnd. through 1 MΩ)
10 +24V Auxiliary voltage output 24 VDC / 250 mA (reference to GND). Short circuit
protected.
11 GND Auxiliary voltage output common. (Connected internally as floating.)
12 DCO Digital input common. To activate a digital input, there must be ≥+10 V
M (or ≤-10 V) between that input and DCOM. The 24 V may be provided by the
Digital Inputs1
Installation
22 ACS550 User’s Manual
Note! For safety reasons the fault relay signals a “fault” when the ACS550 is
powered down.
You can wire the digital input terminals in either a PNP or NPN configuration.
PNP connection (source) NPN connection (sink)
X1 X1
10 +24V 10 +24V
11 GND 11 GND
12 DCOM 12 DCOM
13 DI1 13 DI1
14 DI2 14 DI2
15 DI3 15 DI3
16 DI4 16 DI4
17 DI5 17 DI5
18 DI6 18 DI6
Communications
Terminals 28…32 are for RS485 modbus communications. Use shielded cables.
Do not directly ground the RS485 network at any point. Ground all devices on the
network using their corresponding earthing terminals.
As always, the grounding wires should not form any closed loops, and all the devices
should be earthed to a common ground.
Terminate the RS485 network using 120 Ω resistors at both ends of the network.
Use the DIP switch to connect or disconnect the termination resistors. See following
diagram and table.
Terminated Terminated
Station Station Station Station
Installation
ACS550 User’s Manual 23
Check Installation
Before applying power, perform the following checks.
Check
Installation environment conforms to the drive’s specifications for ambient conditions.
The drive is mounted securely.
Space around the drive meets the drive’s specifications for cooling.
The motor and driven equipment are ready for start.
For floating networks: The internal RFI filter is disconnected.
The drive is properly grounded.
The input power (mains) voltage matches the drive nominal input voltage.
The input power (mains) connections at U1, V1, and W1 are connected and tightened as
specified.
The input power (mains) fuses are installed.
The motor connections at U2, V2, and W2 are connected and tightened as specified.
The motor cable is routed away from other cables.
NO power factor compensation capacitors are in the motor cable.
The control connections are connected and tightened as specified.
NO tools or foreign objects (such as drill shavings) are inside the drive.
NO alternate power source for the motor (such as a bypass connection) is connected – no
voltage is applied to the output of the drive.
Re-install Cover
1
1. Align the cover and slide it on.
2. Tighten the captive screw.
3. Re-install the control panel. 2
Apply Power
Always re-install the front cover before turning 3
power on.
Note! Before increasing motor speed, check that the motor is running in the desired
direction.
Installation
24 ACS550 User’s Manual
Start-Up
1. Use any, or all of the following options to configure the drive:
• Use the Start-up Assistant.
With the Assistant Control Panel, the Start-up Assistant runs automatically at the
first power up. See "Start-up Assistant Mode" on page 29 for an overview of the
program. For instructions on basic operation of the Assistant Control Panel, see
"Controls/Display Overview" on page 26.
• Select an application macro.
See "Application Macros" on page 31.
• Manually select and set individual parameters.
See "Parameters Mode" on page 29.
Installation
ACS550 User’s Manual 25
Start-Up
Start-up configures the drive. This process sets parameters that define how the drive
operates and communicates. Depending on the control and communication
requirements, the start-up process may require any or all of the following:
• The Start-up Assistant (requires the Assistant Control Panel) steps you through
the default configuration. The Start-up Assistant runs automatically at the first
power up, or can be accessed at any time using the main menu.
• Application macros can be selected to define common, alternate system
configurations, using the default settings. See "Application Macros" on page 31.
• Additional refinements can be made using the control panel to manually select
and set individual parameters. See "Complete Parameter Descriptions" on page
50.
Features
The ACS550 Assistant Control Status
Panel features: LED
Start-Up
26 ACS550 User’s Manual
Controls/Display Overview
The following table summarizes the button functions and displays on the Assistant
Control Panel
Item Description
Status LED – During normal operation the status LED should be green. See
"Diagnostic Displays" on page 119 if the LED is flashing or is red.
Soft key 2 – Function varies, and is defined by the text in the lower-right corner of
the LCD display.
Up –
• Scrolls up through a menu or list displayed in the middle of the LCD Display.
• Increments a value if a parameter is selected.
• Increments the reference if the upper-right corner is highlighted (in reverse
video).
Down –
• Scrolls down through a menu or list displayed in the middle of the LCD
Display.
• Decrements a value if a parameter is selected.
• Decrements the reference if the upper-right corner is highlighted (in reverse
video).
Stop – Stops the drive.
LOC LOC/REM – Press and hold to change between local and remote control of the
REM
drive.
Help – Displays context sensitive information when the button is pressed. The
?
information displayed describes the item currently highlighted in the middle area
of the display.
Control mode
Use the control mode to read information on the drive’s status and to operate the
drive. To reach the control mode, press EXIT until the LCD display shows status
information as described below.
Status Information
Top. The top line of the LCD display shows the basic status information of the drive.
• LOC – indicates that the drive control is local, that is, from the control panel.
• REM – indicates that the drive control is remote, such as the basic I/O (X1) or
fieldbus.
Start-Up
ACS550 User’s Manual 27
Start-Up
28 ACS550 User’s Manual
The reference can be modified in the local control mode, and can be parameterized
(using Group 11: Reference Select) to also allow modification in the remote control
mode.
Other Modes
Besides the Control mode, the Assistant Control Panel
has:
• Other operating modes that are available through the
main menu.
• A fault mode that is triggered by faults. The fault
mode includes a diagnostic assistant mode.
Access to Main Menu Modes
To reach the main menu:
• Press EXIT, as necessary, to step back through the menus or lists associated with
a particular mode. Continue until you are back to the normal mode.
• Press MENU from the normal mode.
At this point, the middle of the display is a listing of the other modes, and the top-
right text says “Main menu”
• Use Up/Down buttons to scroll to the desired mode.
• Press ENTER to enter the mode that is highlighted (reverse video).
Summary of the Modes
The other modes are:
• Parameters – Use this mode to edit parameter values individually. For more
information, see "Parameters Mode" on page 29. Access to this mode is from the
main menu.
• Start-up Assistant – When the drive is first powered up, the Start-up Assistant
asks you questions. Your answers set a few basic parameters. Other assistants
are available to support common operations. For more information, see "Start-up
Assistant Mode" on page 29. Access to this mode is from the main menu (and is
automatic at initial drive power up).
• Changed parameters – This mode simply displays a list of the parameters that
have been changed from the default values set at the factory. Access to this
mode is from the main menu.
• Fault logger – This mode displays a fault history list. You can select a fault and
display critical drive status information associated with the fault.
• Drive parameter backup – The backup can be complete or partial. Use the
complete backup, for example, when replacing a drive with a new one. Use the
partial backup, for example, to copy parameters from one drive to another (the
drives do not need to be the same size). Access to this mode is from the main
menu.
– Upload stores the parameters to the panel.
Start-Up
ACS550 User’s Manual 29
Parameters Mode
Use the Parameters mode to manually set parameters:
• Select PARAMETERS in the Main Menu.
• Press the UP/DOWN buttons to highlight the
appropriate parameter group, then press SEL.
• Press EDIT.
• Press the UP/DOWN buttons to increment the
parameter value.
• Press SAVE to store the modified value or press CANCEL to leave the set mode.
Any modifications not saved are cancelled.
• Press EXIT to return to the listing of parameter groups, and again to return to the
main menu.
Start-Up
30 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 31
Application Macros
Macros change a group of parameters to new, predefined values. Use macros to
minimize the need for manual editing of parameters. Selecting a macro sets all other
parameters to their default values, except:
• Group 99: Start-up Data parameters
• the PARAMETER LOCK 1602
• the PARAM SAVE 1607
• Groups 50…52 serial communication parameters
After selecting a macro, additional parameter changes can be made manually using
the control panel.
Application macros are predefined parameter sets enabled by setting the value for
parameter 9902 APPLIC MACRO. By default, 1, ABB Standard, is the enabled macro.
The following sections describe each of the application macros and provide a
connection example for each macro.
Start-Up
32 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 33
Start-Up
34 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 35
Start-Up
36 ACS550 User’s Manual
Note! Parameter 2107 START INHIBIT must remain in the default setting, 0 (OFF).
Connection example:
X1 Signal cable shield (screen)
1 SCR
2 AI1 External reference 1: 0…10 V (Hand Control)
3 AGND Analog input circuit common
4 10V Reference voltage 10 VDC
5 AI2 External reference 2: 0…20 mA (Auto Control)
6 AGND Analog input circuit common
7 AO1 Motor output speed: 0…20 mA
8 AO2 Output current: 0 …20 mA
9 AGND Analog output circuit common
Start-Up
ACS550 User’s Manual 37
Note! Parameter 2107 START INHIBIT must remain in the default setting, 0 (OFF).
Connection
X1example:
X1 1 SCR Signal cable shield (screen)
2 AI1 External ref. 1 (Manual) or Ext ref. 2 (PID): 0…10 V1
3 AGND Analog input circuit common
Note 1.
4 10V Reference voltage 10 VDC Manual: 0…10V => speed reference
5 AI2 Actual signal (PID): 0…20 mA PID: 0…10V => 0…100% PID
6 AGND Analog input circuit common setpoint
7 AO1 Motor output speed: 0…20 mA
8 AO2 Output current: 0…20 mA
9 AGND Analog output circuit common
Start-Up
38 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 39
Start-Up
40 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 41
Start-Up
42 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 43
Start-Up
44 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 45
Start-Up
46 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 47
Start-Up
48 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 49
Start-Up
50 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 51
Start-Up
52 ACS550 User’s Manual
Code Description
0121 AI2
The relative value of analog input 2 in %.
0122 RO1-3 STATUS
Status of the three relay outputs.
• 1 indicates that the relay is energized.
• 0 indicates that the relay is de-energized.
RELAY 1 STATUS
0123 RO4-6 STATUS RELAY 2 STATUS
Status of the three relay outputs. See parameter 0122. RELAY 3 STATUS
0124 AO1
The analog output 1 value in milliamperes.
0125 AO2
The analog output 2 value in milliamperes.
0126 PID 1 OUTPPUT
The PID Controller 1 output value in %.
0127 PID 2 OUTPUT
The PID Controller 2 output value in %.
0128 PID 1 SETPNT
The PID 1 controller setpoint signal.
• Units and scale defined by PID parameters.
0129 PID 2 SETPNT
The PID 2 controller setpoint signal.
• Units and scale defined by PID parameters.
0130 PID 1 FBK
The PID 1 controller feedback signal.
• Units and scale defined by PID parameters.
0131 PID 2 FBK
The PID 2 controller feedback signal.
• Units and scale defined by PID parameters.
0132 PID 1 DEVIATION
The difference between the PID 1 controller reference value and actual value.
• Units and scale defined by PID parameters.
0133 PID 2 DEVIATION
The difference between the PID 2 controller reference value and actual value.
• Units and scale defined by PID parameters.
0134 COMM RO WORD
Free data location that can be written from serial link.
• Used for relay output control.
• See parameter 1401.
0135 COMM VALUE 1
Free data location that can be written from serial link.
0136 COMM VALUE 2
Free data location that can be written from serial link.
0137 PROCESS VAR 1
Process variable 1
• Defined by parameters in Group 34: Panel Display / Process Variables.
0138 PROCESS VAR 2
Process variable 2
• Defined by parameters in Group 34: Panel Display / Process Variables.
Start-Up
ACS550 User’s Manual 53
Code Description
0139 PROCESS VAR 3
Process variable 3
• Defined by parameters in Group 34: Panel Display / Process Variables.
0140 RUN TIME
The drive’s accumulated running time in thousands of hours (kh).
0141 MWH COUNTER
The drive’s accumulated power consumption in megawatt hours. Can not be reset.
0142 REVOLUTION CNTR
The motor’s accumulated revolutions in millions of revolutions.
0143 DRIVE ON TIME (HI)
The drive’s accumulated power on time in days.
0144 DRIVE ON TIME (LO)
The drive’s accumulated power on time in 2 second ticks (30 ticks = 60 seconds).
0145 MOTOR TEMP
Motor temperature in degrees centigrade / PTC resistance in Ohms.
• Applies only if motor temperature sensor is set up. See parameter 3501.
Start-Up
54 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 55
Start-Up
56 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 57
Code Description
1002 EXT2 COMMANDS
Defines external control location 2 (EXT2) – the configuration of start, stop and direction commands.
• See parameter 1001 EXT1 COMMANDS above.
1003 DIRECTION
Defines the control of motor rotation direction.
1 = FORWARD – Rotation is fixed in the forward direction.
2 = REVERSE – Rotation is fixed in the reverse direction.
3 = REQUEST – Rotation direction can be changed on command.
Start-Up
58 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 59
4 = AI2/JOYST – Defines analog input 2 (AI2), configured for joystick operation, as the reference source.
• See above (AI2/JOYST) description.
5 = DI3U,4D(R) – Defines digital inputs as the speed reference source (motor potentiometer control).
• Digital input DI3 increases the speed (the U stands for “up”).
• Digital input DI4 decreases the speed (the D stands for “down”).
• A Stop command resets the reference to zero (the R stands for “reset”).
• Parameter 2205 ACCELER TIME 2 controls the reference signal’s rate of change.
6 = DI3U,4D – Same as above (DI3U,4D(R)), except:
• A Stop command does not reset the reference to zero. The reference is stored.
• When the drive restarts, the motor ramps up (at the selected acceleration rate) to the stored reference.
7 = DI5U,6D – Same as above (DI3U,4D), except that DI5 and DI6 are the digital inputs used.
8 = COMM – Defines the fieldbus as the reference source.
9 = COMM+AI1 – Defines a fieldbus and analog input 1 (AI1) combination as the reference source. See Analog Input
Reference Correction below.
10 = COMM*AI1 – Defines a fieldbus and analog input 1 (AI1) combination as the reference source. See Analog Input
Reference Correction below.
11 = DI3U, 4D(RNC) – Same as DI3U,4D(R) above, except that:
• Changing the control source (EXT1 to EXT2, EXT2 to EXT1, LOC to REM) resets the reference.
12 = DI3U,4D(NC) – Same as DI3U,4D above, except that:
• Changing the control source (EXT1 to EXT2, EXT2 to EXT1, LOC to REM) resets the reference.
13 = DI5U,6D(NC) – Same as DI3U,4D above, except that:
• Changing the control source (EXT1 to EXT2, EXT2 to EXT1, LOC to REM) resets the reference.
14 = AI1+AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
15 = AI1*AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
16 = AI1-AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
17 = AI1/AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
Analog Input Reference Correction
Parameter values 9, 10, and 14…17 use the formulae in the following table.
Value AI reference is calculated as following:
Setting
C+B C value + (B value - 50% of reference value)
C*B C value * (B value / 50% of reference value)
C-B (C value + 50% of reference value) - B value
C/B (C value * 50% of reference value) / B value
Where:
• C = Main Reference value 120
( = COMM for values 9, 10 and 17 (/)
= AI1 for values 14…17). 100
• B = Correcting reference
( = AI1 for values 9, 10 and 80
= AI2 for values 14…17). 9, 14 (+)
60
Example:
The figure shows the reference source curves for value settings 9, 40 10, 15 (*)
10, and 14…17, where:
• C = 25%. 20
• P 4012 SETPOINT MIN = 0. 16 (-)
• P 4013 SETPOINT MAX = 0. 0
0 100% B
• B varies along the horizontal axis.
Start-Up
60 ACS550 User’s Manual
P 1105
(MAX)
Analog
Start-Up
ACS550 User’s Manual 61
Start-Up
62 ACS550 User’s Manual
Code Description
-7 = DI1,2(INV) – Selects one of three Constant Speeds (1…3) using DI1 and DI2.
• Inverse operation uses two digital inputs, as defined below (0 = DI de-activated, 1 = DI activated):
DI1 DI2 Function
1 1 No constant speed
0 1 Constant speed 1 (1202)
1 0 Constant speed 2 (1203)
0 0 Constant speed 3 (1204)
-8 = DI2,3(INV) – Selects one of three Constant Speeds (1…3) using DI2 and DI2.
• See above (DI1,2(INV)) for code.
-9 = DI3,4(INV) – Selects one of three Constant Speeds (1…3) using DI3 and DI4.
• See above (DI1,2(INV)) for code.
-10 = DI4,5(INV) – Selects one of three Constant Speeds (1…3) using DI4 and DI5.
• See above (DI1,2(INV)) for code.
-11 = DI5,6(INV) – Selects one of three Constant Speeds (1…3) using DI5 and DI6.
• See above (DI1,2(INV)) for code.
-12 = DI1,2,3(INV) – Selects one of seven Constant Speeds (1…3) using DI1, DI2 and DI3.
• Inverse operation uses three digital inputs, as defined below (0 = DI de-activated, 1 = DI activated):
Start-Up
ACS550 User’s Manual 63
63
Filtered signal
t
Time constant
1304 MINIMUM AI2
Defines the minimum value of the analog input.
• See MINIMUM AI1 above.
1305 MAXIMUM AI2
Defines the maximum value of the analog input.
• See MAXIMUM AI1 above.
1306 FILTER AI2
Defines the filter time constant for analog input 1 (AI1).
• See FILTER AI1 above.
Start-Up
64 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 65
Code Description
35 = COMM – Energize relay based on input from fieldbus communication.
• Fieldbus writes binary code in parameter 0134 that can energizes relay 1…relay 6 according to the following:
1406 RO 2 ON DELAY
Defines the switch-on delay for relay 2.
• See RO 1 ON DELAY.
1407 RO 2 OFF DELAY
Defines the switch-off delay for relay 2.
• See RO 1 OFF DELAY.
1408 RO 3 ON DELAY
Defines the switch-on delay for relay 3.
• See RO 1 ON DELAY.
1409 RO 3 OFF DELAY
Switch-off delay for relay 3.
• See RO 1 OFF DELAY.
1410 RELAY OUTPUT 4…6
… Defines the event or condition that activates relay 4…6 – what relay output 4…6 means.
1412 • See 1401 RELAY OUTPUT 1.
Start-Up
66 ACS550 User’s Manual
Code Description
1413 RO 4 ON DELAY
Defines the switch-on delay for relay 4.
• See RO 1 ON DELAY.
1414 RO 4 OFF DELAY
Defines the switch-off delay for relay 4.
• See RO 1 OFF DELAY.
1415 RO 5 ON DELAY
Defines the switch-on delay for relay 5.
• See RO 1 ON DELAY.
1416 RO 5 OFF DELAY
Defines the switch-off delay for relay 5.
• See RO 1 OFF DELAY.
1417 RO 6 ON DELAY
Defines the switch-on delay for relay 6.
• See RO 1 ON DELAY.
1418 RO 6 OFF DELAY
Defines the switch-off delay for relay 6.
• See RO 1 OFF DELAY.
Start-Up
ACS550 User’s Manual 67
Start-Up
68 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 69
Code Description
1605 USER PAR SET CHG
Defines control for changing the user parameter set.
• See parameter 9902 (APPLIC MACRO).
• The drive must be stopped to change User Parameter Sets.
• During a change, the drive will not start.
Note: Always save the User Parameter Set after changing any parameter settings, or performing a motor
identification.
• Whenever the power is cycled, or parameter 9902 (APPLIC MACRO) is changed, the drive loads the last settings
saved. Any unsaved changes to a user parameter set are lost.
Note: The value of this parameter (1605) is not included in the User Parameter Sets, and does not change if User
Parameter Sets change.
Note: You can use a relay output to supervise the selection of User Parameter Set 2.
• See parameter 1401.
0 = NOT SEL – Defines the control panel (using parameter 9902) as the only control for changing User Parameter
Sets.
1 = DI1 – Defines digital input DI1 as a control for changing User Parameter Sets.
• The drive loads User Parameter Set 1 on the falling edge of the digital input.
• The drive loads User Parameter Set 2 on the rising edge of the digital input.
• The User Parameter Set changes only when the drive is stopped.
2…6 = DI2…DI6 – Defines digital input DI2…DI6 as a control for changing User Parameter Sets.
• See DI1 above.
-1 = DI1(INV) – Defines an inverted digital input DI1 as a control for changing User Parameter Sets.
• The drive loads User Parameter Set 1 on the rising edge of the digital input.
• The drive loads User Parameter Set 2 on the falling edge of the digital input.
• The User Parameter Set changes only when the drive is stopped.
-2…-6 = DI2(INV)…DI6(INV) – Defines an inverted digital input DI2…DI6 as a control for changing User Parameter Sets.
• See DI1(INV) above.
1606 LOCAL LOCK
Defines control for the use of the LOC mode. The LOC mode allows drive control from the control panel.
• When LOCAL LOCK is active, the control panel cannot change to LOC mode.
0 = NOT SEL – Disables the lock. The control panel can select LOC and control the drive.
1 = DI1 – Defines digital input DI1 as the control for setting the local lock.
• Activating the digital input locks out local control.
• De-activating the digital input enable the LOC selection.
2...6 = DI2…DI6 – Defines digital input DI2…DI6 as the control for setting the local lock.
• See DI1 above.
7 = ON – Sets the lock. The control panel cannot select LOC, and cannot control the drive.
8 = COMM – Defines bit 14 of the Command Word 1 as the control for setting the local lock.
• The Command Word is supplied through fieldbus communication.
• The Command Word is 0301.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for setting the local lock.
• De-activating the digital input locks out local control.
• Activating the digital input enable the LOC selection.
-2...-6 = DI2(INV)...DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for setting the local lock.
• See DI1(INV) above.
1607 PARAM. SAVE
Saves all altered parameters to permanent memory.
• Parameters altered through a fieldbus are not automatically saved to permanent memory. To save, you must use
this parameter.
• If 1602 PARAMETER LOCK = 2 (NOT SAVED), parameters altered from the control panel are not saved. To save, you
must use this parameter.
• If 1602 PARAMETER LOCK = 1 (OPEN), parameters altered from the control panel are stored immediately to
permanent memory.
0 = DONE – Value changes automatically when all parameters are saved.
1 = SAVE – Saves altered parameters to permanent memory.
Start-Up
70 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 71
Code Description
2013 MIN TORQUE SEL
Defines control of the selection between two minimum torque limits (2015 MIN TORQUE 1 and 2016 MIN TORQUE 2).
0 = MIN TORQUE 1 – Selects 2015 MIN TORQUE 1 as the minimum limit used.
1 = DI1 – Defines digital input DI1 as the control for selecting the minimum limit used.
• Activating the digital input selects MIN TORQUE 2 value.
• De-activating the digital input selects MIN TORQUE 1 value.
2…6 = DI2…DI6 – Defines digital input DI2…DI6 as the control for selecting the minimum limit used.
• See DI1 above.
7 = COMM – Defines bit 15 of the Command Word 1 as the control for selecting the minimum limit used.
• The Command Word is supplied through fieldbus communication.
The Command Word is a parameter 0301.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for selecting the minimum limit used.
• Activating the digital input selects MIN TORQUE 1 value.
• De-activating the digital input selects MIN TORQUE 2 value.
-2…-6 = DI2(INV)...DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for selecting the minimum limit
used.
• See DI1(INV) above.
2014 MAX TORQUE SEL
Defines control of the selection between two maximum torque limits (2017 MAX TORQUE 1 and 2018 MAX TORQUE 2).
0 = MAX TORQUE 1 – Selects 2017 MAX TORQUE 1 as the maximum limit used.
1 = DI1 – Defines digital input DI1 as the control for selecting the maximum limit used.
Activating the digital input selects MAX TORQUE 2 value.
De-activating the digital input selects MAX TORQUE 1 value.
2…6 = DI2…DI6 – Defines digital input DI2…DI6 as the control for selecting the maximum limit used.
• See DI1 above.
7 = COMM – Defines bit 15 of the Command Word 1 as the control for selecting the maximum limit used.
• The Command Word is supplied through fieldbus communication.
• The Command Word is a parameter 0301.
-1 = DI1(INV) – Defines an inverted digital input di1 as the control for selecting the maximum limit used.
• Activating the digital input selects MAX TORQUE 1 value.
• De-activating the digital input selects MAX TORQUE 2 value.
-2…-6 = DI2(INV)...DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for selecting the maximum limit
used.
• See DI1(INV) above.
2015 MIN TORQUE 1
Sets the first minimum limit for torque (%). Value is a percent of the motor nominal torque.
2016 MIN TORQUE 2
Sets the second minimum limit for torque (%). Value is a percent of the motor nominal torque.
2017 MAX TORQUE 1
Sets the first maximum limit for torque (%). Value is a percent of the motor nominal torque.
2018 MAX TORQUE 2
Sets the second maximum limit for torque (%). Value is a percent of the motor nominal torque.
Start-Up
72 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 73
Code Description
2108 START INHIBIT
Sets the Start inhibit function on or off. The Start inhibit function ignores a pending start command in any of the
following situations (a new start command is required):
• A fault is reset.
• Run Enable activates while start command is active.
• Mode changes from local to remote.
• Mode changes from remote to local.
• Control switches from EXT1 to EXT2.
• Control switches from EXT2 to EXT1.
0 = OFF – Disables the Start inhibit function.
1 = ON – Enables the Start inhibit function.
2109 EM STOP SEL
Defines control of the Emergency stop command. When activated:
• Emergency stop decelerates the motor using the emergency stop ramp (parameter 2208 EM DEC TIME).
• Requires an external stop command and removal of the emergency stop command before drive can restart.
0 = NOT SEL – Disables the Emergency stop function through digital inputs.
1 = DI1 – Defines digital input DI1 as the control for Emergency stop command.
• Activating the digital input issues an Emergency stop command.
• De-activating the digital input removes the Emergency stop command.
2...6 = DI2…DI6 – Defines digital input DI2…DI6 as the control for Emergency stop command.
• See DI1 above.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for Emergency stop command.
• De-activating the digital input issues an Emergency stop command.
• Activating the digital input removes the Emergency stop command.
-2...-6 = DI2(INV)...DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for Emergency stop command.
• See DI1(INV) above.
2110 TORQ BOOST CURR
Sets the maximum supplied current during torque boost.
• See parameter 2101 START FUNCTION.
Start-Up
74 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 75
Code Description
2209 RAMP INPUT 0
Defines control for forcing the ramp input to 0.
0 = NOT SEL –
1 = DI1 – Defines digital input DI1 as the control for forcing the ramp input to 0.
• Activating the digital input forces ramp input to 0. Ramp output will ramp to 0 according to the currently used ramp
time, after which it will stay at 0.
• De-activating the digital input: ramp resumes normal operation.
2...6 = DI2…DI6 – Defines digital input DI2…DI6 as the control for forcing the ramp input to 0.
• See DI1 above.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for forcing the ramp input to 0.
• De-activating the digital input forces ramp input to 0.
• Activating the digital input: ramp resumes normal operation.
-2...-6 = DI2(INV)...DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for forcing the ramp function
generator input to 0.
• See DI1(INV) above.
Start-Up
76 ACS550 User’s Manual
Controller Output
Controller
output = e = Error value
Kp * e
t
TI
2303 DERIVATION TIME
Sets the derivation time for the speed controller.
• Derivative action makes the control more responsive to error value changes.
• The longer the derivation time, the more the speed controller output is boosted during the change.
• If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller.
Note: Use this parameter only when a pulse encoder is used.
The figure below shows the speed controller output after an error step when the error remains constant.
%
Controller Output
∆e
Kp * TD *
Ts Kp * e
Error Value
Gain = Kp = 1
TI = Integration time > 0 Kp * e e = Error value
TD= Derivation time > 0
Ts= Sample time period = 2 ms t
∆e = Error value change between two samples
TI
Start-Up
ACS550 User’s Manual 77
Code Description
2304 ACC COMPENSATION
Sets the derivation time for acceleration compensation.
• Adding a derivative of the reference to the output of the speed controller compensates for inertia during
acceleration.
• 2303 DERIVATION TIME describes the principle of derivative action.
• Rule of thumb: Set this parameter between 50 and 100% of the sum of the mechanical time constants for the motor
and the driven machine.
• The figure shows the speed responses when a high inertia load is accelerated along a ramp.
No Acceleration Compensation Acceleration Compensation
% %
Speed reference
Actual speed
t t
Start-Up
78 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 79
Start-Up
80 ACS550 User’s Manual
Code Description
2603 IR COMP VOLT IR Compensation
Sets the IR compensation voltage used for 0 Hz. • When enabled, IR Compensation provides an extra
• Requires parameter 9904 MOTOR CTRL MODE = 3 voltage boost to the motor at low speeds. Use IR
(SCALAR CONTROL). Compensation, for example, in applications that require a
• Keep IR compensation as low as possible to prevent high breakaway torque.
overheating. Motor
• Typical IR compensation values are: Voltage
400 V Units A
PN (kW) 3 7.5 15 37 132 A = IR Compensated
IR comp (V) 21 18 15 10 4 B = No compensation
P 2603
2604 IR COMP FREQ
f (Hz)
Sets the frequency at which IR compensation is 0 V. B
P 2604
2605 U/f RATIO
Selects the form for the U/f (voltage to frequency) ratio below field weakening point.
1 = LINEAR – Preferred for constant torque applications.
2 = SQUARE – Preferred for centrifugal pump and fan applications. (Square is more silent for most operating
frequencies.)
2606 SWITCHING FREQ
Sets the switching frequency for the drive.
• Higher switching frequencies mean less noise.
2607 SW FREQ CTRL Switching frequency limit
The switching frequency may be reduced if the ACS550 internal
temperature rises above 90 °C. See Figure. This function allows 8 kHz
the highest possible switching frequency to be used based on
operating conditions. Higher switching frequency results in lower
acoustic noise. 4 kHz
0 = OFF – The function is disabled. ACS5550
1 = ON – The switching frequency is limited according to the Temperature
figure.
90 °C 100 °C
2608 SLIP COMP RATIO
Sets gain for slip compensation (in %).
• A squirrel-cage motor slips under load. Increasing the frequency as the motor torque increases compensates for
the slip.
• Requires parameter 9904 MOTOR CTRL MODE = SCALAR.
0 = No slip compensation.
1…100 = Increasing slip compensation. 100% means full slip compensation.
Start-Up
ACS550 User’s Manual 81
• The thermal time for a Class 10 trip curve is 350 s, for a Class P 3006
20 trip curve 700 s, and for a Class 30 trip curve 1050 s.
Start-Up
82 ACS550 User’s Manual
Code Description
3007 MOT LOAD CURVE Output current (%) relative
Sets the maximum allowable operating load of the motor. to 9906 MOTOR NOM CURR
• When set to 100%, the maximum allowable load is equal to the value
of Start-up Data parameter 9906 MOTOR NOM CURRENT. 150
• Adjust the load curve level if the ambient temperature differs from
nominal.
P 3007 100
3008 ZERO SPEED LOAD
Sets the maximum allowable current at zero speed.
• Value is relative to 9906 MOTOR NOM CURR. P 3008 50
3.0 60 s
IO = Output current
2.5 90 s IN = Nominal motor current
2.0 fO = Output frequency
180 s fBRK = Break point frequency
1.5 300 s A = Trip time
600 s
1.0 ∞
0.5
fO/fBRK
0
0 0.2 0.4 0.6 0.8 1.0 1.2
3010 STALL FUNCTION
This parameter defines the operation of the Stall function. This
protection is active if the drive operates in the stall region (see figure)
for the time defined by 3012 STALL TIME. The “User Limit” is defined in
Group 20 by 2017 MAX TORQUE 1, 2018 MAX TORQUE 2, or the limit on
Torque
the COMM input.
0 = NOT SEL – Stall protection is not used.
1 = FAULT – When the drive operates in the stall region for the time set
by 3012 STALL TIME: Stall region
• The drive coasts to stop. 95%
• A fault indication is displayed.
User
2 = WARNING – When the drive operates in the stall region for the time
Limit
set by 3012 STALL TIME:
• A warning indication is displayed.
• The warning disappears when the drive is out of the stall region for
half the time set by parameter 3012 STALL TIME. f
3011 STALL FREQUENCY 3011
This parameter sets the frequency value for the Stall function. Refer to STALL FREQ HI
Figure.
3012 STALL TIME
This parameter sets the time value for the Stall function.
Start-Up
ACS550 User’s Manual 83
Code Description
3013 UNDERLOAD FUNCTION
Removal of motor load may indicate a process malfunction. The protection is activated if:
• The motor torque drops below the load curve selected by parameter 3015 UNDERLOAD CURVE.
• This condition has lasted longer than the time set by parameter 3014 UNDERLOAD TIME.
• Output frequency is higher than 10% of the nominal frequency.
0 = NOT SEL – Underload protection is not used.
1 = FAULT – When the protection is activated the drive coasts to stop. A fault indication is displayed.
2 = WARNING – A warning indication is displayed.
3014 UNDERLOAD TIME
Time limit for underload protection.
3015 UNDERLOAD CURVE
TM
This parameter provides five selectable curves (%)
shown in the figure. Underload curve types
• If the load drops below the set curve for longer 80 3
than the time set by parameter 3014, the 70%
underload protection is activated.
• Curves 1...3 reach maximum at the motor rated 60 2
frequency set by parameter 9907 MOTOR NOM
FREQ. 50%
• TM = nominal torque of the motor. 40 1
• ƒN = nominal frequency of the motor. 5
30%
20
4
f
0
ƒN 2.4 * ƒN
3018 COMM FAULT FUNC
Defines the drive response if the fieldbus communication is lost.
0 = NOT SEL – No response.
1 = FAULT – Displays a fault (IO COMM ERROR) and the drive coasts to stop.
2 = CONST SP7 – Displays a warning (IO COMM ERROR) and sets speed using 1208 CONST SPEED 7.
3 = LAST SPEED – Displays a warning (IO COMM ERROR) and sets speed using the last operating level. This value is the
average speed over the last 10 seconds.
Warning! If you select const speed 7, or last speed, make sure that continued operation is safe when fieldbus
communication is lost.
3019 COMM FAULT TIME
Sets the communication fault time used with 3018 COMM FAULT FUNC.
• Brief interruptions in the fieldbus communication are not treated as faults if they are less than the COMM FAULT TIME
value.
3021 AI1 FAULT LIMIT
Sets a fault level for analog input 1. See 3001 AI<MIN FUNCTION.
3022 AI2 FAULT LIMIT
Sets a fault level for analog input 2. See 3001 AI<MIN FUNCTION.
Start-Up
84 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 85
Start-Up
86 ACS550 User’s Manual
Code Description
3208 SUPERV 3 LIM LO
Sets the low limit for the second supervised parameter. See 3207 SUPERV 3 PARAM above.
3209 SUPERV 3 LIM HI
Sets the high limit for the third supervised parameter. See 3207 SUPERV 3 PARAM above.
Start-Up
ACS550 User’s Manual 87
Start-Up
88 ACS550 User’s Manual
122...127 = Cst
Additional bar display units
-123 =Iout -124 = Vout -125 = Fout -126 = Tout -127 = Vdc
Start-Up
ACS550 User’s Manual 89
Code Description
3411 OUTPUT 2 DSP FORM
Defines the decimal point location for the second display parameter. See parameter 3404.
3412 OUTPUT 2 DSP UNIT
Selects the units used with the second display parameter. See parameter 3405.
3413 OUTPUT 2 MIN
Sets the minimum value displayed for the second display parameter. See parameter 3406.
3414 OUTPUT 2 MAX
Sets the maximum value displayed for the second display parameter. See parameter 3407.
3415 SIGNAL 3 PARAM
Selects the third parameter (by number) displayed on the control panel. See parameter 3401.
3416 SIGNAL 3 MIN
Defines the minimum expected value for the third display parameter. See parameter 3402.
3417 SIGNAL 3 MAX
Defines the maximum expected value for the third display parameter. See parameter 3403.
3418 OUTPUT 3 DSP FORM
Defines the decimal point location for the third display parameter. See parameter 3404.
3418 OUTPUT 3 DSP UNIT
Selects the units used with the third display parameter. See parameter 3405.
3420 OUTPUT 3 MIN
Sets the minimum value displayed for the third display parameter. See parameter 3406.
3421 OUTPUT 3 MAX
Sets the maximum value displayed for the third display parameter. See parameter 3407.
Start-Up
90 ACS550 User’s Manual
T
T T T
AO1
AO1
AGND
AGND
10 nF
10 nF
Warning! IEC 60664 requires double or reinforced insulation between live parts
and the surface of accessible parts of electrical equipment which are either
non-conductive or conductive but not connected to the protective earth.
To fulfil this requirement, connect a thermistor (and other similar components)
to the drive’s control terminals using any of these alternatives:
• Separate the thermistor from live parts of the motor with double reinforced
insulation.
• Protect all circuits connected to the drive’s digital and analog inputs.
Protect against contact, and insulate from other low voltage circuits with
basic insulation (rated for the same voltage level as the drive’s main
circuit).
• Use an external thermistor relay. The relay insulation must be rated for the
same voltage level as the drive’s main circuit.
For other faults, or for anticipating motor overheating using a model, see Group 30:
Fault Functions.
Start-Up
ACS550 User’s Manual 91
Code Description
3501 SENSOR TYPE
Identifies the type of motor temperature sensor used, PT100 (°C) or PTC (ohms).
See parameters 1501 and 1507.
0 = NONE
1 = 1 x PT100 – Sensor configuration uses one PT 100 sensor.
• Analog output AO1 or AO2 feeds constant current through the sensor.
• The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor.
• The temperature measurement function reads the voltage through analog input AI1 or AI2 and converts it to
degrees centigrade.
2 = 2 x PT100 – Sensor configuration uses two PT 100 sensors.
• Operation is the same as for above 1 x PT100.
Temperature Resistance
Normal 0 … 1.5 kohm T
Excessive > 4 kohm
Start-Up
92 ACS550 User’s Manual
t
P 4003
Start-Up
ACS550 User’s Manual 93
Code Description
4004 PID DERIV FILTER
Defines the filter time constant for the error-derivative part of the PID controller output.
• Before being added to the PID controller output, the error-derivative is filtered with a 1-pole filter.
• Increasing the filter time smooths the error-derivative, reducing noise.
0.0 = NOT SEL – Disables the error-derivative filter.
0.1…10.0 = Filter time constant (seconds).
4005 ERROR VALUE INV
Selects either a normal or inverted relationship between the feedback signal and the drive speed.
0 = NO – Normal, a decrease in feedback signal increases drive speed. Error = Ref - Fbk
1 = YES – Inverted, a decrease in feedback signal decreases drive speed. Error = Fbk - Ref
4006 UNIT
Selects the unit for the PID controller actual values. (PID1 parameters 0128, 0130, and 0132).
• See parameter 3405 for list of available units.
4007 DSP FORMAT
4007 Value Entry Display
Defines the decimal point location in PID controller actual values.
• Enter the decimal point location counting in from the right of the entry. 0 0003 3
• See table for example using pi (3.14259). 1 0031 3.1
2 0314 3.14
3 3142 3.142
0% 100%
-1000% Internal scale (%)
Start-Up
94 ACS550 User’s Manual
Code Description
4010 SET POINT SEL
Defines the reference signal source for the PID controller.
• Parameter has no significance when the PID regulator is by-passed (see 8121 REG BYPASS CTRL).
0 = keypad – Control panel provides reference.
1 = AI1 – Analog input 1 provides reference.
2 = AI2 – Analog input 2 provides reference.
8 = comm – Fieldbus provides reference.
9 = COMM + AI1 – Defines a fieldbus and analog input 1 (AI1) combination as the reference source. See Analog Input
Reference Correction below.
10 = COMM * AI1 – Defines a fieldbus and analog input 1 (AI1) combination as the reference source. See Analog Input
Reference Correction below.
11 = DI3U, 4D(RNC) – Digital inputs, acting as a motor potentiometer control, provide reference.
• DI3 increases the speed (the U stands for “up”)
• DI4 decreases the reference (the D stands for “down”).
• Parameter 2205 ACCELER TIME 2 controls the reference signal’s rate of change.
• R = Stop command resets the reference to zero.
• NC = Reference value is not copied.
12 = DI3U, 4D(NC) – Same as DI3U, 4D(RNC) above, except:
• Stop command does not reset reference to zero. At restart the motor ramps up, at the selected acceleration rate,
to the stored reference.
13 = DI5U, 6D(NC) – Same as DI3U, 4D(NC) above, except:
• Uses digital inputs DI5 and DI6.
14 = AI1 + AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
15 = AI1 * AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
16 = AI1 - AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
17 = AI1/AI2 – Defines an analog input 1 (AI1) and analog input 2 (AI2) combination as the reference source. See
Analog Input Reference Correction below.
19 = INTERNAL – A constant value set using parameter 4011 provides reference.
Analog Input Reference Correction
Parameter values 9, 10, and 14…17 use the formulae in the following table.
Value Setting AI reference is calculated as following:
Start-Up
ACS550 User’s Manual 95
Code Description
4012 SETPOINT MIN
Sets the minimum value for the reference signal source. See parameter 4010.
4013 SETPOINT MAX
Sets the maximum value for the reference signal source. See parameter 4010.
4014 FBK SEL
Defines the PID controller feedback (actual signal).
• You can define a combination of two actual values (ACT1 and ACT2) as the feedback signal.
• Use parameter 4016 to define the source for actual value 1 (ACT1).
• Use parameter 4017 to define the source for actual value 2 (ACT2).
1 = ACT1 – Actual value 1 (ACT1) provides the feedback signal.
2 = ACT1-ACT2 – ACT1 minus ACT2 provides the feedback signal.
3 = ACT1+ACT2 – ACT1 plus ACT2 provides the feedback signal.
4 = ACT1*ACT2 – ACT1 times ACT2 provides the feedback signal.
5 = ACT1/ACT2 – ACT1 divided by ACT2 provides the feedback signal.
6 = MIN (A1, A2) – The smaller of ACT1 or ACT2 provides the feedback signal.
7 = MAX (A1, A2) – The greater of ACT1 or ACT2 provides the feedback signal.
8 = SQRT (A1-A2) – Square root of the value for ACT1 minus ACT2 provides the feedback signal.
9 = SQA1 + SQA2 – Square root of ACT1 plus the square root of ACT2 provides the feedback signal.
4015 FBK MULTIPLIER
Defines an extra multiplier for the PID FBK value defined by parameter 4014.
• Used mainly in applications where the flow is calculated from the pressure difference.
0 = NOT USED.
-32768…32767 = Multiplier applied to the signal defined by parameter 4014 FBK SEL.
Start-Up
96 ACS550 User’s Manual
Code Description
4018 ACT1 MINIMUM
ACT1 (%) A
Sets the minimum value for ACT1.
• Used with analog input min/max settings (e.g. 1301 MINIMUM AI1, P 4019
1302 MAXIMUM AI1).
• Scales analog inputs used as actual values.
• See figure: A= Normal; B = Inversion (ACT1 MINIMUM > ACT1
MAXIMUM) P 4018
4019 ACT1 MAXIMUM
Sets the maximum value for ACT1. P 1301 P 1302
• See 4018 ACT1 MINIMUM. Analog input signal
4020 ACT2 MINIMUM
ACT1 (%) B
Sets the minimum value for ACT2.
• See 4018 ACT1 MINIMUM. P 4018
4021 ACT2 MAXIMUM
Sets the maximum value for ACT2.
• See 4018 ACT1 MINIMUM.
P 4019
P 1301 P 1302
Analog input signal
4022 SLEEP SELECTION
Defines the control for the PID sleep function.
0 = NOT SEL– Disables the PID sleep control function.
1 = DI1 – Defines digital input DI1 as the control for the PID sleep function.
• Activating the digital input activates the sleep function.
• De-activating the digital input restores PID control.
2...6 = DI2...DI6 – Defines digital input DI2…DI6 as the control for the PID sleep function.
• See DI1 above.
7 = INTERNAL – Defines the output frequency, process reference, and process actual value as the control for the PID
sleep function. Refer to parameters 4025 WAKE-UP DEV and 4023 PID SLEEP LEVEL.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for the PID sleep function.
• De-activating the digital input activates the sleep function.
• Activating the digital input restores PID control.
-2…-6 = DI2(INV)…DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for the PID sleep function.
• See DI1(INV) above.
Start-Up
ACS550 User’s Manual 97
Code Description
4023 PID SLEEP LEVEL A
t < P 4024
Sets the motor speed / frequency that enables the PID sleep
function – a motor speed / frequency below this level, for at least t > P 4024
the time period 4024 PID SLEEP DELAY enables the PID sleep
function (stopping the drive). P 4023
• Requires 4022 = 7 INTERNAL. t
• See figure: A = PID output level; B = PID process feedback.
4024 PID SLEEP DELAY B
Sets the time delay for the PID sleep function – a motor speed / P 4026
frequency below 4023 PID SLEEP LEVEL for at least this time period Setpoint
enables the PID sleep function (stopping the drive). P 4025
• See 4023 PID SLEEP LEVEL above. t
4025 WAKE-UP DEVIATION Stop
Defines the wake-up deviation – a deviation from the setpoint Start
greater than this value, for at least the time period 4026 WAKE-UP
DELAY, re-starts the PID controller.
• Parameters 4006 and 4007 define the units and scale. C
• Parameter 4005 = 0,
Wake-up level = Setpoint - Wake-up deviation. Setpoint
P 4025 }4005 = 1
• Parameter 4005 = 1,
Wake-up level = Setpoint + Wake-up deviation.
P 4025 }4005
D
=0
t
• Wake-up level can be above or below setpoint.
• See 4023 PID SLEEP LEVEL above.
See figures:
• C = Wake-up level when parameter 4005 = 1 E
• D = Wake-up level when parameter 4005 = 0
• E = Feedback is above wake-up level and lasts longer than 4026
WAKE-UP DELAY – PID function wakes up. C
• F = Feedback is below wake-up level and lasts longer than 4026 P 4025 P 4026
WAKE-UP DELAY – PID function wakes up. Setpoint
4026 WAKE-UP DELAY P 4025
D
Defines the wake-up delay – a deviation from the setpoint greater t
than 4025 WAKE-UP DEVIATION, for at least this time period, re-starts
the PID controller. P 4026
• See 4023 PID SLEEP LEVEL above. F
4027 PID 1 PARAM SET
Defines how selections are made between PID Set 1 and PID Set 2.
PID parameter set selection. When set 1 is selected, parameters 4001…4026 are used.
When set 2 is selected, parameters 4101…4126 are used.
0 = SET 1 – PID Set 1 (parameters 4001…4026) is active.
1 = DI1 – Defines digital input DI1 as the control for PID Set selection.
• Activating the digital input selects PID Set 2.
• De-activating the digital input selects PID Set 1.
2...6 = DI2...DI6 – Defines digital input DI2…DI6 as the control for PID Set selection.
• See DI1 above.
7 = SET 2 – PID Set 2 (parameters 4101…4126) is active.
-1 = DI1(INV) – Defines an inverted digital input DI1 as the control for PID Set selection.
• Activating the digital input selects PID Set 1.
• De-activating the digital input selects PID Set 2.
-2…-6 = DI2(INV)…DI6(INV) – Defines an inverted digital input DI2…DI6 as the control for PID Set selection.
• See DI1(INV) above.
Start-Up
98 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 99
Start-Up
100 ACS550 User’s Manual
Code Description
4232 CORRECTION SRC
Defines the trimming reference for the correction source.
1 = TRIMMING PID2 REF – Uses appropriate REF MAX (SWITCH A OR B):
• 1105 REF 1 MAX when REF1 is active (A).
• 1108 REF 2 MAX when REF2 is active (B).
2 = TRIMMING PID2 OUTPUT – Uses the absolute maximum speed or frequency (Switch C):
• 2002 MAXIMUM SPEED if 9904 MOTOR CONTROL MODE = 1 SPEED or 2 TORQUE.
• 2008 MAXIMUM FREQUENCY IF 9904 MOTOR CONTROL MODE = 3 SCALAR.
Add
Ramped ref
Trimmed ref
Switch Select
(par. 4230) trim scale Mul. Mul. +
Start-Up
ACS550 User’s Manual 101
Start-Up
102 ACS550 User’s Manual
Code Description
5133 FBA APPL FW REV
Contains the revision of the module’s application program Format is xyz where:
• x = major revision number
• y = minor revision number
• z = correction number
Example: 107 = revision 1.07
Start-Up
ACS550 User’s Manual 103
Start-Up
104 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 105
Code Description
5312 EFB PAR 12
Specifies the parameter mapped to Modbus Register 40007.
5313 EFB PAR 13
Specifies the parameter mapped to Modbus Register 40008.
5314 EFB PAR 14
Specifies the parameter mapped to Modbus Register 40009.
5315 EFB PAR 15
Specifies the parameter mapped to Modbus Register 40010.
5316 EFB PAR 16
Specifies the parameter mapped to Modbus Register 40011.
5317 EFB PAR 17
Specifies the parameter mapped to Modbus Register 40012.
Start-Up
106 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 107
Code Description
8104 REFERENCE STEP 2
Sets a percentage value that is added to the process reference.
• Applies only when at least two auxiliary (constant speed) motors are running.
• See parameter 8103 REFERENCE STEP1.
8105 REFERENCE STEP 3
Sets a percentage value that is added to the process reference.
• Applies only when at least three auxiliary (constant speed) motors are running.
• See parameter 8103 REFERENCE STEP1.
8109 START FREQ 1
Sets the frequency limit used to start the first auxiliary motor. The first auxiliary motor starts if:
• No auxiliary motors are running.
• ACS550 output frequency exceeds the limit:
f (Hz) P 8115
8109 + 1 Hz.
• Output frequency stays above a relaxed limit fMAX
(8109 - 1 Hz) for at least the time: 8115 AUX MOT START D.
(P 8109)+1
After the first auxiliary motor starts:
P 8109
• Output frequency decreases by the value = A
(8109 START FREQ 1) - (8112 LOW FREQ 1).
P 8112
• In effect, the output of the speed regulated motor drops to B A
compensate for the input from the auxiliary motor. fMIN
t
See figure, where:
• A = (8109 START FREQ 1) - (8112 LOW FREQ 1)
• B = Output frequency increase during the start delay. C
• C = Diagram showing auxiliary motor’s run status as frequency 1
increases (1 = On). t
0
Note! 8109 START FREQ 1 value must be between:
• 8112 LOW FREQ 1
• (2008 MAXIMUM FREQ) -1.
8110 START FREQ 2
Sets the frequency limit used to start the second auxiliary motor.
• See 8109 START FREQ 1 for a complete description of the operation.
The second auxiliary motor starts if:
• One auxiliary motor is running.
• ACS550 output frequency exceeds the limit: 8110 + 1.
• Output frequency stays above the relaxed limit (8110 - 1 Hz) for at least the time: 8115 AUX MOT START D.
8111 START FREQ 3
Sets the frequency limit used to start the third auxiliary motor.
• See 8109 START FREQ 1 for a complete description of the operation.
The third auxiliary motor starts if:
• Two auxiliary motors are running.
• ACS550 output frequency exceeds the limit: 8111 + 1 Hz.
• Output frequency stays above the relaxed limit (8111 - 1 Hz) for at least the time: 8115 AUX MOT START D.
Start-Up
108 ACS550 User’s Manual
Code Description
8112 LOW FREQ 1
Sets the frequency limit used to stop the first auxiliary motor. The first auxiliary motor stops if:
• The first auxiliary motor is running alone.
• ACS550 output frequency drops below the limit: f (Hz)
8112 - 1.
• Output frequency stays below the relaxed limit fMAX
(8112 + 1 Hz) for at least the time: 8116 AUX MOT STOP D.
P 8109
After the first auxiliary motor stops:
• Output frequency increases by the value = A
P 8112 A
(8109 START FREQ 1) - (8112 LOW FREQ 1).
• In effect, the output of the speed regulated motor increases to (P 8112)-1
compensate for the loss of the auxiliary motor. fMIN
B t
See figure, where:
• A = (8109 START FREQ 1) - (8112 LOW FREQ 1) P 8116
• B = Output frequency decrease during the stop delay.
• C = Diagram showing auxiliary motor’s run status as frequency C
decreases (1 = On).
• Grey path = Shows hysteresis – if time is reversed, the path 1
t
backwards is not the same. For details on the path for starting, 0
see the diagram at 8109 START FREQ 1.
Note! Low Frequency 1 value must be between:
• (2007 MINIMUM FREQ) +1.
• 8109 START FREQ 1
8113 LOW FREQ 2
Sets the frequency limit used to stop the second auxiliary motor.
• See 8112 LOW FREQ 1 for a complete description of the operation.
The second auxiliary motor stops if:
• Two auxiliary motors are running.
• ACS550 output frequency drops below the limit: 8113 - 1.
• Output frequency stays below the relaxed limit (8113 + 1 Hz) for at least the time: 8116 AUX MOT STOP D.
8114 LOW FREQ 3
Sets the frequency limit used to stop the third auxiliary motor.
• See 8112 LOW FREQ 1 for a complete description of the operation.
The third auxiliary motor stops if:
• Three auxiliary motors are running.
• ACS550 output frequency drops below the limit: 8114 - 1.
• Output frequency stays below the relaxed limit (8114 + 1 Hz) for at least the time: 8116 AUX MOT STOP D.
8115 AUX MOT START D
Sets the Start Delay for the auxiliary motors.
• The output frequency must remain above the start frequency limit (parameter 8109, 8110, or 8111) for this time
period before the auxiliary motor starts.
• See 8109 START FREQ 1 for a complete description of the operation.
8116 AUX MOT STOP D.
Sets the Stop Delay for the auxiliary motors.
• The output frequency must remain below the low frequency limit (parameter 8112, 8113, or 8114) for this time
period before the auxiliary motor stops.
• See 8112 LOW FREQ 1 for a complete description of the operation.
Start-Up
ACS550 User’s Manual 109
Code Description
8117 NR OF AUX MOT
Sets the number of auxiliary motors.
• Each auxiliary motor requires a relay output, which the drive uses to send start/stop signals.
• The Autochange function, if used, requires an additional relay output for the speed regulated motor.
• The following describes the set-up of the required relay outputs.
Relay Outputs
As noted above, each auxiliary motor requires a relay output, which the drive uses to send start/stop signals. The
following describes how the drive keeps track of motors and relays.
• The ACS550 provides relay outputs RO1…RO3.
• An external digital output module can be added to provide relay outputs RO4…RO6.
• Parameters 1401…1403 and 1410…1412 define, respectively, how relays RO1…RO6 are used – the parameter
value 31 PFC defines the relay as used for PFC.
• The ACS550 assigns auxiliary motors to relays in ascending order. If the Autochange function is disabled, the first
auxiliary motor is the one connected to the first relay with a parameter setting = 31 PFC, and so on. If the
Autochange function is used, the assignments rotate. Initially, the speed regulated motor is the one connected to
the first relay with a parameter setting = 31 PFC, the first auxiliary motor is the one connected to the second relay
with a parameter setting = 31 PFC, and so on.
Relay Logic
ACS550
ACS550
Start-Up
110 ACS550 User’s Manual
Code Description
• The table below shows the ACS550 PFC motor assignments for some typical settings in the Relay Output
parameters (1401…1403 and 1410…1412), where the settings are either =31 (PFC), or =X (anything but 31), and
where the Autochange function is disabled (8118 AUTOCHNG INTERV = 0).
Start-Up
ACS550 User’s Manual 111
Code Description
8119 AUTOCHNG LEVEL
Sets an upper limit, as a percent of output capacity, for the autochange logic. When the output from the PID/PFC
control block exceeds this limit, autochange is prevented. For example, use this parameter to deny autochange when
the Pump-Fan system is operating near maximum capacity.
Autochange Overview
The purpose of the autochange operation is to equalize duty time between multiple motors used in a system. At each
autochange operation:
• A different motor takes a turn connected to the ACS550 output – the speed regulated motor.
• The starting order of the other motors rotates.
The Autochange function requires:
• External switchgear for changing the dive’s output power connections.
• Parameter 8120 INTERLOCKS = value > 0.
Autochange is performed when:
• The running time since the previous autochange reaches the time set by 8118 AUTOCHNG INTERV
• The PFC input is below the level set by this parameter, 8119 AUTOCHNG LEVEL.
Note! The ACS550 always coasts to stop when autochange is performed.
In an autochange, the Autochange function does all of the PID Output
following (see figure): A
4PFC
• Initiates a change when the running time, since the last 100%
autochange, reaches 8118 AUTOCHNG INTERV, and PFC 2PFC
input is below limit 8119 AUTOCHNG LEVEL.
• Stops the speed regulated motor. P 8119
3PFC
• Switches off the contactor of the speed regulated motor. 3PFC
• Increments the starting order counter, to change the 4PFC
starting order for the motors. 2PFC
• Identifies the next motor in line to be the speed regulated
motor. 1PFC t
• Switches off the above motor’s contactor, if the motor was P 8122
running. Any other running motors are not interrupted.
• Switches on the contactor of the new speed regulated P 8118 P 8118
motor. The autochange switchgear connects this motor to B
the ACS550 power output. A = Area above 8119 AUTOCHNG LEVEL –
• Delays motor start for the time 8122 PFC START DELAy. autochange not allowed.
• Starts the speed regulated motor. B = Autochange occurs.
• Identifies the next constant speed motor in the rotation. 1PFC, etc. = PID output associated with each motor.
• Switches the above motor on, but only if the new speed
regulated motor had been running (as a constant speed
motor) – This step keeps an equal number of motors running before and after autochange.
• Continues with normal PFC operation.
Starting Order Counter Output
The operation of the starting-order counter: frequency 2 aux
No aux 1 aux
• The relay output parameter definitions (1401…1403 and motors motor motors
1410…1412)) establish the initial motor sequence. (The lowest fMAX
parameter number with a value 31 (PFC) identifies the relay
connected to 1PFC, the first motor, and so on.)
• Initially, 1PFC = speed regulated motor, 2PFC = 1st auxiliary
motor, etc.
• The first autochange shifts the sequence to: 2PFC = speed
regulated motor, 3PFC = 1st auxiliary motor, …, 1PFC = last
auxiliary motor. Area
• The next autochange shifts the sequence again, and so on. Autochange
• If the autochange cannot start a needed motor because all is Allowed PID output
inactive motors are interlocked, the drive displays an alarm
P 8119 100%
(INTERLOCK).
• When ACS550 power supply is switched off, the counter
preserves the current Autochange rotation positions in permanent memory. When power is restored, the
Autochange rotation starts at the position stored in memory.
• If the PFC relay configuration is changed (or if the PFC enable value is changed), the rotation is reset. (See the first
bullet above.)
Start-Up
112 ACS550 User’s Manual
Code Description
8120 INTERLOCKS
Defines operation of the Interlock function. When the Interlock function is enabled:
• An interlock is active when its command signal is absent.
• An interlock is inactive when its command signal is present.
• The ACS550 will not start if a start command occurs when the speed regulated motor’s interlock is active – the
control panel displays an alarm (INTERLOCK).
Wire each Interlock circuit as follows:
• Wire a contact of the motor’s On/Off switch to the Interlock circuit – the drive’s PFC logic can then recognize that
the motor is switched off, and start the next available motor.
• Wire a contact of the motor thermal relay (or other protective device in the motor circuit) to the Interlock input – the
drive’s PFC logic can then recognize that a motor fault is activated and stop the motor.
0 = NOT SEL – Disables the Interlock function. All digital inputs are available for other purposes.
• Requires 8118 AUTOCHNG INTERV = 0 (The Autochange function must be disabled if Interlock function is disabled.)
1 = DI1 – Enables the Interlock function, and assigns a digital input (starting with DI1) to the interlock signal for each
PFC relay. These assignments are defined in the following table and depend on:
• The number of PFC relays (number of parameters 1401…1403 and 1410…1412) and with value = 31 PFC)
• The Autochange function status (disabled if 8118 AUTOCHNG INTERV = 0, and otherwise enabled).
Start-Up
ACS550 User’s Manual 113
Code Description
2 = DI2 – Enables the Interlock function, and assigns a digital input (starting with DI2) to the interlock signal for each
PFC relay. These assignments are defined in the following table and depend on:
• The number of PFC relays (number of parameters 1401…1403 and 1410…1412) with value = 31 PFC)
• The Autochange function status (disabled if 8118 AUTOCHNG INTERV = 0, and otherwise enabled).
Start-Up
114 ACS550 User’s Manual
Code Description
3 = DI3 – Enables the Interlocks function, and assigns a digital input (starting with DI3) to the interlock signal for each
PFC relay. These assignments are defined in the following table and depend on:
• The number of PFC relays (number of parameters 1401…1403 and 1410…1412) with value = 31 PFC)
• The Autochange function status (disabled if 8118 AUTOCHNG INTERV = 0, and otherwise enabled).
Start-Up
ACS550 User’s Manual 115
Code Description
5 = DI5 – Enables the Interlock function, and assigns a digital input (starting with DI5) to the interlock signal for each
PFC relay. These assignments are defined in the following table and depend on:
• The number of PFC relays (number of parameters 1401…1403 and 1410…1412) with value = 31 PFC)
• The Autochange function status (disabled if 8118 AUTOCHNG INTERV = 0, and otherwise enabled).
Start-Up
116 ACS550 User’s Manual
Code Description
8121 REG BYPASS CTRL
Selects Regulator by-pass control. When enabled, Regulator by-pass control provides a simple control mechanism
without a PID regulator.
• Use Regulator by-pass control only in special
fOUT
applications.
0 = NO – Disables Regulator by-pass control. The drive fMAX
uses the normal PFC reference: 1106 REF2 SELECT.
1 = YES – Enables Regulator by-pass control.
• The process PID regulator is bypassed.
Actual value of PID is used as the PFC reference P 8110
(input). Normally EXT REF2 is used as the PFC P 8109
reference.
• The drive uses the feedback signal defined by 4014
FBK SEL (or 4114) for the PFC frequency reference.
P 8113
• The figure shows the relation between the control
signal 4014 FBK SEL (OR 4114) and the speed P 8112
regulated motor’s frequency in a three-motor
system. fMAX
Example: In the diagram below, the pumping station’s P 4014
outlet flow is controlled by the measured inlet flow (A). A B C (%)
A = No auxiliary motors running
B = One auxiliary motor running
Mains 3~ 3 Contactors C = Two auxiliary motors running
3
3 ACS550 P1
P2 3
M
P3 3 3~
3 P1 Outlet Pipe1
A Sewage
Tank M
3~
P2 Outlet Pipe2
Inlet Pipe
M
3~
P3 Outlet Pipe3
Start-Up
ACS550 User’s Manual 117
Code Description
8124 ACC IN AUX STOP
Sets the PFC acceleration time for a zero-to-maximum fOUT
frequency ramp. This PFC acceleration ramp:
• Applies to the speed regulated motor, when an auxiliary A
motor is switched off. B
• Replaces the acceleration ramp defined in Group 22:
Accel / Decel.
• Applies only until the output of the regulated motor
increases by an amount equal to the output of the P 8125 P 8124
switched off auxiliary motor. Then the acceleration ramp t
defined in Group 22: Accel / Decel applies.
Aux.
8125 DEC IN AUX START Motor
Sets the PFC deceleration time for a maximum-to-zero 1
frequency ramp. This PFC deceleration ramp: t
• Applies to the speed regulated motor, when an auxiliary 0
motor is switched on. • A = speed regulated motor accelerating using Group 22
• Replaces the deceleration ramp defined in Group 22 parameters (2202 or 2205).
ACCEL / DECEL. • B = speed regulated motor decelerating using Group 22
• Applies only until the output of the regulated motor parameters (2203 or 2206).
decreases by an amount equal to the output of the • At aux. motor start, speed regulated motor decelerates
auxiliary motor. Then the deceleration ramp defined in using 8125 DEC IN AUX START.
Group 22 ACCEL / DECEL applies. • At aux. motor stop, speed regulated motor accelerates
using 8124 ACC IN AUX STOP.
Start-Up
118 ACS550 User’s Manual
Start-Up
ACS550 User’s Manual 119
Diagnostics
Diagnostic Displays
When a drive detects an error, it provides a diagnostic display. The display appears
using:
• The green and red LED on the body of the drive
• The status LED on the control panel (if a control panel is attached to the drive)
• The control panel display (if a control panel is attached to the drive)
The form of the display depends on the severity of the error.
Red – Faults
The drive signals that it has detected a severe error, or fault, by:
• Enabling the red LED on the drive (LED is either steady on or blinking).
• Overriding the control panel display with the display of a fault code.
• Stopping the motor (if it was on).
The fault code on the control panel display is temporary. Pressing any of the
following buttons removes the fault message: MENU, ENTER, UP button, or DOWN
button. The message reappears after a few seconds if the control panel is not
touched and the fault is still active.
Correcting Faults
The recommended corrective action for faults is:
• Use the "Fault Listing" table below to find and address the root cause of the
problem.
• Reset the drive. See "Fault Resetting" on page 123.
Diagnostics
120 ACS550 User’s Manual
Fault Listing
Fault Fault Name In
Description and Recommended Corrective Action
Code Panel
1 OVERCURRENT Output current is excessive. Check for and correct:
• Excessive motor load.
• Insufficient acceleration time (parameters 2202 ACCELER TIME 1 and
2205 ACCELER TIME 2).
• Faulty motor, motor cables or connections.
2 DC OVERVOLT Intermediate circuit DC voltage is excessive. Check for and correct:
• Static or transient overvoltages in the input power supply.
• Insufficient deceleration time (parameters 2203 DECELER TIME 1 and
2206 DECELER TIME 2).
• Undersized brake chopper (if present).
3 DEV OVERTEMP Drive heatsink is overheated. Temperature is at or above 115 °C (239 °F).
Check for and correct:
• Fan failure.
• Obstructions in the air flow.
• Dirt or dust coating on the heat sink.
• Excessive ambient temperature.
• Excessive motor load.
4 SHORT CIRC Fault current. Check for and correct:
• A short-circuit in the motor cable(s) or motor.
• Supply disturbances.
5 OVERLOAD Inverter overload condition. The drive output current exceeds the ratings
given in "Ratings" on page 127 of this manual.
6 DC UNDERVOLT Intermediate circuit DC voltage is not sufficient. Check for and correct:
• Missing phase in the input power supply.
• Blown fuse.
• Undervoltage on mains.
7 AI1 LOSS Analog input 1 loss. Analog input value is less than MINIMUM AI1 (1301).
Check for and correct:
• Source and connection for analog input.
• Parameter settings for MINIMUM AI1 (1301) and 3001 AI<MIN FUNCTION.
8 AI2 LOSS Analog input 2 loss. Analog input value is less than MINIMUM AI2 (1304).
Check for and correct:
• Source and connection for analog input.
• Parameter settings for MINIMUM AI2 (1304) and 3001 AI<MIN FUNCTION.
9 MOT OVERTEMP Motor is too hot, as estimated by the drive.
• Check for overloaded motor.
• Adjust the parameters used for the estimate (3005…3009).
10 PANEL LOSS Panel communication is lost and either:
• Drive is in local control mode (the control panel displays LOC), or
• Drive is in remote control mode (REM) and is parameterized to accept
start/stop, direction or reference from the control panel.
To correct check:
• Communication lines and connections
• Parameter 3002 PANEL COMM ERROR.
• Parameters in Group 10: Command Inputs and Group 11: Reference
Select (if drive operation is REM).
Diagnostics
ACS550 User’s Manual 121
28 SERIAL 1 ERR Fieldbus communication has timed out. Check for and correct:
• Fault setup (3018 COMM FAULT FUNC and 3019 COMM FAULT TIME).
• Communication settings (Group 51 or 53 as appropriate).
• Poor connections and/or noise on line.
Diagnostics
122 ACS550 User’s Manual
30 FORCE TRIP
31 EFB 1 Fault code reserved for the EFB protocol application. The meaning is
protocol dependent.
32 EFB 2 Fault code reserved for the EFB protocol application. The meaning is
protocol dependent.
33 EFB 3 Fault code reserved for the EFB protocol application. The meaning is
protocol dependent.
34 MOTOR PHASE Fault in the motor circuit. One of the motor phases is lost. Check for and
correct:
• Motor fault.
• Motor cable fault.
• Thermal relay fault (if used).
• Internal fault.
35 OUTP WIRING Error in power wiring suspected. Check for and correct:
• Input power wired to drive output.
• Ground faults.
1000 PAR HZRPM Parameter values are inconsistent. Check for any of the following:
• 2001 MINIMUM SPEED > 2002 MAXIMUM SPEED.
• 2007 MINIMUM FREQ > 2008 MAXIMUM FREQ.
• 2001 MINIMUM SPEED / 9908 MOTOR NOM SPEED is outside of the range:
-128…128.
• 2002 MAXIMUM SPEED / 9908 MOTOR NOM SPEED is outside of the range:
-128…128.
• 2007 MINIMUM FREQ / 9907 MOTOR NOM FREQ is outside of the range:
-128…128.
• 2008 MAXIMUM FREQ / 9907 MOTOR NOM FREQ is outside of the range:
-128…128.
1001 PAR PFCREFNG Parameter values are inconsistent. Check for the following:
• 2007 MINIMUM FREQ is negative, when 8123 PFC ENABLE is active.
1002 PAR PFCIOCNF Parameter values are inconsistent. The number of programmed PFC relays
does not match with Interlock configuration, when 8123 PFC ENABLE is
active. Check consistency of:
• RELAY OUTPUT parameters 1401…1403, and 1410…1412.
• 8117 NR OF AUX MOTORS, 8118 AUTOCHANGE INTERV, and 8120
INTERLOCKS.
1003 PAR AI SCALE Parameter values are inconsistent. Check for any of the following:
• 1301 AI 1 MIN > 1302 AI 1 MAX.
• 1304 AI 2 MIN > 1305 AI 2 MAX.
1004 PAR AO SCALE Parameter values are inconsistent. Check for any of the following:
• 1504 AO 1 MIN > 1505 AO 1 MAX.
• 1510 AO 2 MIN > 1511 AO 2 MAX.
1005 PAR PCU 2 Parameter values for power control are inconsistent: Improper motor
nominal kVA or motor nominal power. Check for the following:
• 1.1 < (9906 MOTOR NOM CURR * 9905 MOTOR NOM VOLT * 1.73 / P N) < 2.6
• Where: PN = 1000 * 9909 MOTOR NOM POWER (if units are kW)
or P N = 746 * 9909 MOTOR NOM POWER (if units are HP, e.g. in US)
Diagnostics
ACS550 User’s Manual 123
Fault Resetting
The ACS550 can be configured to automatically reset certain faults. Refer to
parameter Group 31: Automatic Reset.
History
For reference, the last three fault codes are stored into parameters 0401, 0412,
0413. You can clear the fault memories:
• In the control panel, Parameters mode, select a parameter (0401, 0412, 0413).
• Enter the set mode.
Diagnostics
124 ACS550 User’s Manual
Maintenance
Maintenance Intervals
If installed in an appropriate environment, the drive requires very little maintenance.
This table lists the routine maintenance intervals recommended by ABB.
Maintenance Interval Instruction
Heatsink temperature check Depends on the dustiness of the See "Heatsink" on page 124.
and cleaning environment (every 6…12
months)
Main cooling fan replacement Every five years See "Main Fan" on page 124.
Capacitor change Every ten years See "Capacitors" on page 125.
(Frame size R5 and R6)
Heatsink
The heatsink fins accumulate dust from the cooling air. Since a dusty heatsink is less
efficient at cooling the drive, overtemperature faults become more likely. In a
“normal” environment (not dusty, not clean) check the heatsink annually, in a dusty
environment check more often.
Clean the heatsink as follows (when necessary):
1. Remove power from drive.
2. Remove the cooling fan (see section "Main Fan" on page 124).
3. Blow clean compressed air (not humid) from bottom to top and simultaneously use a
vacuum cleaner at the air outlet to trap the dust.
Note: If there is a risk of the dust entering adjoining equipment, perform the cleaning
in another room.
Main Fan
The drive’s main cooling fan has a life span of about 60,000 operating hours at
maximum rated operating temperature and drive load. The expected life span
doubles for each 10 °C (18 °F) drop in the fan temperature (fan temperature is a
function of ambient temperatures and drive loads).
Maintenance
ACS550 User’s Manual 125
Fan failure can be predicted by the increasing noise from fan bearings and the
gradual rise in the heatsink temperature in spite of heatsink cleaning. If the drive is
operated in a critical part of a process, fan replacement is recommended once these
symptoms start appearing. Replacement fans are available from ABB. Do not use
other than ABB specified spare parts.
X0023
Capacitors
The drive intermediate circuit employs several Bottom View (R6) 3
electrolytic capacitors. Their life span is from
35,000…90,000 hours depending on drive
loading and ambient temperature. Capacitor
life can be prolonged by lowering the ambient 2
temperature.
It is not possible to predict a capacitor failure.
X0022
Capacitor failure is usually followed by a input
power fuse failure or a fault trip. Contact ABB
if capacitor failure is suspected. Replacements for frame size R5 and R6 are
available from ABB. Do not use other than ABB specified spare parts.
Maintenance
126 ACS550 User’s Manual
Control Panel
Cleaning
Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could
scratch the display window.
Battery
A battery is only used in control panels that have the clock function available and
enabled. The battery keeps the clock operating in memory during power
interruptions. To remove the battery, use a coin to rotate the battery holder on the
back of the control panel. Replace the battery with type CR2032.
Maintenance
ACS550 User’s Manual 127
Technical Data
Ratings
By type code, the table below provides ratings for the ACS550 adjustable speed AC
drive, including:
• IEC ratings
• NEMA ratings (shaded columns)
• Frame size
• Drive cabinet heat dissipation and air flow
Abbreviated column headers are described in "Symbols" on page 128.
Type Code Normal Use Heavy-Duty Use
I2N PN PN I2hd Phd Phd Frame
ACS550-x1- Size
see below A kW HP A kW HP
Three-phase supply voltage, 380…480 V
-03A3-4 3.3 1.1 1.5 2.4 0.75 1 R1
-04A1-4 4.1 1.5 2 3.3 1.1 1.5 R1
-05A4-4 5.4 2.2 3 4.1 1.5 2 R1
-06A9-4 6.9 3 3 5.4 2.2 3 R1
-08A8-4 8.8 4 5 6.9 3 3 R1
-012A-4 11.9 5.5 7.5 8.8 4 5 R1
-015A-4 15.4 7.5 10 11.9 5.5 7.5 R2
-023A-4 23 11 15 15.4 7.5 10 R2
-031A-4 31 15 20 23 11 15 R3
-038A-4 38 18.5 25 31 15 20 R3
-044A-4 44 22 30 38 18.5 25 R4
-059A-4 59 30 40 44 22 30 R4
-072A-4 72 37 50 59 30 40 R4
-096A-4 96 45 75 69 41 50 R5
-124A-4 124 55 100 88 45 60 R6
-157A-4 157 75 125 113 55 75 R6
-180A-4 180 90 150 141 75 100 R6
Technical Data
128 ACS550 User’s Manual
Symbols
Typical ratings:
Normal use (10% overload capability)
I2N continuous rms current. 10% overload is allowed for one minute.
PN typical motor power. The power ratings apply to most IEC 34, or NEMA 4-pole motors at the
nominal voltage, 400 V or 460 V.
Heavy-duty use (50% overload capability)
I2hd continuous rms current. 50% overload is allowed for one minute.
Phd typical motor power. The power ratings apply to most IEC 34, or NEMA 4-pole motors at the
nominal voltage, 400 V or 460 V.
Sizing
The current ratings are the same regardless of the supply voltage within one voltage
range. To achieve the rated motor power given in the table, the rated current of the
drive must be higher than or equal to the rated motor current.
Note 1: The maximum allowed motor shaft power is limited to 1.5 · Phd. If the limit is
exceeded, motor torque and current are automatically restricted. The function
protects the input bridge of the drive against overload.
Note 2: The ratings apply in ambient temperature of 40 °C (104 °F).
Derating
The load capacity (current and power) decreases if the installation site altitude
exceeds 1000 meters (3300 ft), or if the ambient temperature exceeds 40 °C
(104 °F) or if 8 kHz switching frequency (parameter 2606) is used.
Temperature Derating
In the temperature range +40 °C…50 °C (+104 °F…122 °F) the rated output current
is decreased 1% for every 1 °C (1.8 °F) above +40 °C (+104 °F). The output current
is calculated by multiplying the current given in the rating table by the derating factor.
Example If the ambient temperature is 50 °C (+122 °F) the derating factor is
100% - 1%/°C x 10 °C = 90% or 0.90.
The output current is then 0.90 x I2N or 0.90 x I2hd.
Altitude Derating
In altitudes from 1000…4000 m (3300…13,200 ft) above sea level, the derating is 1%
for every 100 m (330 ft). If the installation site is higher than 2000 m (6600 ft) above
sea level, please contact your local ABB distributor or office for further information.
Single Phase Supply Derating
If the input supply is single phase, rather than 3-phase, the derating is 50%.
Switching Frequency Derating
If the 8 kHz switching frequency (parameter 2606) is used, derate PN/Phd and I2N/
I2hd to 80%.
Technical Data
ACS550 User’s Manual 129
Cable Terminals
Brake resistor, mains and motor cable maximum sizes (per phase) accepted a the
cable terminals, and the tightening torques are listed below.
U1, V1, W1
U2, V2, W2 Earthing PE Control
Frame BRK+, UDC+
Size
Maximum Maximum Maximum
Torque Torque Torque
Wire Size Wire Size Wire Size
mm2 AWG Nm lb-ft mm2 AWG Nm lb-ft mm2 AWG Nm lb-ft
R1 6 8 1.4 1.0 4 10 1.4 1.0
R2 10 6 1.4 1.0 10 8 1.4 1.0
1.5 16 0.4 0.3
R3 25 3 1.8 1.3 16 6 1.8 1.3
R4 50 1/0 2.0 1.5 35 2 2.0 1.5
R5 70 2/0 15 11.1 70 2/0 15 11.1
R6 185 350 40 29.5 95 4/0 8 5.9
MCM
Technical Data
130 ACS550 User’s Manual
Motor Connection
Motor Connection Specifications
Voltage (U 2) 0…U1, 3-phase symmetrical, Umax at the field weakening point
Frequency 0…500 Hz
Frequency 0.01 Hz
resolution
Current See section Ratings.
Power limit 1.5 x Phd
Field weakening 10…500 Hz
point
Switching Selectable: 1, 4, or 8 kHz
frequency
Cable 90 °C (194 °F) rating minimum.
Temperature
Rating
Max. motor cable length
Frame Size
fsw = 1 or 4 kHz fsw = 8 kHz
Maximum motor
R1 100 m 50 m
cable length
R2 - R4 200 m 100 m
R5 - R6 300 m 150 m
* Warning! Using a motor cable longer than specified in the chart above may
cause permanent damage to the drive.
Technical Data
ACS550 User’s Manual 131
Control Connection
Control Connection Specifications
Analog Inputs and See table heading "Hardware Description" on page 21.
Outputs
Digital Inputs Digital input impedance 1.5 kΩ. Maximum voltage for digital inputs is 30 V.
• Max. contact voltage: 30 V DC, 250 V AC
• Max. contact current / power: 6 A, 30 V DC; 1500 VA, 250 V AC
Relays • Max. continuous current: 2 A rms (cos ϕ = 1), 1 A rms (cos ϕ = 0.4)
(Digital Outputs) • Minimum load: 500 mW (12 V, 10 mA)
• Contact material: Silver-nickel (AgN)
• Isolation between relay digital outputs, test voltage: 2.5 kV rms, 1 minute
Cable See "Control Cables" on page 13.
Specifications
Efficiency
Approximately 98% at nominal power level.
Cooling
Cooling Specifications
Method Internal fan, flow direction from bottom to top.
• 200 mm (8 in) above and below the unit
Free space around the unit
• 25 mm (1 in) along each side of the unit.
Technical Data
132 ACS550 User’s Manual
H H2
H3
X0031
Technical Data
ACS550 User’s Manual 133
Mounting Dimensions
W1
W2
See Detail A
H1
a
c
See Detail B b d
Detail A Detail B X0032
Degrees of Protection
Available enclosures:
• IP 21 / UL type 1 enclosure. The site must be free of airborne dust, corrosive
gases or liquids, and conductive contaminants such as condensation, carbon
dust, and metallic particles.
• IP 54 / UL type 12 enclosure. This enclosure provides protection from airborne
dust and light sprays or splashing water from all directions.
Technical Data
134 ACS550 User’s Manual
Ambient Conditions
The following table lists the ACS550 environmental requirements.
Ambient Environment Requirements
Storage and Transportation in the
Installation Site
protective package
• 0…1000 m (0…3,300 ft)
Altitude • 1000…2000 m (3,300…6,600 ft) if
PN and I2 derated 1% every 100 m
above 1000 m (300 ft above 3,300 ft)
• -15…40 ºC (5…104 ºF) -40…70 ºC (-40…158 ºF)
Ambient
temperature • Max. 50 ºC (122 ºF) if P N and I2
derated to 90%
Relative < 95% (non-condensing)
humidity
• No conductive dust allowed. Storage
• The ACS550 should be installed in • No conductive dust allowed.
clean air according to enclosure • chemical gases: Class 1C2
Contamination classification.
• solid particles: Class 1S2
levels • Cooling air must be clean, free from
(IEC 721-3-3) corrosive materials and free from Transportation
electrically conductive dust. • No conductive dust allowed.
• Chemical gases: Class 3C2 • Chemical gases: Class 2C2
• Solid particles: Class 3S2 • Solid particles: Class 2S2
• 2…9 Hz 0.3 mm (0.01 in) Storage
• 9…200 Hz 2 m/s2 (6.6 ft/s2) • 2…9 Hz 1.5 mm (0.06 in)
Sinusoidal • 9…200 Hz 5 m/s2 (16.4 ft/s2)
vibration
(IEC 60068-2-6) Transportation
• 2…9 Hz 3.5 mm (0.14 in)
• 9…200 Hz 10 m/s2 (32.8 ft/s2)
Shock Not allowed max. 100 m/s2 (330 ft/s2), 11ms (36 fts)
(IEC 68-2-29)
Not allowed • 76 cm (30 in), frame size R1
• 61cm (24 in), frame size R2
• 46 cm (18 in), frame size R3
Free fall
• 31 cm (12 in), frame size R4
• 25 cm (10 in), frame size R5
• 25 cm (10 in), frame size R6
Technical Data
ACS550 User’s Manual 135
Materials
Materials Specifications
• PC/ABS 2.5 mm, color NCS 1502-Y (RAL 90021 / PMS 420 C and 425 C)
• Hot-dip zinc coated steel sheet 1.5…2 mm, thickness of coating 100
Drive enclosure micrometers
• Cast aluminium AlSi
• Extruded aluminium AlSi
Corrugated board (drives and option modules), expanded polystyrene. Plastic
Package
covering of the package: PE-LD, bands PP or steel.
The drive contains raw materials that should be recycled to preserve energy
and natural resources. The package materials are environmentally compatible
and recyclable. All metal parts can be recycled. The plastic parts can either be
recycled or burned under controlled circumstances, according to local
regulations. Most recyclable parts are marked with recycling marks.
If recycling is not feasible, all parts excluding electrolytic capacitors and printed
Disposal
circuit boards can be landfilled. The DC capacitors contain electrolyte and the
printed circuit boards contain lead, both of which will be classified as hazardous
waste within the EU. They must be removed and handled according to local
regulations.
For further information on environmental aspects and more detailed recycling
instructions, please contact your local ABB distributor.
Applicable Standards
The drive complies with the following standards. The compliance with the European
Low Voltage Directive is verified according to standards EN 50178 and EN 60204-1.
Applicable Standards
EN 50178 (1997) Electronic equipment for use in power installations
EN 60204-1 (1997) Safety of machinery. Electrical equipment of machines. Part 1:
General requirements. Provisions for compliance: The final assembler
of the machine is responsible for installing:
• An emergency-stop device
• A supply disconnecting device
EN 60529: 1991 (IEC 529), Degrees of protection provided by enclosures (IP code)
IEC 60664-1 (1992)
EN 61800-3 (1996) + EMC product standard including specific test methods
Amendment A11 (2000)
UL 508C UL Standard for Safety, Power Conversion Equipment, second edition
UL Markings
UL Markings status:
ACS550 UL C-UL
R1…R4 Approved Approved
R5…R6 Pending Pending
UL
The ACS550 is suitable for use on a circuit capable of delivering not more than
65,000 RMS symmetrical amperes, 480 V maximum. The ACS550 has an electronic
Technical Data
136 ACS550 User’s Manual
motor protection feature that complies with the requirements of UL 508C. When this
feature is selected and properly adjusted, additional overload protection is not
required unless more than one motor is connected to the drive or unless additional
protection is required by applicable safety regulations. See parameters 3005 (MOT
THERM PROT) and 3006 (MOT THERM RATE).
Technical Data
ACS550 User’s Manual 137
Index
Index
138 ACS550 User’s Manual
control deceleration
location, data parameter . . . . . . . . . . . . . . . . 51 at aux. start (PFC), parameter . . . . . . . . . . . 117
reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 emergency time, parameter . . . . . . . . . . . . . . 74
shaft direction . . . . . . . . . . . . . . . . . . . . . . . . 27 parameter group. . . . . . . . . . . . . . . . . . . . . . . 74
start/stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ramp select, parameter . . . . . . . . . . . . . . . . . 74
control cable ramp shape, parameter . . . . . . . . . . . . . . . . . 74
connections. . . . . . . . . . . . . . . . . . . . . . . . . . 20 ramp time (PFC), parameter . . . . . . . . . . . . 117
requirements . . . . . . . . . . . . . . . . . . . . . . . . . 13 ramp zero select, parameter . . . . . . . . . . . . . 75
control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 time, parameter . . . . . . . . . . . . . . . . . . . . . . . 74
cable requirements . . . . . . . . . . . . . . . . . . . . 13 default macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
comm error, fault parameter . . . . . . . . . . . . . 81 derating
display decimal point (form), parameters . . . 88 altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
display max., parameters . . . . . . . . . . . . . . . 88 single phase supply . . . . . . . . . . . . . . . . . . . 128
display min., parameters. . . . . . . . . . . . . . . . 88 temperature . . . . . . . . . . . . . . . . . . . . . . . . . 128
display process variables, parameter group . 88 derivation time (PID), parameter . . . . . . . . . . . . . 92
display selection, parameters . . . . . . . . . . . . 88 derivation time, parameter . . . . . . . . . . . . . . . . . . 76
display units, parameters . . . . . . . . . . . . . . . 88 descriptions, parameters . . . . . . . . . . . . . . . . . . . 50
parameter lock, parameter . . . . . . . . . . . . . . 68 device overtemperature, fault code . . . . . . . . . . 120
pass code, parameter . . . . . . . . . . . . . . . . . . 68
diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
reference control, parameter. . . . . . . . . . . . . 58
signal max., parameters . . . . . . . . . . . . . . . . 88 digital cable
signal min., parameters. . . . . . . . . . . . . . . . . 88 requirements . . . . . . . . . . . . . . . . . . . . . . . . . 13
control panel (Assistant) . . . . . . . . . . . . . . . . . . . 25 digital input
battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 at fault, history parameters. . . . . . . . . . . . . . . 55
control mode . . . . . . . . . . . . . . . . . . . . . . . . . 26 connections . . . . . . . . . . . . . . . . . . . . . . . . . . 21
controls overview . . . . . . . . . . . . . . . . . . . . . 26 specifications . . . . . . . . . . . . . . . . . . . . . . . . . 21
main menu . . . . . . . . . . . . . . . . . . . . . . . . . . 28 status, data parameter . . . . . . . . . . . . . . . . . . 51
parameters mode . . . . . . . . . . . . . . . . . . . . . 29 digital output
rotating arrow, control panel . . . . . . . . . . . . . 27 connections . . . . . . . . . . . . . . . . . . . . . . . . . . 21
soft key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 specifications . . . . . . . . . . . . . . . . . . . . . . . . 131
start-up assistant mode . . . . . . . . . . . . . . . . 29 direction
status LED . . . . . . . . . . . . . . . . . . . . . . . . . . 26 control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
controls overview (Assistant panel) . . . . . . . . . . . 26 control, parameter . . . . . . . . . . . . . . . . . . . . . 57
correction source (PID), parameter . . . . . . . . . . 100 display format (PID), parameter . . . . . . . . . . . . . . 93
cover drive
remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 id, fault code. . . . . . . . . . . . . . . . . . . . . . . . . 121
replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 temperature, data parameter . . . . . . . . . . . . . 51
CRC errors (count), parameter . . . . . . . . . . . . . 103 drive on time, data parameters . . . . . . . . . . . . . . . 53
critical speeds (avoiding)
high, parameters . . . . . . . . . . . . . . . . . . . . . . 79 E
low, parameters . . . . . . . . . . . . . . . . . . . . . . 79 earth fault, fault code . . . . . . . . . . . . . . . . . . . . . 121
parameter group . . . . . . . . . . . . . . . . . . . . . . 79 EFB
select, parameter . . . . . . . . . . . . . . . . . . . . . 79 baud rate, parameter . . . . . . . . . . . . . . . . . . 104
C-Tick marking . . . . . . . . . . . . . . . . . . . . . . . . . . 10 config file, fault code . . . . . . . . . . . . . . . . . . 122
current control profile, parameter . . . . . . . . . . . . . . . 104
at fault, history parameter . . . . . . . . . . . . . . . 55 CRC errors (count), parameter . . . . . . . . . . 104
data parameter . . . . . . . . . . . . . . . . . . . . . . . 51 fault codes . . . . . . . . . . . . . . . . . . . . . . . . . . 122
max. limit, parameter . . . . . . . . . . . . . . . . . . 70 ok messages (count), parameter . . . . . . . . . 104
measurement, fault code . . . . . . . . . . . . . . 121 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 104
rating code . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 parity, parameter . . . . . . . . . . . . . . . . . . . . . 104
protocol id, parameter . . . . . . . . . . . . . . . . . 104
D protocol, parameter group . . . . . . . . . . . . . . 104
station id, parameter . . . . . . . . . . . . . . . . . . 104
DC brake time, parameter . . . . . . . . . . . . . . . . . . 72
status, parameter . . . . . . . . . . . . . . . . . . . . . 104
DC bus voltage, data parameter . . . . . . . . . . . . . 51 UART errors (count), parameter . . . . . . . . . 104
DC current ref., parameter . . . . . . . . . . . . . . . . . 72 efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DC high rush, fault code . . . . . . . . . . . . . . . . . . 121 embedded field bus
DC hold speed, parameter . . . . . . . . . . . . . . . . . 72 see EFB
DC magnetizing time, parameter. . . . . . . . . . . . . 72 EMC
DC overvoltage, fault code . . . . . . . . . . . . . . . . 120 CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC undervoltage, fault code . . . . . . . . . . . . . . . 120 C-Tick marking . . . . . . . . . . . . . . . . . . . . . . . . 10
filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
motor cable requirements . . . . . . . . . . . . . . . 10
Index
ACS550 User’s Manual 139
emergency frequency
deceleration time, parameter . . . . . . . . . . . . 74 at fault, history parameter. . . . . . . . . . . . . . . . 55
stop select, parameter. . . . . . . . . . . . . . . . . . 73 max. limit, parameter . . . . . . . . . . . . . . . . . . . 70
enclosure protection class code . . . . . . . . . . . . . . 7 min. limit, parameter . . . . . . . . . . . . . . . . . . . . 70
encoder error, fault code . . . . . . . . . . . . . . . . . . 121 resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
error value inversion (PID), parameter . . . . . . . . 93 specification . . . . . . . . . . . . . . . . . . . . . . . . . 130
external comm module, parameter group . . . . . 101 switching, parameter . . . . . . . . . . . . . . . . . . . 80
external commands selection, parameter . . . . . . 56 fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
external control selection, parameter . . . . . . . . . 58
external fault G
automatic reset, parameter . . . . . . . . . . . . . . 84 gain (PID), parameter . . . . . . . . . . . . . . . . . . . . . . 92
fault codes. . . . . . . . . . . . . . . . . . . . . . . . . . 121 gland kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ground
external reference, data parameter . . . . . . . . . . . 51 see PE earth
F H
fan maintenance . . . . . . . . . . . . . . . . . . . . . . . . 124 hand-auto macro. . . . . . . . . . . . . . . . . . . . . . . . . . 36
fault heat dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 127
codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 high impedance network
current at, history parameter . . . . . . . . . . . . . 55 see floating network . . . . . . . . . . . . . . . . . . . . 20
digital input status at, history parameter . . . . 55
frequency at, history parameter . . . . . . . . . . 55 I
functions, parameter group . . . . . . . . . . . . . . 81
history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 id run fail, fault code . . . . . . . . . . . . . . . . . . . . . . 121
history, parameter group . . . . . . . . . . . . . . . . 55 IEC ratings
last, history parameter. . . . . . . . . . . . . . . . . . 55 see ratings
listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 information
previous, history parameter. . . . . . . . . . . . . . 55 parameter group . . . . . . . . . . . . . . . . . . . . . . . 87
reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 input power cable
reset select, parameter . . . . . . . . . . . . . . . . . 68 connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
speed at, history parameter . . . . . . . . . . . . . 55 requirements . . . . . . . . . . . . . . . . . . . . . 10, 129
status at, history parameter. . . . . . . . . . . . . . 55 installation
time of, history parameters . . . . . . . . . . . . . . 55 compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
torque at, history parameter . . . . . . . . . . . . . 55 environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
voltage at, history parameter. . . . . . . . . . . . . 55 flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
words, data parameters . . . . . . . . . . . . . . . . 54 location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
feedback multiplier (PID), parameter. . . . . . . . . . 95 preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
feedback select (PID), parameter . . . . . . . . . . . . 95 procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
field weakening point . . . . . . . . . . . . . . . . . . . . . 130 tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
fieldbus wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
command words, data parameters . . . . . . . . 54 integration time (PID), parameter . . . . . . . . . . . . . 92
CPI firmware revision, parameter . . . . . . . . 101 integration time, parameter . . . . . . . . . . . . . . . . . . 76
parameter refresh, parameter . . . . . . . . . . . 101 interlocks
parameters . . . . . . . . . . . . . . . . . . . . . . . . . 101 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
status words, data parameters . . . . . . . . . . . 54 internal setpoint (PID), parameter. . . . . . . . . . . . . 94
status, parameter . . . . . . . . . . . . . . . . . . . . 101 IO comm error, fault code . . . . . . . . . . . . . . . . . . 121
type, parameter . . . . . . . . . . . . . . . . . . . . . . 101 IR compensation
firmware test date, parameter . . . . . . . . . . . . . . . 87 frequency, parameter . . . . . . . . . . . . . . . . . . . 80
firmware version, parameter . . . . . . . . . . . . . . . . 87 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
floating network voltage, parameter . . . . . . . . . . . . . . . . . . . . . 80
connections . . . . . . . . . . . . . . . . . . . . . . . . . . 20 IT network
warning about filters . . . . . . . . . . . . . . . . . . . 12 see floating network . . . . . . . . . . . . . . . . . . . . 20
warning about screws at EM1, EM3 . . . . . . . 17
warning about screws at F1, F2 . . . . . . . . . . 16 K
force trip, fault code . . . . . . . . . . . . . . . . . . . . . . 122 keypad
frame errors (count), parameter . . . . . . . . . . . . 103 see control panel
frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 keypad reference select, parameter . . . . . . . . . . . 58
free fall kWh counter, data parameter . . . . . . . . . . . . . . . . 51
shipping limit . . . . . . . . . . . . . . . . . . . . . . . . 134
Index
140 ACS550 User’s Manual
L motor
aux. start delay (PFC), parameter . . . . . . . . 108
label
aux. stop delay (PFC), parameter . . . . . . . . 108
serial number . . . . . . . . . . . . . . . . . . . . . . . . . 7
compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
type code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 control mode, parameter . . . . . . . . . . . . . . . . 50
limits, parameter group . . . . . . . . . . . . . . . . . . . . 70 load curve break point frequency . . . . . . . . . . 82
load package version, parameter . . . . . . . . . . . . 87 load curve max., fault parameter . . . . . . . . . . 82
LOC/REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 load curve zero speed load . . . . . . . . . . . . . . 82
local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 nominal current, parameter . . . . . . . . . . . . . . 50
local mode nominal frequency, parameter . . . . . . . . . . . . 50
lock, parameter . . . . . . . . . . . . . . . . . . . . . . . 69 nominal power, parameter . . . . . . . . . . . . . . . 50
low frequency (PFC), parameters . . . . . . . . . . . 108 nominal speed, parameter . . . . . . . . . . . . . . . 50
nominal voltage, parameter . . . . . . . . . . . . . . 50
M number of aux., parameter. . . . . . . . . . . . . . 109
overtemperature, fault code . . . . . . . . . . . . . 120
macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 phase, fault code . . . . . . . . . . . . . . . . . . . . . 122
3-wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 stall, fault code . . . . . . . . . . . . . . . . . . . . . . . 121
ABB standard (default) . . . . . . . . . . . . . . . . . 32 temperature alarm limit, parameter . . . . . . . . 91
alternate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 temperature fault limit, parameter . . . . . . . . . 91
hand-auto . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 temperature measure, parameter group . . . . 90
motor potentiometer . . . . . . . . . . . . . . . . . . . 35 temperature sensor selection, parameter . . . 91
PFC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 temperature sensor type, parameter . . . . . . . 91
PID control . . . . . . . . . . . . . . . . . . . . . . . . . . 37 temperature, data parameter . . . . . . . . . . . . . 53
torque control . . . . . . . . . . . . . . . . . . . . . . . . 39 thermal protection, fault parameter . . . . . . . . 81
main menu thermal time, fault parameter . . . . . . . . . . . . . 81
control panel (Assistant) . . . . . . . . . . . . . . . . 28 motor cable
mains cable connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
see input power cable EMC requirements . . . . . . . . . . . . . . . . . . . . . 10
maintenance max. length. . . . . . . . . . . . . . . . . . . . . . . . . . 130
capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 125 requirements . . . . . . . . . . . . . . . . . . . . . . . . 130
control panel . . . . . . . . . . . . . . . . . . . . . . . . 126 motor control
heat sink . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 IR compensation, parameters . . . . . . . . . . . . 80
intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 parameter group. . . . . . . . . . . . . . . . . . . . . . . 80
main fan . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 motor potentiometer macro . . . . . . . . . . . . . . . . . 35
manuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 MWh counter, data parameter . . . . . . . . . . . . . . . 53
materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
maximum N
frequency, parameter . . . . . . . . . . . . . . . . . . 70
torque limit, parameters . . . . . . . . . . . . . . . . 71 NEMA ratings
torque select, parameter . . . . . . . . . . . . . . . . 71 see ratings
minimum NPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
frequency, parameter . . . . . . . . . . . . . . . . . . 70
torque limit, parameters . . . . . . . . . . . . . . . . 71 O
torque select, parameter . . . . . . . . . . . . . . . . 71 offset (PID), parameter . . . . . . . . . . . . . . . . . . . . . 99
ok messages (count), parameter . . . . . . . . . . . . 103
operating data, parameter group . . . . . . . . . . . . . 51
OPEX link, fault code . . . . . . . . . . . . . . . . . . . . . 121
OPEX power, fault code . . . . . . . . . . . . . . . . . . . 121
options, parameter group . . . . . . . . . . . . . . . . . . 118
output frequency, data parameter . . . . . . . . . . . . 51
output voltage, data parameter. . . . . . . . . . . . . . . 51
output wiring
fault code . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
overcurrent
automatic reset, parameter . . . . . . . . . . . . . . 84
fault code . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
overload, fault code . . . . . . . . . . . . . . . . . . . . . . 120
overspeed, fault code . . . . . . . . . . . . . . . . . . . . . 121
overvoltage
control enable, parameter . . . . . . . . . . . . . . . 70
Index
ACS550 User’s Manual 141
P PID
0% (actual signal), parameter . . . . . . . . . . . . 93
panel display variables, parameter group . . . . . . 88
100% (actual signal), parameter . . . . . . . . . . 93
panel loss, fault code . . . . . . . . . . . . . . . . . . . . . 120 actual input select, parameters . . . . . . . . . . . 95
parameter actual value max., parameters . . . . . . . . . . . . 96
analog input scale, fault code . . . . . . . . . . . 122 actual value min., parameters . . . . . . . . . . . . 96
analog output scale, fault code . . . . . . . . . . 122 control macro . . . . . . . . . . . . . . . . . . . . . . . . . 37
change lock . . . . . . . . . . . . . . . . . . . . . . . . . . 68 correction source, parameter . . . . . . . . . . . . 100
descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 50 decimal point (actual signal), parameter . . . . 93
external relay output, fault code . . . . . . . . . 123 derivation filter, parameter . . . . . . . . . . . . . . . 93
fieldbus miss, fault code . . . . . . . . . . . . . . . 123 derivation time, parameter . . . . . . . . . . . . . . . 92
hz rpm, fault code . . . . . . . . . . . . . . . . . . . . 122 deviation, data parameter. . . . . . . . . . . . . . . . 52
PCU 1 (power control unit), fault code . . . . 123 error feedback inversion, parameter . . . . . . . 93
PCU 2 (power control unit), fault code . . . . 122 external / trimming, parameter group . . . . . . . 99
PFC IO config, fault code . . . . . . . . . . . . . . 122 external source activate, parameter . . . . . . . . 99
PFC mode, fault code . . . . . . . . . . . . . . . . . 123 feedback multiplier, parameter . . . . . . . . . . . . 95
PFC ref. neg., fault code . . . . . . . . . . . . . . . 122 feedback select, parameter . . . . . . . . . . . . . . 95
save changes, parameter . . . . . . . . . . . . . . . 69 feedback, data parameter . . . . . . . . . . . . . . . 52
parameters mode . . . . . . . . . . . . . . . . . . . . . . . . 29 gain, parameter . . . . . . . . . . . . . . . . . . . . . . . 92
parity (RS-232), parameter . . . . . . . . . . . . . . . . 103 integration time, parameter . . . . . . . . . . . . . . 92
parity errors (count), parameter . . . . . . . . . . . . . 103 internal setpoint, parameter . . . . . . . . . . . . . . 94
PE earth offset, parameter . . . . . . . . . . . . . . . . . . . . . . 99
cable requirements . . . . . . . . . . . . . . . . . . . 129 output, data parameter . . . . . . . . . . . . . . . . . . 52
terminal size . . . . . . . . . . . . . . . . . . . . . . . . 129 parameter set select, parameter . . . . . . . . . . 97
torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 process sets, parameter groups. . . . . . . . . . . 92
PFC scaling (0%...100%), parameters . . . . . . . . . . 93
acceleration time, parameter. . . . . . . . . . . . 117 setpoint maximum, parameter . . . . . . . . . . . . 95
aux. motor start delay, parameter . . . . . . . . 108 setpoint minimum, parameter . . . . . . . . . . . . . 95
aux. motor stop delay, parameter . . . . . . . . 108 setpoint select, parameter . . . . . . . . . . . . . . . 94
control, parameter group. . . . . . . . . . . . . . . 106 setpoint, data parameter . . . . . . . . . . . . . . . . 52
deceleration time, parameter . . . . . . . . . . . 117 sleep delay, parameter. . . . . . . . . . . . . . . . . . 97
enable, parameter . . . . . . . . . . . . . . . . . . . . 116 sleep level, parameter . . . . . . . . . . . . . . . . . . 97
low frequency, parameters . . . . . . . . . . . . . 108 sleep selection, parameter . . . . . . . . . . . . . . . 96
macro trim mode, parameter . . . . . . . . . . . . . . . . . . . 99
number of aux. motors, parameter . . . . . . . 109 trim scale, parameter . . . . . . . . . . . . . . . . . . . 99
reference step, parameters . . . . . . . . . . . . . 106 units (actual signal), parameter . . . . . . . . . . . 93
start delay, parameter . . . . . . . . . . . . . . . . . 116 wake-up delay, parameter . . . . . . . . . . . . . . . 97
start frequency, parameters . . . . . . . . . . . . 107 wake-up deviation, parameter . . . . . . . . . . . . 97
PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
power
data parameter . . . . . . . . . . . . . . . . . . . . . . . . 51
first applied . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
previous faults, history parameters . . . . . . . . . . . . 55
process PID sets, parameter groups . . . . . . . . . . 92
process variables, data parameter . . . . . . . . . . . . 52
proportional gain, parameter. . . . . . . . . . . . . . . . . 76
PT100 temperature sensor . . . . . . . . . . . . . . . . . . 91
PTC temperature sensor. . . . . . . . . . . . . . . . . . . . 91
pump fan control
see PFC
R
ramp pair (accel/decel), parameter . . . . . . . . . . . . 74
ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Index
142 ACS550 User’s Manual
Index
ACS550 User’s Manual 143
U
U/f ratio, parameter . . . . . . . . . . . . . . . . . . . . . . . 80
UL/CSA markings . . . . . . . . . . . . . . . . . . . . . . . 135
underload
curve, fault parameter . . . . . . . . . . . . . . . . . . 83
fault code. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
function, fault parameter . . . . . . . . . . . . . . . . 83
time, fault parameter . . . . . . . . . . . . . . . . . . . 83
Index
SUPERSEDES: March 31, 2003
3AUA0000001418 REV B / EN
EFFECTIVE: June 3, 2003
ACS550-US-04