Bipolar Junction Transistor
Draw the CB, CE & CC connection of a transistor
Fig: Common Base Fig: Common Emitter Fig: Common Collector
Determine the current IE and IB & the voltage VCE and VCB
4−0.7
IE= 1.2
= 2.75mA
IE=IB+IC= 61IB
2.75
⇒ I B= 61
= 0.045mA
IC≅IE
VEE+VCC= ICRC+VCE+ ICRE
⇒ VCE= 4+10 -2.75*2.4 – 2.75*1.2= 4.1V
Also, VCC= ICRC+VCB ⇒ VCB= 10 – 2.75*2.4= 3.4V
Determine IC &VCE
20= 430IB+0.7+51*1IB
⇒ IB= 0.040mA
IC=𝛽IB= 0.040*50= 2mA
IC≅IE
VCE= 20 -2(2+1)= 14V
Bipolar Junction Transistor
Determine IC and VCE
𝛽RE> 10R2 150KΩ> 39KΩ Condition Satisfied
Rth= 39║3.9= 3.55KΩ
3.9∗22
Eth= = 2V
3.9+39
Eth= IBRTh +0.7 + 101*1.5IB
2−0.7
⇒ IB= 151.5+3.55= 8.38𝜇A
IC= 𝛽IB= 100*8.38= 838𝜇A= 0.838mA
VCE= 22 – 0.838(10+1.5) = 12.363V
Determine IC & VCE
VCC= (IB+IC) RC+ IBRB+VBE+ IERE
⇒ VCC= (IB+𝛽IB) RC+ IBRB+VBE+ (𝛽 + 1)IBRE
10−0.7 9.3
⇒ IB= 91∗4.7+250+91∗1.2= 427.7+250+109.2= 0.01181 mA
IC= 𝛽IB= 1.07mA
VCE= 10 -1.07(4.7+1.2) = 3.687V
Determine IE & VCE
IBRB +0.7 +IERE= 20
⇒ IBRB +0.7 + (𝛽+1) IBRE= 20
20−0.7 19.3
⇒ IB= 240+91∗2= 422 = 0.0457mA
IC= 𝛽IB= 4.11mA
IE=IC= 4.11mA
VCE= 20 – 4.11*2= 11.78 Volt
Bipolar Junction Transistor
Determine Vc & VB
9−0.7
I B= 100
= 0.083mA
IC= 𝛽IB= 3.73mA
VC= - IcRc= - 4.47V
VBE= VB –VE= VB +9 =0.7
⇒ VB= - 8.3V
Determine VC & VB
Rth= 8.2ǁ2.2= 1.73KΩ
𝐸𝑡ℎ−20 𝐸𝑡ℎ+20
+ =0
8.2 2.2
⇒ 0.576Eth = -6.65V
⇒ Eth= -11.55V
Eth+ IBRth+ VBE+ IERE=20
20−11.55−0.7 7.75
⇒ IB= 1.73+121∗1.8 = 1.73+217.8= 0.0353mA
IC= 𝛽IB= 4.23mA
VC= 20 – 4.23*2.7= 8.57V
VE= -20 + 4.23*1.8= -12.38V
VBE= VB –VE=0.7
⇒ VB= VE+0.7= -12.38+0.7= -11.68V
Bipolar Junction Transistor
Given Ic=2mA and VCE=10V determine the value of R1 and RC
VE= IERE=ICRE= 2.4V
VBE= VB –VE=0.7
⇒ VB=2.4+0.7= 3.1V
18∗18
VB= 18+𝑅1= 3.1
⇒ 18+R1= 104.51
⇒ R1= 86.51KΩ
VCE=VC –VE= 10
⇒ VC= 12.4V
18−12.4
So, RC= 2
= 2.8KΩ
Given the device characteristics determine Vcc, RB & RC
VCE= Vcc - IcRc
At cut off Ic=0, VCE= Vcc=20V
20
At saturation VCE=0 Rc= 8
= 2.5KΩ
Now Vcc= IBRB+ 0.7
20−0.7
⇒ RB = = 482.5KΩ
40
Bipolar Junction Transistor
Calculate the constant current I
5.1∗(−20)
VB= 5.1+5.1
= -10V
VBE=0.7=VB -VE
⇒ VE= -10 -0.7 = - 10.7V
20−10.7
I=IE= = 4.65mA
2
Calculate the constant current I
6.2−0.7
I=IE= = 3.06KΩ
1.8
Determine VCE
𝛽RE>10R2 ⇒ 132KΩ>100KΩ condition satisfied
−18∗10
VB= = -3.15V
10+47
VBE=VB -VE = -0.7
⇒ VE= VB+0.7= -3.15+0.7= -2.45V
𝑉𝐸
IE= 𝑅𝐸 = 2.22mA
VCE= -18 + 2.22(2.4+1.1) = -10.23V
Bipolar Junction Transistor
Determine whether the transistor is in saturation or not
VCE=VCC-ICRC
At saturation VCE=0
𝑉𝑐𝑐
IC-Sat= 𝑅𝑐
= 6.097mA
5−0.7
I B= 68
= 63.23𝜇A
𝐼𝑐(𝑆𝑎𝑡) 6.097
𝛽
= 125 = 48.77𝜇A
𝐼𝑐(𝑠𝑎𝑡)
Since IB> ; so transistor is in saturation mode
𝛽
Determine RB & RC for the transistor network if Ic-sat= 10mA
𝑉𝑐𝑐
Ic-sat= 𝑅𝑐
10
⇒ Rc= 10=1 kΩ
𝐼𝑐−𝑠𝑎𝑡 10
𝛽
= 250= 0.04mA
Choose IB= 0.06mA to ensure saturation
10−0.7
RB = = 155kΩ
0.060
Choosing RB=150KΩ which is standard value
10−0.70
I B= 150
= 0.062mA
𝐼𝑐−𝑠𝑎𝑡
So, IB> 𝛽
condition is satisfied So, Choosing RB=150KΩ & Rc= 1 kΩ
Bipolar Junction Transistor
Calculate IE, IB, IC & VC where 𝜷=50 & voltage at the emitter is -0.7V
VBE= VB -VE =0.7
⇒ VB= VE+0.7= -0.7=0.7=0volt
VB+10=VBE+IERE
10−0.7
⇒ IE= 10
= 0.93mA
IE=IB+IC= (𝛽+1)IB
0.93
⇒ I B= 51
= 0.01823mA
IC= 𝛽IB=0.91mA
VC= 10 – 5*0.91= 5.45V
If VB=1V and VE=1.7V, then what are 𝜶 and 𝜷 & VC for the transistor
10−1.7
IE= = 1.66mA
5
1
I B= = 0.01mA
100
IC= 1.66 – 0.01= 1.65mA
𝐼𝑐
𝛼=𝐼𝑒= 0.99
𝐼𝑐
𝛽=𝐼𝑏= 165
VC +10= ICRC
⇒ VC= 1.65*5 -10 = -1.75V
Determine the all node voltage & current where 𝜷=100
4=0.7+101IBRE
4−0.7
⇒ IB= 101∗3,3=0.0099mA
IC=𝛽IB=0.99mA
IE= IB+IC=0.99mA
VB=4V
VC= 10 -4.7*0.99= 5.35V
VBE=0.7= VB -VE ⇒ VE= 4 - 0.7= 3.3V
Bipolar Junction Transistor
Determine the all node voltage and current where 𝜷=100
VBE=VB-VE= -0.7 ⇒VE=0.7V Where VB=0
10−0.7
IE= 2
= 4.65mA
𝛼
𝛽=1−𝛼=100
⇒ 100 -100𝛼=𝛼
100
⇒ 𝛼= 101= 0.99
IC=𝛼IE= 4.61mA
4.61
𝛽= ⇒ IB= 0.0461mA
𝐼𝑏
VC+10= 4.61
⇒ VC= -5.39V
Determine the all node voltage and current where 𝜷=30
VBE= VB -VE = -0.7
⇒ VE= VB+0.7
VC-VE= - 0.2= VCE
⇒VC= VE -0.2= VB+0.7 – 0.2= VB+0.5
5−𝑉𝐸
IE= = 5-VE=4.3 -VB mA
1
𝑉𝑏
IB=10 = 0.1VB mA
𝑉𝑐+5
IC= = 0.1VC+ 0.5= 0.1(VB+0.5) +0.5 = 0.1VB+ 0.55 mA
10
IE=IB+IC
⇒4.3 -VB= 0.1VB + 0.1VB+ 0.55
3.75
⇒ VB= 1.2
= 3.125V
Now place the value of VB
VE= 3.83V, VC=3.63V, IE= 1.17mA, IC=0.86mA, IB=0.31mA
Bipolar Junction Transistor
𝒗𝒐
Determine the voltage gain , assume 𝜷=100
𝒗𝒊
3−0.7
I B= = 0.023mA
100
IC= 𝛽IB= 2.3mA
IE=IB+IC= 2.323mA
26
re= 2.323= 11.20Ω
Zi= 100+1.12= 101.12KΩ
Zo= 3KΩ
𝑉𝑖
Vo= - 𝛽IB*Rc= -𝛽* 𝑍𝑖 *Rc
𝑉𝑜 3000
Voltage gain Av= = - 100* = -3 (Approx.)
𝑉𝑖 101.12∗1000
Determine whether the transistor is in saturation, cut off or linear region
VCE= VCC -ICRC
For a)
12−0.7
I B= = 0.15mA
75
At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐
= 1
=12mA
𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.12mA
𝐼𝑐−𝑠𝑎𝑡
As Ib> 𝛽
, So transistor is in saturation mode
For b)
12−0.7
I B= 150
= 0.0753mA
At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐
= 1
=12mA
𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.12mA
𝐼𝑐−𝑠𝑎𝑡
As Ib < 𝛽
, So the transistor is in linear region
Bipolar Junction Transistor
For c)
12−0.7
I B= 75
= 0.15mA
At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= = =6mA
𝑅𝑐 2
𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.06mA
𝐼𝑐−𝑠𝑎𝑡
As Ib > 𝛽
, so transistor is in saturation mode.
Some Important Formulae
In the circuit diagram shown in figure draw the d.c load line, what will be the Q-point if zero
signal base current is 20𝝁A and 𝜷=50
VCE=VCC -ICRC
At cut off IC=0
VCE=VCC=12V
At saturation VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐 = 6
=2mA
Q-point:
IC= 𝛽IB= 1mA
VCE= 12 – 1*6= 6V
Bipolar Junction Transistor
Equivalent re model
Equivalent re model
Determine Ii, Zi, Vo, Io & Ai
12−4
Ii= 1
=8𝜇A
4
Zi= 8= 500Ω
Vo= -180*4=- 720mV
720
Io=0.51= 1.41mA
𝐼𝑜
Ai= = 176.25
𝐼𝑖
Bipolar Junction Transistor
Basic Darlington Connection:-
Bipolar Junction Transistor
Differential amplifier circuit:-
A differential amplifier is a type of electronic amplifier that amplifies the difference between
two input voltages but suppresses any voltage common to the two inputs.
Basic push pull amplifier circuit
Bipolar Junction Transistor
Calculated the dc bias voltage & current
Bipolar Junction Transistor
Calculate the dc voltage & current
Bipolar Junction Transistor
Bipolar Junction Transistor
Bipolar Junction Transistor