100% found this document useful (1 vote)
268 views18 pages

Bipolar Junction Transistor Analysis

Bipolar Junction Transistor key points: 1. The document discusses various BJT circuit configurations and calculations for common base, common emitter, and common collector connections. 2. Key transistor parameters like current, voltage, and gain are calculated through relationships like IE=IB+IC, VBE=VB-VE, and β=IC/IB. 3. Operating regions like saturation, cutoff, and linear are determined by comparing the base current IB to the saturation current ICsat/β. 4. Important transistor formulas are provided to calculate unknown voltages and currents based on the circuit configuration and known parameters.

Uploaded by

MohammadAshraful
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
268 views18 pages

Bipolar Junction Transistor Analysis

Bipolar Junction Transistor key points: 1. The document discusses various BJT circuit configurations and calculations for common base, common emitter, and common collector connections. 2. Key transistor parameters like current, voltage, and gain are calculated through relationships like IE=IB+IC, VBE=VB-VE, and β=IC/IB. 3. Operating regions like saturation, cutoff, and linear are determined by comparing the base current IB to the saturation current ICsat/β. 4. Important transistor formulas are provided to calculate unknown voltages and currents based on the circuit configuration and known parameters.

Uploaded by

MohammadAshraful
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

Bipolar Junction Transistor

 Draw the CB, CE & CC connection of a transistor

Fig: Common Base Fig: Common Emitter Fig: Common Collector

 Determine the current IE and IB & the voltage VCE and VCB

4−0.7
IE= 1.2
= 2.75mA

IE=IB+IC= 61IB
2.75
⇒ I B= 61
= 0.045mA

IC≅IE

VEE+VCC= ICRC+VCE+ ICRE

⇒ VCE= 4+10 -2.75*2.4 – 2.75*1.2= 4.1V

Also, VCC= ICRC+VCB ⇒ VCB= 10 – 2.75*2.4= 3.4V

 Determine IC &VCE

20= 430IB+0.7+51*1IB

⇒ IB= 0.040mA
IC=𝛽IB= 0.040*50= 2mA
IC≅IE

VCE= 20 -2(2+1)= 14V


Bipolar Junction Transistor

 Determine IC and VCE


𝛽RE> 10R2 150KΩ> 39KΩ Condition Satisfied

Rth= 39║3.9= 3.55KΩ


3.9∗22
Eth= = 2V
3.9+39

Eth= IBRTh +0.7 + 101*1.5IB


2−0.7
⇒ IB= 151.5+3.55= 8.38𝜇A

IC= 𝛽IB= 100*8.38= 838𝜇A= 0.838mA

VCE= 22 – 0.838(10+1.5) = 12.363V

 Determine IC & VCE

VCC= (IB+IC) RC+ IBRB+VBE+ IERE

⇒ VCC= (IB+𝛽IB) RC+ IBRB+VBE+ (𝛽 + 1)IBRE


10−0.7 9.3
⇒ IB= 91∗4.7+250+91∗1.2= 427.7+250+109.2= 0.01181 mA

IC= 𝛽IB= 1.07mA

VCE= 10 -1.07(4.7+1.2) = 3.687V

 Determine IE & VCE

IBRB +0.7 +IERE= 20

⇒ IBRB +0.7 + (𝛽+1) IBRE= 20


20−0.7 19.3
⇒ IB= 240+91∗2= 422 = 0.0457mA

IC= 𝛽IB= 4.11mA

IE=IC= 4.11mA

VCE= 20 – 4.11*2= 11.78 Volt


Bipolar Junction Transistor

 Determine Vc & VB
9−0.7
I B= 100
= 0.083mA

IC= 𝛽IB= 3.73mA

VC= - IcRc= - 4.47V

VBE= VB –VE= VB +9 =0.7

⇒ VB= - 8.3V

 Determine VC & VB

Rth= 8.2ǁ2.2= 1.73KΩ

𝐸𝑡ℎ−20 𝐸𝑡ℎ+20
+ =0
8.2 2.2

⇒ 0.576Eth = -6.65V
⇒ Eth= -11.55V

Eth+ IBRth+ VBE+ IERE=20


20−11.55−0.7 7.75
⇒ IB= 1.73+121∗1.8 = 1.73+217.8= 0.0353mA

IC= 𝛽IB= 4.23mA

VC= 20 – 4.23*2.7= 8.57V

VE= -20 + 4.23*1.8= -12.38V

VBE= VB –VE=0.7

⇒ VB= VE+0.7= -12.38+0.7= -11.68V


Bipolar Junction Transistor

 Given Ic=2mA and VCE=10V determine the value of R1 and RC

VE= IERE=ICRE= 2.4V

VBE= VB –VE=0.7

⇒ VB=2.4+0.7= 3.1V
18∗18
VB= 18+𝑅1= 3.1

⇒ 18+R1= 104.51

⇒ R1= 86.51KΩ

VCE=VC –VE= 10

⇒ VC= 12.4V
18−12.4
So, RC= 2
= 2.8KΩ

 Given the device characteristics determine Vcc, RB & RC

VCE= Vcc - IcRc

At cut off Ic=0, VCE= Vcc=20V


20
At saturation VCE=0 Rc= 8
= 2.5KΩ

Now Vcc= IBRB+ 0.7


20−0.7
⇒ RB = = 482.5KΩ
40
Bipolar Junction Transistor

 Calculate the constant current I

5.1∗(−20)
VB= 5.1+5.1
= -10V

VBE=0.7=VB -VE

⇒ VE= -10 -0.7 = - 10.7V


20−10.7
I=IE= = 4.65mA
2

 Calculate the constant current I

6.2−0.7
I=IE= = 3.06KΩ
1.8

 Determine VCE

𝛽RE>10R2 ⇒ 132KΩ>100KΩ condition satisfied


−18∗10
VB= = -3.15V
10+47

VBE=VB -VE = -0.7

⇒ VE= VB+0.7= -3.15+0.7= -2.45V


𝑉𝐸
IE= 𝑅𝐸 = 2.22mA

VCE= -18 + 2.22(2.4+1.1) = -10.23V


Bipolar Junction Transistor

 Determine whether the transistor is in saturation or not

VCE=VCC-ICRC

At saturation VCE=0
𝑉𝑐𝑐
IC-Sat= 𝑅𝑐
= 6.097mA
5−0.7
I B= 68
= 63.23𝜇A
𝐼𝑐(𝑆𝑎𝑡) 6.097
𝛽
= 125 = 48.77𝜇A

𝐼𝑐(𝑠𝑎𝑡)
Since IB> ; so transistor is in saturation mode
𝛽

 Determine RB & RC for the transistor network if Ic-sat= 10mA

𝑉𝑐𝑐
Ic-sat= 𝑅𝑐
10
⇒ Rc= 10=1 kΩ
𝐼𝑐−𝑠𝑎𝑡 10
𝛽
= 250= 0.04mA

Choose IB= 0.06mA to ensure saturation


10−0.7
RB = = 155kΩ
0.060

Choosing RB=150KΩ which is standard value


10−0.70
I B= 150
= 0.062mA
𝐼𝑐−𝑠𝑎𝑡
So, IB> 𝛽
condition is satisfied So, Choosing RB=150KΩ & Rc= 1 kΩ
Bipolar Junction Transistor

 Calculate IE, IB, IC & VC where 𝜷=50 & voltage at the emitter is -0.7V

VBE= VB -VE =0.7

⇒ VB= VE+0.7= -0.7=0.7=0volt

VB+10=VBE+IERE
10−0.7
⇒ IE= 10
= 0.93mA

IE=IB+IC= (𝛽+1)IB
0.93
⇒ I B= 51
= 0.01823mA

IC= 𝛽IB=0.91mA

VC= 10 – 5*0.91= 5.45V

 If VB=1V and VE=1.7V, then what are 𝜶 and 𝜷 & VC for the transistor
10−1.7
IE= = 1.66mA
5
1
I B= = 0.01mA
100

IC= 1.66 – 0.01= 1.65mA


𝐼𝑐
𝛼=𝐼𝑒= 0.99
𝐼𝑐
𝛽=𝐼𝑏= 165

VC +10= ICRC

⇒ VC= 1.65*5 -10 = -1.75V

 Determine the all node voltage & current where 𝜷=100

4=0.7+101IBRE
4−0.7
⇒ IB= 101∗3,3=0.0099mA

IC=𝛽IB=0.99mA

IE= IB+IC=0.99mA

VB=4V

VC= 10 -4.7*0.99= 5.35V

VBE=0.7= VB -VE ⇒ VE= 4 - 0.7= 3.3V


Bipolar Junction Transistor

 Determine the all node voltage and current where 𝜷=100

VBE=VB-VE= -0.7 ⇒VE=0.7V Where VB=0

10−0.7
IE= 2
= 4.65mA
𝛼
𝛽=1−𝛼=100

⇒ 100 -100𝛼=𝛼
100
⇒ 𝛼= 101= 0.99

IC=𝛼IE= 4.61mA
4.61
𝛽= ⇒ IB= 0.0461mA
𝐼𝑏

VC+10= 4.61

⇒ VC= -5.39V

 Determine the all node voltage and current where 𝜷=30

VBE= VB -VE = -0.7

⇒ VE= VB+0.7

VC-VE= - 0.2= VCE

⇒VC= VE -0.2= VB+0.7 – 0.2= VB+0.5


5−𝑉𝐸
IE= = 5-VE=4.3 -VB mA
1
𝑉𝑏
IB=10 = 0.1VB mA
𝑉𝑐+5
IC= = 0.1VC+ 0.5= 0.1(VB+0.5) +0.5 = 0.1VB+ 0.55 mA
10

IE=IB+IC

⇒4.3 -VB= 0.1VB + 0.1VB+ 0.55


3.75
⇒ VB= 1.2
= 3.125V

Now place the value of VB

VE= 3.83V, VC=3.63V, IE= 1.17mA, IC=0.86mA, IB=0.31mA


Bipolar Junction Transistor

𝒗𝒐
 Determine the voltage gain , assume 𝜷=100
𝒗𝒊
3−0.7
I B= = 0.023mA
100

IC= 𝛽IB= 2.3mA

IE=IB+IC= 2.323mA
26
re= 2.323= 11.20Ω

Zi= 100+1.12= 101.12KΩ

Zo= 3KΩ
𝑉𝑖
Vo= - 𝛽IB*Rc= -𝛽* 𝑍𝑖 *Rc
𝑉𝑜 3000
Voltage gain Av= = - 100* = -3 (Approx.)
𝑉𝑖 101.12∗1000

 Determine whether the transistor is in saturation, cut off or linear region

VCE= VCC -ICRC

For a)
12−0.7
I B= = 0.15mA
75

At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐
= 1
=12mA
𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.12mA

𝐼𝑐−𝑠𝑎𝑡
As Ib> 𝛽
, So transistor is in saturation mode

For b)
12−0.7
I B= 150
= 0.0753mA

At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐
= 1
=12mA
𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.12mA

𝐼𝑐−𝑠𝑎𝑡
As Ib < 𝛽
, So the transistor is in linear region
Bipolar Junction Transistor

For c)
12−0.7
I B= 75
= 0.15mA

At Sat VCE=0
𝑉𝑐𝑐 12
Ic-sat= = =6mA
𝑅𝑐 2

𝐼𝑐−𝑠𝑎𝑡
𝛽
= 0.06mA

𝐼𝑐−𝑠𝑎𝑡
As Ib > 𝛽
, so transistor is in saturation mode.

 Some Important Formulae

 In the circuit diagram shown in figure draw the d.c load line, what will be the Q-point if zero
signal base current is 20𝝁A and 𝜷=50

VCE=VCC -ICRC

At cut off IC=0

VCE=VCC=12V

At saturation VCE=0
𝑉𝑐𝑐 12
Ic-sat= 𝑅𝑐 = 6
=2mA

Q-point:

IC= 𝛽IB= 1mA

VCE= 12 – 1*6= 6V
Bipolar Junction Transistor

 Equivalent re model

 Equivalent re model

 Determine Ii, Zi, Vo, Io & Ai

12−4
Ii= 1
=8𝜇A
4
Zi= 8= 500Ω

Vo= -180*4=- 720mV


720
Io=0.51= 1.41mA
𝐼𝑜
Ai= = 176.25
𝐼𝑖
Bipolar Junction Transistor

 Basic Darlington Connection:-


Bipolar Junction Transistor

 Differential amplifier circuit:-

A differential amplifier is a type of electronic amplifier that amplifies the difference between
two input voltages but suppresses any voltage common to the two inputs.

 Basic push pull amplifier circuit


Bipolar Junction Transistor

 Calculated the dc bias voltage & current


Bipolar Junction Transistor

 Calculate the dc voltage & current


Bipolar Junction Transistor


Bipolar Junction Transistor


Bipolar Junction Transistor

You might also like