0% found this document useful (0 votes)
1K views16 pages

Grade 8 Transformations PDF

- A translation is a geometric transformation that moves a figure without changing its shape or size. The original figure is called the preimage and the transformed figure is called the image. - The document shows a translation of triangle MBC to triangle LlABC in the coordinate plane. Each point of MBC is moved 5 units left and 2 units up, following the rule (x,y) → (x-5, y+2). - The vertices of quadrilateral WXYZ undergo the same translation, moving each point 5 units left and 2 units up to obtain the image. The image of WXYZ is then graphed.

Uploaded by

ZipperTies
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
1K views16 pages

Grade 8 Transformations PDF

- A translation is a geometric transformation that moves a figure without changing its shape or size. The original figure is called the preimage and the transformed figure is called the image. - The document shows a translation of triangle MBC to triangle LlABC in the coordinate plane. Each point of MBC is moved 5 units left and 2 units up, following the rule (x,y) → (x-5, y+2). - The vertices of quadrilateral WXYZ undergo the same translation, moving each point 5 units left and 2 units up to obtain the image. The image of WXYZ is then graphed.

Uploaded by

ZipperTies
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

-,

Class
"

Date
,-,
Name

Translation
.,
;.,

. ~:
A translation is a-type of transformation. In a translation, a geometric figure
changes
.'
position
, .
~t does not change shape or size. The original figure is called
; t. ~
j
1

the _preimr~e and lPe figure following transformation is the image,'


_ ',':: I)

The diagram at the right shows a translation in the coordinate y


plane. The pteim~e is MBC,;-The image is Ll ABC, I
r' O '. ,) ; " • '.

Each poiD:t"of M'Jic


has moved 5' units left and 2 hnits up.
Moving l:e(i)~ tpe negative g direction, and moving up is in irf
the' positive y dife~!ion. So, th,(trule for the translation is
," .' . j " . ~~. :·~.t ). ~ , ~'7''" ......"":(t.-",+-+-I--I.~.
• .. J' ~\.- +. x,.,..lj
i

(x, )I) ~ (x -:5, y + ~). \'., '::::i!- =-:_~_ 1/ i


. 11 i
'i.-
Aii ;;ans;ations~'i~ometrie;'becatlse the image and the . L,. ::: ._ _j__.J
<.
preimage are'con~ent. In thi~.'case~MBC == LlABC,
~.: .. . .~~~'",;,.' .. '~ -;

.~~~~',- ..~.
"
.l(~"~~4!I'Ui~""''n:'"· .), ~
t:Ji)$ilmpJ~
~ 1
mobl~rn
~~';'''RO¥J.P .){".. . '\
imagijs
What are:th~
(x,:y) ~
"
(;f5,
of the vertices of WXYZ for the translation
yll)? Graph the image of wxyz.
;~' " i-: A

"
~'
H-
I
v
y
+ --

W(-4, 1) :':"(-4 -+;$" I -1), qr:W (1, 0) e-- _L . ) '. Vi!


",:,::- , I', " ,:~," ,
e-- i
X(-4, 4) --,>(-4+5,4 -l),ot,X(l, 3) ,.
IV
T I-
~-
1I
". • L_ ,_ '\. '{';'

I ,
ot 'y (4,3)
I
..

Y(-1,4) --,>(-1+' 5, '4 -1), . i_


,
• e(- I..
e=: jL-t~- t- c--.
~I
i
I
I.
r.
Z( ~i,1) --,>(-1 +':5, 1 -1),
: :f~." ,:~
or:'Z (4, 0)'
~',.'. .i
e--
I
"'-,-f-.
_L 1 . .1. __ 1 ___ J l
. ... ..
Exercises ';:.
Use the rule to :O"d the images of the vertices for the translation.
. .' ,,'
"".
. ~
'.
.
I !.'~ . I ';.;

1. AMNO(x, y) '~(x + 2,y-J) 2. square,lKLM(x, y) ~ (x -l,Y)


,. M-' » ,-1 "~:, :
..
. .., y
-' i /( ;
1·-f-fJ . ··-1
,
Xi I

i -- --l--:.L:! .J
~- ,_JM.
f-
._
--t~.y~.
_l__:L-.-..-- ~_
" "'1
L-...J

P::InF' I 1
Graph the image of each figure under the given translation.

3. (x,y) ~,(~-l,~:4)
,.
4. (x"y) -*(x+3,y+3)
II Y l :j i
I
I 1 I
i '. ':'I I I I
I I': !. i 'I I
I
I, fA IX'
J I ..

rt I
..
jl> ~
l7r+ f-{
k"l'"'n
....!. I

I l'r '1 I ! I

..
..
'

Graph the image of each figure under the given translation.


r • ~
~;~.
- • - .. '_ A

~. (x,y)~(x':_~~y+4) .
6. (X,y) ~ (x-5,ytl)

Page 12
Example Problem

Yr-+- -1'-
I
What rule describes the translation of ABCL? I -., 1--;-
j c i
to A 'B'C'D'? ., " I v

I ! I "l.. !

rf t±
I
To J5et from A to ~,(or from {1 to B or C -1-- t- ~ ,,q-
! : l\J__
to '(: or p to D' ), 'you move' 8 unitsleft I--- 1,-t--
I--- \-' t--- 1-' --i- . __ 1 :t. I \1
A-
arid 7 units' down. ; r:-t-r- j
J I I " I,
IU
The rule thatdescribes this translation i I
is(~,y) ~ (x-8,Y-7). )', . i- r=-~ - !-2 Q i 4- Ix
I 1 I
I "'" -.....r-, ,c11"'2-
~ • • ~ I ,

ct-J _, --+
~ ~ 1 "

:.1 --
.__
I

'";'
II\'_'
'r--:r-1--
~
I
t\F'
0'
-
J
1 -rI
--+--
I

The dashed-Iine-figure is a translation image ofthe solid-line figure. Write a rule to


des'cribe' ca~c~"translation. ". , : '. ::'
.. . ~;. . -. -'.~ .", ,

7. To start, identify the coordinates of the vertices of both figures. ID, Y


........
.'
'The ve~c~~ of the preim~~e are:'
A(':'3,' D)"BC-3, [j), and CCI, D).
,

A
, ,

" -,""
f--'"
....... r

I'" x
~f
The ye~i~es the ima~e '~e: . - ~
A'cD,+1), C'(3,D)·
~~
......
- ,...
B'CD,-l),and
. -, ',';' !:
'~
'''!,'
.j.,.
r-
,.'
The tra~slatioq
., rule is _1_;
8. 9. Y
; Y c
v
tl
IA ...J..--' I\.
., ,.; Iv' Li' )I 1\
'\ ., .., .a..
.. ..
.., , I ,~ R \ f--'" r-
,"
~, 'W' lA' ... ~ '\
I
'X " X
l. -
'\

0 , ..
_Y.

I
'J\.
, '.
Lfl'
'\
-
II ~ ~ ~ • rK
r 'T

,~ r-
'V, U

, ,
- ;., '

. "
" "

The dashed ...line figure is a-translation l . I .'


image of the solid-line figure. Write a rule 1.
to describe each translation," , i :,

10. 11.
y
"
,~
~ A Y
":>
_, _V l.{ ........
r--.,.

r:
\ "
....... w
, 'J "

~ « '
.,'
_!. 8' x /
... V'
-
, ,...,N'
- Y',
.., ,
_l I,
c ~

Page I3
-,

Name - ~_,__---------Class Date _

Translations
Practice
......... ~~~ ~~ ~ ,............•....•.•............ , ................•.•
Use the gr~pn'atl~e right f~r Exerciaas ' '
1-3. " ":",r, i;'
Give the coordinates of point A after
it has b~eh,tranelated down 3 units.
2. Gi~~th~'66o~~!~'atesof ~bint B after
it has been tr~h$lated leff3 units,
,t, ~ , ...: ·f~.~~ "
3. Wrat ~p:l~he.~qprdinates of point N
after it is' translated right Er units
~ I ,-• " ;. f -~ . "
. ·;\",i.,

Grapheach tran~'~tion of Ap.CD~.


Use arrow potatiijn;to showthe
translation. ;"" \ fl-' .;'~
• .:. _ ' ." \ .; .~ J

S.A (2, 1), B (4,5), C (7,4),0 (5, -1);


4. A (211),:8'(4, 5}."C (7, 4):,,0 (5, '-1);
l~' '/,'
.:

rig~t 2 yhlts ~'_:


.' ',_'.

','
'f
down 1 unit, left 2 units ':-.::
.r , " \:;1 ~' • • • •

... ". " ,.~ • '1.

.. _
..: ~,'1~~'
: 1:: . ,: ', !«_~...'. :~,: ~~
" ~ - -. ~ ~ 'f"',' :.. ..... ~;

, ;"" ~.
t .... ~~~- ... "'1-- ...... ~•• ;;..~ ..,.... ....... 'j.,_,. ....'

~
...-: r ;-/ l ~~~~.':}
.....-! __
-
,_...- J ~ <9_ ~ .J.., T _..;:

1 ....·;, -c
f
, > , '\

, . _'fJ --f i-; ":?,1 :' HJ-'~


>

L~;E:,.'~H:±~::~f'
r_:;~:;.:~; r

o
'"

.,,'

Page I·
____________________________ --------Class
Name Date

Reflections

A reflection is a type oftransfonnation in which a geometric figure is flipped over


a line of reflection.
In a reflection, a preimage and an image have opposite orientations, but are the
same shape and size. Because the preimage and image are congruent, a reflection
is an isometry.

To graph a refl~ction image on a coordinate plane, graph the images of each


vertex. Each vertex in the image must be the same distance from the line of
reflection as the corresponding vertex in the preimage.

Reflection across the x-axis: Reflection across the j-axis:


(x, y) ~ (z, ~y) (x, y) -+ (~x, y)
The x-coordinate does not change. The j-coordinate does not
change.
The j-coordinate tells the distance The x-coordinate tells the
from the x-axis. distance from the y-axis

~xampie Problem:
MBC.has vertices atA(2, 4), B(6, 4); and C(3, 1). What is the
I
image of lUBe reflected over the x-axis? I -I
I Xi
Step 1: Graph AI, the image of A, It is the same distance from
the x-axis as A. The distance from the y-axis has not
changed. The coordinates for A' are (2, ~4).

Step 2: Graph 11 . It is the same distance from the x-axis as B.


The distance from the j-axis has not changed. The
coordinates for 11 are (6, -4).

Step 3: Graph C. It is the same distance from the x-axis as C.


the coordinates for Care (3, -1).
9, Quadrilateral :WXYZwithvertices :W(~3, 4),X(-4, 6), Y(-2, 6), and Z(-1, 4) reflected across j--axis.

..LLli i
illi-tl
rr""t-r--i- - i I I 1 rr
II
it---j
I

: I I j I! r! 1 I . 1.1 I !
! i I I i [i i I I I
i \ t Ii! I ! i I I .1
1\" ..H_
I., , '_."' .• ,

Each point is reflected across the line indicated. Find the coordinates of each
image.
y
1. A across the x-axis
.r·
.,_.
2. B across tile y-axis "')
I
k

3. C acrossy == 1 X
.- - 0
4. D across x = ~1 -> I'
L
t 0 I
5. E across y = ~3 D

6. F across x = -2

Given points S(I, -2); r(4, -1), and V(4, -4), graph ASTVand its reflection
image across each line.

7. the x-axis
s.x =-1

.11 Y I Y

I
I-
"'}
-
"')

X
x
- - - 0 - - - 0
- ..,
-L
~

I /I

"t, .
Each figure is reflected across the line indicated. Find the coordinates of the vertices for each image.

6. MGR with vertices F(-1, 3), G(-5, 1), and H(- 3, 5) reflected across x-axis

t1 Y
"}
~
x
- - - 0
~-.
~
"- ~

7. !'!.CDE with vertices CC2, 4), D(5, 2), and E(6, 3) reflected across x-axis.

t l ill ! I !! I I I r

I I [ r I.

" ~---./

8. MKL with vertices J(-l, -5), K(-2, -3), and


L( -4, -6) reflected across y-axis.

I I j ! I
! j J i I
,
I I

Ll.L
! I rr -rr-'-,
r r t : i i
i"+_Jr-r-f- --t-1 t-·t·- -" -j-·+·-i-4C-I·--+--+---f--l
I -i

;-.ji -+-1 --!---+-4--i-t--I··-I--+·-I---I


t- _ ,._;_ !--.
\ i!. r f 1 ~

You might also like