100% found this document useful (1 vote)
9K views3 pages

Wallis' Formula: Xcos XDX

Wallis' Formula provides a way to evaluate integrals of the form ∫ sin^m(x)cos^n(x) dx from 0 to π/2. The formula represents the integral as a product of terms involving m and n. It is demonstrated through 6 examples, such as finding ∫ sin^7(x)cos^8(x) dx and ∫ sin^5(x) dx. Standard integration techniques are also used to verify the results.

Uploaded by

Zina Cabrera
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
9K views3 pages

Wallis' Formula: Xcos XDX

Wallis' Formula provides a way to evaluate integrals of the form ∫ sin^m(x)cos^n(x) dx from 0 to π/2. The formula represents the integral as a product of terms involving m and n. It is demonstrated through 6 examples, such as finding ∫ sin^7(x)cos^8(x) dx and ∫ sin^5(x) dx. Standard integration techniques are also used to verify the results.

Uploaded by

Zina Cabrera
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 3

Wallis’ Formula

This section presents the Wallis’ Formula to evaluate integrals of the form
π/2 m n
∫0 sin x cos xdx
.
The Wallis’ Formula is given by the integral:
2 2

[ ][ ]
where,
π/2
∫0 m
sin x cos xdx
n
=
{ ( m−1 )( m−3 ) .. . or ( n−1 )( n−3 ) . . . or
1

( m +n )( m+n−2 )( m +n−4 ) . .. or
2

1
1
β

π
β=
2 , if both m and n are positive even integers
β=1 , otherwise
π/2 7 8
Example 1. ∫0 sin x cos xdx
π/2 ( 7−1 ) ( 7−3 )( 7−5 )⋅( 8−1 )( 8−3 ) ( 8−5 ) ( 8−7 )
7 8 ⋅1
∫0 sin x cos xdx ( 7 +8 ) ( 7+8−2 )( 7 +8−4 ) . . . ( 7+8−14 )
=
( 6⋅4⋅2 ) (7⋅5⋅3⋅1 ) 16
= 15⋅13⋅11⋅9⋅7⋅5⋅3⋅1 = 6435
π/2 ( 2−1 ) π π
2 ⋅ =
∫ cos xdx ( 2+ 0 ) 2 4
Example 2. 0 =
To verify the integral by the usual integration, we have:
π /2
1 1
∫0
π/2 2
cos xdx
1 π /2
= 2
∫ 0
( 1+cos 2 x ) dx
= 2
x+ sin2 x
2 [ ]
0
1
= 2
([ π2 + 12 sin π )−(0+ 12 sin 0 )] =
π
4

π/2 ( 5−1 ) (5−3 ) 4⋅2 8


5 ⋅1= =
Example 3. 0 ∫
=
sin xdx ( 5+ 0 ) (5−2 ) ( 5−4 ) 5⋅3⋅1 15
Performing the usual integration, we have:
π/2 π/2 2 π/2 2
∫0 5
sin xdx
= ∫ 0 ( sin2 x ) sin xdx = ∫ 0 ( 1−cos2 x ) sin xdx
π/2 π /2 π /2

= ∫0 sin xdx−2∫ 0 cos2 x sin xdx +∫0 cos 4 x sin xdx


π /2
2 cos3 x cos 5 x
=
[ −cos x+
3

5 ]0 =
2
3 [ 1
0− −cos 0+ ( cos 0 )3 − ( cos 0 )5
5 ]
2 1 15−10+3 8
=
− −1+ −
3 5 ( ) = 15 = 15
3
1 2 2
Example 4. ∫0 ( 1−x ) dx
π
θ=
Let x = sin θ , dx = cosθdθ . When x = 1, 2 ; when x = 0, θ = 0.
Thus we have:
3
1 π/2 π/2 3⋅1 π 3 π
∫0 ( 1−x ) 2 2
dx ∫0 cos3 θ cosθdθ ∫0 cos 4 θdθ ⋅ =
4⋅2 2 16
= = =
3
a 2 2 2 2
Example 5. ∫0 x ( a −x ) dx
π
θ=
Let x = a sin θ , dx = a cosθdθ . When x = a, 2 ; when x = 0, then θ =
0. Then we have:
a 3 /2 π/2 π /2
∫0 x 2 ( a2−x 2) dx
= ∫0 ( a 2 sin2 θ )( a 3 cos3 θ ) ( a cosθdθ ) =
a6 ∫ 0 sin 2 θ cos4 θdθ
6
( 2 )( 3⋅1 ) π πa
a6⋅ ⋅
= 6⋅4⋅2 2 = 16
π/ 4 2 2
Example 6. ∫0 sin 4 ycos 2 y dy
π/ 4 2 2 π/ 4 2 2 2 π /4 2 4
∫0 sin 4 ycos 2 y dy
= ∫0 4 sin 2 y cos 2 y cos 2 y dy
=
4 ∫0 sin 2 y cos 2 y dy
π π
y= x=
Let x=2 y and dx=2 dy . When 4 , 2 ; when y=0 , x=0 .
Then we have:
π/ 4 2 2 π /2 2 4
( 1 )( 3⋅1 ) π π
∫0 sin 4 ycos 2 y dy 2∫0 sin x cos x dx 2⋅ ⋅
= = 6⋅4⋅2 2 = 16
1

Example 7. ∫0 √ 1−√ y dy
Lety=sin 4 x , and 1−√ y = √ 1−sin2 x = √ cos x , and
dy=4 sin3 x cos xdx . When y=0 , x=0 ; when y=1 , x=π/2 .
1
∫0 √ 1−√ y dy =
π /2
4 ∫ 0 cos x sin x cos xdx
3
=
π /2
4 ∫ 0 sin x cos x dx
3 2
=
4 ( 3⋅1
5⋅3 )
8
= 15
a 5 /2
Example 8.
∫0 x 4 ( a2−x 2) dx
Let x=a sin θ , then dx = a cosθdθ , and √ a2−x 2= √a 2− ( a sinθ )2=a cosθ
When x=0 , θ=0 ; when x=a , θ=π /2 .
a 5/2 π/2 π /2
∫0 x 4 ( a2−x 2) dx
= ∫0 ( a sin θ )4 ( a cosθ )5 acosθdθ
=
a
10
∫0 4 6
sin θ cosθ dθ

( 3⋅1 )( 5⋅3 ) π 3 πa10


a10 ⋅
= 10⋅8⋅6⋅4⋅2 2 = 512

Activity
Wallis’ Formula

Use Wallis’ formula to evaluate each of the following:

π/2 π x x
∫0 sin6 x cos x 4 xdx ∫0 sin6 2 cos2 2 dx
1. 2.

π/2 8 π/2 7 3
3. ∫0 sin xdx
4. ∫0 sin x cos x dx

π/6 π/ 4
∫0 sin5 3 x cos2 3 xdx ∫0 sin2 4 x cos 2 2 xdx
5. 6.

a 6 π/2 6 7
7. ∫0 x 5 ( a2−x 2) dx 8. ∫0 cos x sin xdx

a 5/2 a 6

9.
∫0 x 4 (a2−x 2) 10.
∫0 x 5 ( a2−x 2 ) dx

You might also like