Exercises - Recitation #3: Econs 501 Fall 2016 Felix Munoz
Exercises - Recitation #3: Econs 501 Fall 2016 Felix Munoz
Felix Munoz
Exercises – Recitation #3
Exercise 1. Find the demanded bundle for a consumer whose utility function is u(x1,x2)= x13/2x2 and her
budget constraint is 3x1+4x2=100.
                                                                                    3
Solution. Making a log transformation of the utility function, ln u ( x1 , x2 )      ln x1  ln x2
                                                                                    2
Exercise 2. Use the utility function u(x1,x2)= x11/2x21/3 and the budget constraint m=p1x1+p2x2 to calculate
the Walrasian demand, the indirect utility function, the Hicksian demand, and the expenditure function.
                                                        1
EconS 501                                                                                                                     Fall 2016
Felix Munoz
                                                  1 1/2 1/3
                                                    x1 x2   p1 ,
                                                  2
                                                  1 1/2 2/3
                                                    x1 x2   p2 ,
                                                  3
                                                  p1 x1  p2 x2  m.
Solving, we get
                                                        3m                  2 m
                                       x1 ( p, m)           , x2 ( p, m)       .
                                                        5 p1                5 p2
Plugging these demands into the utility function, we get the indirect utility function
                                                          1/2                1/3                         1/2        1/3
                                               3 m            2 m               m
                                                                                              5/6
                                                                                                     3        2 
              v ( p , m)  U  x ( p , m )                                                                   .
                                                5 p1           5 p2             5              p1       p2 
Rewrite the above expression replacing v(p, m) by u and m by e(p, u). Then solve it for e(.) to get
                                                                  3/5              2/5
                                                       p               p2 
                                        e( p , u )  5  1                            u 6/5
                                                        3              2 
Finally, since hi  e / pi , the Hicksian demands are
                                                                2/5               2/5
                                                     p                 p2 
                                       h1 ( p, u )   1                              u 6/5 ,
                                                      3                2 
                                                                 3/5            3/5
                                                     p                p2 
                                       h2 ( p, u )   1                              u 6/5 .
                                                      3               2 
Exercise 3.    Consider a two-period model with Dave’s utility given by u  x1, x2  where x1 represents
his consumption during the first period and x2 is his second period’s consumption. Dave is endowed
with  x1, x2  which he could consume in each period, but he could also trade present consumption for
future consumption and vice versa. Thus, his budget constraint is
                                            p1x1  p2 x2  p1x1  p2 x2 ,
where p1 and p2 are the first and second period prices respectively.
    a) Derive the Slutsky equation in this model. (Note that now Dave’s income depends on the value
       of his endowment which, in turn, depends on prices: m  p1x1  p2 x2 .)
                                                                 2
EconS 501                                                                                                                                Fall 2016
Felix Munoz
                                                e( p, u )
                                                            hi ( p, u )  xi  xi  p, e( p, u )   xi
                                                  pi
      Therefore, we have
                                      h j ( p, u )       x j ( p, m)        x j  p, e( p, u ) 
                                                                                                     xi ( p, m)  xi 
                                             pi              pi                     m
      And reorganizing we get the Slutsky equation
                                      x j ( p, m)        h j ( p, u )       x j  p, e( p, u ) 
                                                                                                     xi  xi ( p, m) 
                                             pi              pi                     m
   b) Assume that Dave’s optimal choice is such that x1  x . If p1 goes down, will Dave be better off
      or worse off? What if p2 goes down?
      Solution. The following picture depicts Dave’s optimal allocation h( p, u) for a given price
      vector p / p .
               1   2
                               Future’s consumption
                       x2
                                 
                                     p   1
                                     p   2
                                                                              h( p,u), spending ph( p,u)  e( p,u) which
                                                                                       coincides with expenditure (in$)
                                                                                      along all poonts in BL
x 2
                                                                                                                         x1
                                                                    Lending
                                                                                      x   1
                                                                                                Borrowing
      Intuitively, p  x  p  x measures the extra amount of money that Dave needs to spend after
      selling his endowment x , in order to acquire his optimal consumption bundle h( p, u) . Hence,
      Dave minimizes the expenditure p  x  p  x at the optimal bundle h( p, u) , i.e., at point A of the
      figure.
                                                                          3
EconS 501                                                                                               Fall 2016
Felix Munoz
      When p2 goes down, Dave is better off; since there is a region of the new budget line that lies of
      the UCS ( x) , i.e., the set of bundle for which Dave is better off than at his original bundle X.
p
                     x2
                                BL   2                           2
UCS ( x1, x 2)
x 2
x 2
BL 1
                                                                                                   x1
                                                 x   1                   x   1
      When p1 goes down, Dave is worse off; since the new budget line, BL2 , unambiguously lies
      below the UCS(X)
                            x2
 p 1
                                                                                 UCS ( x1, x 2)
                       x    2
x 2
BL 1 BL 2
                                                                                                   x1
                                         x   1           x   1
                                                                     4
EconS 501                                                                                                Fall 2016
Felix Munoz
Exercise 4. The utility function is u  x1, x2   min x2  2 x1, x1  2 x2 .
    a) Draw the indifference curve for u  x1, x2   20. Shade the area where u  x1, x2   20.
        Solution.
                                       x2  2 x1  20
                                  x2
20
18 A
                                10
                                9.5
                                           C
                                                                        B
                                                                            2 x2  x1  20
                                       1                10           16        20    x1
        The indifference curve is the northeast boundary of these two lines (i.e., the upper envelope). In
        particularly, for a bundle ( x1 , x2 )  (1,18) , located at point A in the figure, the consumer’s utility
        is
                                   min{18  2 1,1  2 18}  min{20,37}  20 .
        Similarly, bundle B in the other extreme of the figure, i.e., ( x1 , x2 )  (16, 2) , yields a utility level
        of
                                 min{2  2 16,16  2  2}  min{34, 20}  20 .
        Note that bundles in the southeast boundary, such as C  (1,9.5) , only provide a utility of
                              min{9.5  2 1,1  2  9.5}  min{11.5, 20}  11.5  20
        So the southwest boundary of the two lines cannot be the indifference curve of u  20 . If we
        wanted to depict the indifference curve associated to a utility of u  11.5 , we would need two
        lines parallel to the thick lines in the figure but shifted inwards towards to origin so they cross
        point C.
        Upper contour set. Finally, the upper contour set contains all those bundles to the northeast of the
        indifference curve we just depicted
                                                        5
EconS 501                                                                                        Fall 2016
Felix Munoz
                          x1  0
                          x2  0
                                        2
                                             BL
                                                                              x1
                                                                                        
                                                                                   45
                            x2
Corner at x2 =0
                                 BL
                                                                         x1
                                                                x1  0
                                                                x2  0
                                                        6
EconS 501                                                                                        Fall 2016
Felix Munoz
    d) If neither x1 nor x2 is equal to zero, and the optimum is unique, what must be the value of
         x1 / x2 ?
        Solution. If the optimum is unique, it must occur where at the kink x2  2 x1  x1  2 x2 . Since
        line x2  2 x1 crosses x1  2 x2 at the 45 -line, the interior optimum occurs at x1  x2 , so that
         x1 / x2  1 .
                                                                                      
                                                                                 45
                             x2
                        BL
                                                            x x
                                                              1      2
x1
        Plugging this result, x1  x2 , into the budget line, we obtain 𝑝1 𝑥2 + 𝑝2 𝑥2 = 𝑤. Solving for 𝑥2 ,
        yields a Walrasian demand of
                                                            𝑤
                                                   𝑥2 =          .
                                                         𝑝1 + 𝑝2
        which coincides with the Walrasian demand of good 1 since 𝑥1 = 𝑥2 at the kink.
Exercise 5. Under current tax law some individuals can save up to $2,000 a year in an Individual
Retirement Account (I.R.A.), a savings vehicle that has an especially favorable tax treatment. Consider
an individual at a specific point in time who has income Y, which he or she wants to spend on
consumption, C, I.R.S. savings, S1 , or ordinary savings S 2 . Suppose that the “reduced form” utility
function is taken to be:
C  S1  S2  Y ,
and the limit that he or she can contribute to the I.R.A. is denoted by L.
    a) Derive the demand functions for S1 and S 2 for a consumer for whom the limit L is not binding.
       Solution. Building the Lagrangian, we obtain:
                                                        7
EconS 501                                                                                                          Fall 2016
Felix Munoz
                                       L   ln s1   ln s2   ln C   (Y  C  s1  s2 ) .
           Take all derivatives with respect to  , C , s1 , s2 to find s1 , s2 . This is an ordinary Cobb-Douglas
           demand:
                                                                        
                                          S1             Y and S2           Y.
                                                                   
    b) Derive the demand function S1 and S 2 for a consumer for whom the limit L is binding.
       Solution. Since s2 has reached the maximum allowed, L, we plug S2=L in the utility function
           U (C , S1 , L)  S1 L C  . Note that the L term is just a constant, so applying the standard Cobb-
                                        
           Douglas formula S1              Y.
                                      
Exercise 3.E.7. Show that if a preference relation is quasilinear with respect to good 1, the Hicksian
demand functions for the remaining goods 2, 3, …, L do not depend on u. What is the form of the
expenditure function in this case?
Solution.   Exercise 3.C.5(b) in MWG shows that every quasilinear preference with respect to good
1 can be represented by a utility function of the form u  x   x1  u  x2 , , xL  .       Let
e1  1, 0,     , 0    L
                             .   We shall prove that for every                p  0 with p1  1, u  ,   ,
and x   ,         L 1
                          ,      if     x  h  p, u  ,   then     x   e1  h  p, u    .        Note      first   that
u  x   e1   u   , that is, x   e1 satisfies the constraint of the EMP for                        p, u    .    Let
y     L
           and u  y   u   .         Then      u  y   e1   u.      Hence,      p   y   e1   p  x.        Thus
p  y  p   x   e1  . Hence x   e1  h  p, u    .
Therefore, for every good 2             , L , u  , and u  , h           p, u   h  p, u .   That is, the hicksian
demand functions for goods 2,            L are independent of the utility level that the individual must reach in
his EMP. Thus, if we define the hicksian demand of reaching a zero utility level as h  p   h  p, 0  ,
then the hicksian demand of reaching a positive utility level u  0 , h( p, u) , is h  p, u   h  p   ue1 ,
where the positive utility originates from units of good 1.
We can extend the above argument by saying that the hicksian of reaching an even farther utility level
u   , h( p, u   ) , is h  p, u     h  p, u    e1, that is, the hicksian from reaching utility level u
plus additional units of good 1. Thus, we have that the expenditure function of such hicksian demand,
h( p, u   ) is e  p, u     e  p, u    , which indicates that, in order to increase the utility level from
u to u   , the consumer must increase his minimal expenditure from e( p, u ) to e( p, u )   . Thus, if
we define the expenditure of reaching a zero utility level as e  p   e  p, 0  , then the minimal
expenditure of reaching a positive utility level u  0 is e  p, u   e  p   u .
                                                              8
EconS 501                                                                                                                 Fall 2016
Felix Munoz
Exericse 3.E.8. For the Cobb-Douglas utility function, verify that the following relationships in (3.E.1)
and (3.E.3) respectively hold.
                                 e(p,v(p,w))=w and v(p,e(p,u))=u, and
                               h(p,u)=x(p,e(p,u)) and x(p,w)=h(p,v(p,w))
Note that the expenditure function can be derived by simply inverting the indirect utility function, and
vice versa.
                                                                 1 
Solution. We use the utility function u  x   x1 x2                    . To prove (3.E.1),
         e  p, v  p, w      1   
                                                1  1
                                                      p1 p2         
                                                                          1   1                  
                                                                                        p1 p2 1w  w,
         v  p, e  p, u      1                                                          u   u.
                                             1
                                                   p1 p2 1       
                                                                           1    1 p1 p12
To prove (3.E.3),
                                   
              x  p, e  p, u      1   
                                                       1
                                                                            
                                                             p1 p12 u  p1 , 1    p2 
                                                   1                 
                                 
                                           p            1    p  
                                                                        u   h  p, u  ,
                                              2                      1
                                                     u, 
                                    1    p1          p       
                                                                 2
                                                                                           1                      
                                                                                  p2              1    p1 
             h  p, v  p, w    
                                                   1
                                       
                                           1         p1 p2 1w                          ,                 
                                                                            1    p1          p2           
                                                                                                                     
                                 w  p1 , 1    p2   x  p, w  .
to show that the properties of the indirect utility function e(p,u) identified in Proposition 3.E.2:
3. Concave in prices.
4. Continuous in p and w.
imply the properties of the expenditure function v(p,w) identified in Proposition 3.D.3:
                                                                    9
EconS 501                                                                                                              Fall 2016
Felix Munoz
    2. Strictly increasing in w and nonincreasing in pk for any good k.
3. Quasiconvex; that is, the set {(p,w): v(p,w)≤v} is convex for any v.
4. Continuous in p and w.
 to prove that the properties of v(p,w) identified in Proposition 3.D.3 imply the properties of e(p,u)
identified in Proposition 3.E.2.
Solution. First, we shall prove that Proposition 3.D.3 implies Proposition 3.E.2 via (3.E.1). Let
p  0, p  0, u  , u  , and   0.
    (i)   Homogeneity                   of
                                         degree       one      in      p:     Let      0.                                   Define
           w  e  p, u  , then u  v  p, w by the second relation of (3.E.1). Hence
                    e  p, u   e  p, v  p, w    e  p, v  p,  w     w   e  p, u  ,
          where the second equality follows from the homogeneity of v  ,  and the third from the first
          relation of (3.E.1).
e  p  1    p, u    e  p, u   1    e  p, u  .
(iv) Continuity: It is sufficient to prove the following statement: For any sequence
                                     p , u    p, u                                         
                           
               pn , u n          with        n   n
                                                                  and any w, if e p n , u n  w for every n, then
                           n1
                                                               10
EconS 501                                                                                                Fall 2016
Felix Munoz
                                                                                                      
        e  p, u   w ; if e p n , u n  w for every n, then e  p, u   w . Suppose e p n , u n  w for
        every n. Then, by the monotonicity of v  ,  in w, and the second relation of (3.E.1), we have
                         
        u n  v p n , w for every n. By the continuity of v ,  , u  v  p, w . By the second relation
        of (3.E.1) and the monotonicity of v  ,  in w, we must have e  p, u   w.                  The same
                                                                      
        argument can be applied for the case with e p n , u n  w for every n.
        Let’s next prove that Proposition 3.E.2 implies Proposition 3.D.3 via (3.E.1).                         Let
         p  0, p  0, w  , w  , and   0.
v  p,  w   v  p,  e  p, w    v  p, e  p, u    u  v  p, w  ,
                 where the second equality follows from the homogeneity of e  ,  and the third from
                 the second relation of (3.E.1).
          iii. Quasiconvexity: Quasiconvexity means that the lower contour set ( LCS) is
               convex. Let   0,1 . Define u  v  p, w and u  v  p, w  . Then e  p, u   w
                 and e  p, u   w. Without loss of generality, assume that u   u .                    Define
                    p   p  1    p and. w   w  (1   )w Then
                                                         11
EconS 501                                                                                                                    Fall 2016
Felix Munoz
                                                e  p, u  
  e  p, u    1    e  p, u  
  e  p, u   1    e  p, u  
  w  1    w  w,
              where the first inequality follows from the concavity of e  , u  the second from the
              monotonicity of e  ,  in u and u  u . We must thus have v  p, w   u  v( p, w).
iv. Continuity: It is sufficient to prove the following statement. For any sequence
                                   
                v p n , wn  u for every n. Then, by the monotonicity of e  ,  in u and the first
                                                             
                applied for the case with v p n , wn  u for every n.      
              Alternative: An alternative, simpler way to show the equivalence on the
              concavity/quasiconvexity and the continuity uses what is sometimes called the epigraph.
As for the continuity, the function e  is continuous if and only if both
                                                                       12
EconS 501                                                                                  Fall 2016
Felix Munoz
 p, w, u  : e  p, u   w   p, w, u  : v  p, w   u;
                         p, w, u  : e  p, u   w   p, w, u  : v  p, w   u
              Hence the continuity of e  is equivalent to that of v  .
                                                      13
Felix Munoz                                                                                 Fall 2008 
EconS 501 
Microeconomic Theory – Recitation #3 – Exercises. 
 
1.    Jan’s utility function for goods X and Y is  U = 7200 X .75Y .25 .   She must pay $90 for a 
      unit of good X and $30 for a unit of good Y.  Jan’s income is $1200. 
 
      a. Determine the amounts of goods X and Y Jan purchases to maximize her utility 
          given her budget constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 1 
 
Felix Munoz                                                                              Fall 2008 
EconS 501 
       b. Determine the maximum amount of utility Jan receives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       c. Determine the value of  λ *  associated with this problem. 
        
        
        
        
        
        
        
        
        
        
        
        
       d. Interpret the value of  λ *  you computed in part c. as it specifically applies to Jan. 
 
 
 
 
 
 
 
                                                2 
 
Felix Munoz                                                                     Fall 2008 
EconS 501 
                                           3 
 
Felix Munoz                                                                           Fall 2008 
EconS 501 
       b.  Determine the minimum amount of expenditure made by Jan. 
        
        
        
        
        
        
        
        
 
       c.  Determine the optimal value of  λ D  and provide a written interpretation of this 
           value as it specifically applies to Jan in this problem. 
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
       d.  Compare the optimal values of X, Y and  λ  you computed in exercise 4.3 with 
           those you computed in parts a. and c. of this exercise. 
 
 
 
 
 
 
 
 
 
                                              4 
 
Felix Munoz                                                                            Fall 2008 
EconS 501 
 
3.     Raymond derives utility from consuming goods X and Y, where his utility function is 
       U = 80 X .25Y .25 .   He spends all of his income, I, on his purchases of goods X and Y, 
       and he must pay prices of  Px  and  Py  for each unit of these goods, respectively.  
       Assume that his income is $3200, the unit price of good X is $100, and the unit price 
       of good Y is $100. 
 
       a. Determine the amounts of goods X and Y that Raymond should purchase to 
          maximize his utility given his budget constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               5 
 
Felix Munoz                                                                Fall 2008 
EconS 501 
 
       b. Determine the maximum amount of utility Raymond can receive. 
        
        
        
        
        
        
        
4.     Refer to your response to exercise 5.1. 
 
       a. Derive Raymond’s own‐price demand curve for good X. 
 
 
 
 
 
 
 
 
 
 
 
       b. Derive Raymond’s own‐price demand curve for good Y. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          6 
 
Felix Munoz                                                                       Fall 2008 
EconS 501 
 
5.     Refer to your responses to exercise 5.1. 
 
       a. Derive Raymond’s Engel curve for good X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       b. Is good X a normal good or an inferior good?  Justify your response 
          mathematically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                              7 
 
Felix Munoz                                                                       Fall 2008 
EconS 501 
 
       c. Derive Raymond’s Engel curve for good Y. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       d. Is good Y a normal good or an inferior good?  Justify your response 
          mathematically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                             8 
 
Felix Munoz                                                                                 Fall 2008 
EconS 501 
6.     Assume an individual’s own‐price demand function for good X is 
               (        )
       X = X Px , Py , I = 200 − 4 Px − 1.5 PY + 0.008 I  where of  Px  and  Py  denote the unit 
       prices of goods X and Y, respectively, and I denotes the consumer’s money income. 
 
       a. Compute the individual’s cross‐price demand curve for good X when the unit 
          price of good X is $2 and the consumer’s income is $40,000. 
 
 
 
 
 
 
 
 
 
 
 
       b. Are goods X and Y gross substitutes or gross complements?  Justify your 
          response mathematically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 9 
 
Felix Munoz                                                                                Fall 2008 
EconS 501 
7.     Recall from exercise 5.1 Raymond’s utility function, when he consumes goods X and 
       Y, is  U = 80 X .25Y .25 .   Once again, assume the unit price of good X,  Px , is $100, and 
       the unit price of good Y,  Py , is $100.  Determine the quantities of goods X and Y 
       Raymond should purchase that will minimize his expenditures on these goods and 
       yield 320 units of utility to him. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                10 
 
Felix Munoz                                                            Fall 2008 
EconS 501 
 
8.     Refer to your response to exercise 5.5. 
 
       a. Determine Raymond’s compensated demand curve for good X. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       b. Determine Raymond’s compensated demand curve for good Y. 
 
 
 
 
 
                                             11 
 
Felix Munoz                                                                           Fall 2008 
EconS 501 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.     Is it possible for an individual’s demand curve for a good to be positively sloped?  
       Support your response with an appropriate graphical analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
                                              12 
 
Felix Munoz               Fall 2008 
EconS 501 
 
 
 
 
               13