0% found this document useful (0 votes)
284 views22 pages

Instrumentation Engineering: Gate Psus

This document provides information about instrumentation engineering and analog electronics. It contains the following: - A table of contents listing chapters on analog electronics with page numbers. - Sample classroom practice problems and solutions for analog electronics, including circuit diagrams involving diodes and operational amplifiers. - Transfer characteristics and explanations of diode circuits, including a half-wave peak detector circuit. In summary, this document contains practice problems, solutions, and explanations related to analog electronics concepts for instrumentation engineering.

Uploaded by

vaibhav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
284 views22 pages

Instrumentation Engineering: Gate Psus

This document provides information about instrumentation engineering and analog electronics. It contains the following: - A table of contents listing chapters on analog electronics with page numbers. - Sample classroom practice problems and solutions for analog electronics, including circuit diagrams involving diodes and operational amplifiers. - Transfer characteristics and explanations of diode circuits, including a half-wave peak detector circuit. In summary, this document contains practice problems, solutions, and explanations related to analog electronics concepts for instrumentation engineering.

Uploaded by

vaibhav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 22

INSTRUMENTATION

ENGINEERING

GATE | PSUs

ANALOG
ELECTRONICS

Volume - I : Study Material with Classroom Practice Questions


Page No. 01

Classroom Practice solutions


To
Analog Electronics

CONTENTS

Name of the Chapter Page No.

Analog Electronics 02 – 21
Analog Electronics
Class Room Practice Solutions 5V

5K
01.
Sol: 1V V0 = 1V
(1–2)
D1
1V 2V
3V
2V D2 (1–3)
Vo
3V D3  D2 & D3 are reverse biased and ‘D1’ is
forward biased.
i.e., D1 only conduct
5k
Io 5 1
 I0 = = 0.8mA
5K
(1–3)
03.
1V Sol: Let diodes D1 & D2 are forward biased.
2V V0 = 3V
(2–3)  V0 = 0 volt
10  0
3V I2 = = 2mA
5K
5K 0  (10)
I0 I3 = = 1mA
10K
Apply KVL at nodes ‘V0’:
 D1,D2 are reverse biased and D3 is –I1 + I3 – I2 = 0
I1 = –(I2–I3) = –1mA
forward biased.
+10V
i.e., D3 only conducts.
5k
 I0 = 3/5K = 0.6mA
Vo

I1 I2
02.
Sol:
+5V
I3 10k
Io 5k

D1 –10V
1V Vo So, D1 is reverse biased & D2 is forward
2V D2 biased

3V D3  ‘D1’ act as an open circuit & D2 is act as


short circuit.
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:3: Postal Coaching Solutions

Then circuit becomes Transfer characteristics:


+10V V0

3V
5K
20 V0
I A
15k
10K –5V 2V 5V Vin

–10V
05.
 20  Sol:
 V0  10k     10
 15k  R
 V0 = 3.33V +
+
Vin Vo
04. – 2V –
Sol:
2V
+ –
+ For Vi < – 2Volt, Diode ON
+ +
Vin Vx Vo
RL  V0 = – 2Volt
– – –
For Vi > – 2Volt, Diode OFF
Apply KVL to the loop:  V0 = Vi
Vin – 2 – Vx = 0
 Vx = Vin–2 ----- (1) V0
Given, Vin range = –5V to 5V
+5V
 Vx range = –7V to 3V [∵ from eq (1)]
Diode ON for Vx > 0V t
 V0 = Vx –2V
Diode OFF for Vx < 0V –5V
 V0 = 0 V
V0 range = 0 to 3V 06.
Sol: Consider a half wave peak detector the
Output wave form: calculate average value for triangular
waveform
V0 charges discharges
3V
Vx 0
–2 t
+
Vin R  100
–7V – C= 100C

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:4: Analog Electronics

VP 9.3
(d) I R  =
R 100
10V Total ID(max) = IC+IR
Vx Vy
9.3V 9.3
8.77 V  4
 100
0.7V = 4.093 A

–10V 07.
Sol: For positive half cycle diode Forward
T=1/f msec biased and Capacitor start charging towards
peak value.
When diode is OFF, the capacitor
discharges through the resistor  VC = Vm= 5V
Vy  Vx e  t RC t  T  V0 = Vin – VC = Vin – 5
 1m 
Vy  9.31   = 8.37 V Vin range = – 5V to +5V
 100  100 
Ripple amplitude, Vr = Vx–Vy  V0 range = – 10V to 0V
= 9.3 – 8.77 = 0.93 V
V0
0 t
0.93 (ripple)
–5V
9.3V
Area 8.37V –10V

1msec
08.
1 Sol: For +ve cycle, diode ‘ON’, then capacitor
9.3(1m)  (0.93)(1m)
Area 2 starts charging
(a) VAvg  
Base 1m  VC = Vm – 7 = 10 – 7 = 3V
0.93 Now diode OFF for rest of cycle
 9.3  = 8.84V  V0 = –VC +Vin
2
10  Vr  = Vin –3
(b) Tan  Vin range : –10V to +10V
T 4  t 
 V0 range: –13V to 7V
10 0.93
  V0
0.25m t
t = 0.023 msec
7Volts
V
(c) I C ( avg )  C
t
–3Volts t
0.93
 100
0.023m
–13Volts
IC ( avg )  4A
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:5: Postal Coaching Solutions

09. 11.
Sol: For +ve cycle, diode ON, then capacitor Sol:
+10V
starts charging  VC = VP + 9
= 12 + 9 = 21V 4.7K
Now diode OFF for rest of cycle.
 V0 = VC + Vin 4V
= 21 + Vin  = 100
Vin range: –12 to +12V
V0 range: 9V to 33V
3.3K
V0
Given,
33V VB = 4V
VBE = 0.7
21V VB–VE = 0.7
t
VE = VB –7= 3.3V
9V 3.3
IE = = 1mA
3.3K
Let transisotr in active region
10.  IC = /(+1) . IE = 0.99mA
Sol: During positive cycle, IB = IC/ = 9.9A
D1 forward biased& D2 Reverse biased.
VC = 10 – 4.71030.9910-3 = 5.347V
V
+ C–  VC >VB
+  Transistor in the active region.
Vin
– 12.
Sol:
+10V
VC1 = Vin = 6volt
4.7K
During negative cycle,
D1 reverse biased & D2 forward biased. 6V
+
+6V – 0.7 6–0.7=5.3V
– –
+ 3.3K
6V VC2
+ –

VC2 = – 6 – 6 = –12V
VE = VB – VBE = 6 – 0.7 = 5.3V
Capacitor C2 will charge to negative voltage 5.3
IE = = 1.6mA
of magnitude 12V 3.3K
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:6: Analog Electronics

Let transistor is active region VC = 10V


 VB = 0V
IC = I
1   E
IC = 1.59mA 14.
VC = 2.55V Sol:
+10V
VC < VB
 Transistor in saturation region 5K
 VCE(sat) = 0.2V
+
VC–VE = 0.2 0.7
VC = 5.3+0.2 –
 VC = 5.5V
VC
VC= 5.5 V 1K

+
VB= 6V –10V
0.2 V = VCE

VE=5.3 V VE = 0.7V [∵ VB = 0V]

10  5.5 10  0.7
 IC = = 0.957mA  IE = = 1.86mA
4.7K 5K
IB = 1.6 – 0.957 = 0.643mA Let transistor in active region.
I C 0.957 mA 
=  =1.483  IC = I = 1.84mA
I B 0.643 mA   1 E
forced < active  VC = –10 + 1K  1.84m
VC = –8.16V
13. VEC = VE – VC = 8.86V
Sol: +10V VEC > VEB
 Transistor in active region
4.7K
15.
Sol: +10V

1K
VE= –0.7V
+
3.3K 0.7
–  = 100

VE = –0.7V
Transistor in cut off region 5K
IC = IB = IE = 0A
VCE = 10V –10V
VE = 0V
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:7: Postal Coaching Solutions

Let transistor in active region 43  5.5


VB = = 3.125V
VE = 0.7V [∵ VB = 0V] 12
10  0.7 3.125
IE   9.3mA IB = = 0.3125mA
1k 10K

IC  .I E  9.2mA
 1 VC = VB+0.5 = 3.625V
 VC = –10+5K  9.2m
VE = 3.825V
VC = 36V
VEC < VEB  IE = 1.175mA
Transistor in saturation region
 VEC = 0.2  IC = 0.862mA
VE–VC = 0.2  VC = 0.5V
0.5  10 17.
 IC = = 2.1mA
5K
Sol: Here the lower transistor (PNP) is in cut off
IB = IE – IC = 7.2mA
I  region.
forced = c sat
IB +5V
2.1
= IC
7.2
= 0.29 10K
forced < active i.e., saturation region 5V
+
IB 0.7 V0
16. –
Sol: 1K
+5V IE

1K IE
IB Apply KVL to the base emitter loop:
0.7 + + VE = (VB+0.7)
10K – 5 – 10K. IB – 0.7 – 1K. (1+)IB = 0
0.2
4.3
– V = (V +0.5)  IB =
c B (101)K  10K
10K
IC = 38.73A
IC = 3.87mA
–5V IE = 3.91mA
 VE = V0 = IE(1k) = 3.91 V
IE = IC+IB
5  (VB  0.7) (V  0.5)  5 VB VC = 5V
 = B 
1k 10k 10k
VB = 5 – 10 k (IB) = 4.61 V
10(5–VB–0.7) = VB+0.5+5+VB
43–10VB = 2VB+5.5
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:8: Analog Electronics

18. +12V 1
Sol: Zeq 
1
sC 
r  sL
r  sL
9K 4K 3.3K 
srC  s 2 LC  1
Vc1 r  jL

3V Q1 Q2 (1  2 LC)  jrC
Vc2 Q3
Zeq 

(r  jL) 1  2 LC  jrC 
3K 2.3K
4K
Q4
V0 1   LC  rC
2 2 2

2 rLC  r  2 rLC  jL[1  2 LC]  jr 2 C



I C1  I 1 
2.3V
 1m Amp
1   LC  rC
2 2 2

2.3k
VC1  12V  4  103  1  10 3  8V Equate Imaginary terms:

V2  8  0.7 V  8.7V L – 3L2C – r2C = 0


12V  V 2 12V  8.7 L – 2L2C – r2C = 0
I 2    1m Amp
3.3k 3.3k
VC 2  4k  1mA  4V 2L2C = L – r2C
V 3  4V  0.7  3.3V 1 r2C
 
V4  3.3  0.7  2.6V L C L2 C
V0=2.6 V 2
1 r
  
19. LC  L 
Sol:
Equate real:
r r  2 LCr  2 LCr
C Zeq 
R1 L (1  2 LC) 2  2 r 2 C 2
r
 2
r C  1
2
r2 
     2  r 2C2
 L   LC L 
r
R2  4 2
r C r C2 r 4C 2 2
  2
L2 LC L
L
Z
rC
r
1/sC (ii) AV = –gmZ
sL L
 g m  
 rC 

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

:9: Postal Coaching Solutions

20. Apply small signal analysis:


Sol:
+10V

4.7k 4.7 k
Vo
Vo

4V
Vi  25 
+ –
Vin 3.3k CE
– 3.3 k

For D.C Analysis:


V0  Rc  4700
VB = 4 V  
VB – VE = 0.7  VE = 4 – 0.7 = 3.3 V Vi re  R E 25  3300
3.3 V
IE =  1mA  A V  0  1.413
3.3k Vi
V 25 mV
re = T   25  22.
IE 1mA Sol: To calculate re value apply D.C analysis
To apply small signal analysis set D.C Vth  VBE
source equal to zero. IE 
R
R E  th
 1
Rc = 4.7k
3  0.7
Vo   0.991mA
2k
2.3k 
101
VT 25
+ re    25.22
Vin re= 25 I E 0.991

Now apply small signal analysis.:
V0 = –icRc
Vi = icre
V 2k
 AV  0
Vi Vo
i R  R c  4.7 k 2k
 c c  
i c re re 25
= –188
Vi  RB 2k re

21.
RE
Sol: D.C calculation is same as previous
question
v0  R C  2k || 2k 
IE = 1 mA AV     39.65
re = 25  vi re 25.22
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 10 : Analog Electronics

Ri = RB || re 24.
Ri = 1.116k Sol: V0 = –icRC
 Vi ic
i v R R ie  ic = V0
AI  0  0  i  AV  i re
ii R L vi RL
10k 10k
 39.5  1.116  103 V 
 = –22.322 V0   i R C
2  103  re 
Ro = RC = 2k V0 R C

Vi re ie
23.
Sol: Given IE = 1mA re = 25
+12V
25mV
 re   25
1mA
20k R ~ Vi
AV = C
re
10k // 10k 5000
CB AV    200
25 25
CE R 0  R C  10k
+ Vo Ri = re = 25
Vi 20k 8k
i v R
– AI  0  0  i
ii R L vi
R 200  25
 AV  i   0.5
Apply KVL at input Loop: RL 10 4
6 – 10k (IB) – 0.7 – 8 k(1+)IB = 0
25.
6  0.7 Sol: For the given differential amplifier,
IB =  6.47 A
10 k  8 k  101 IE = 1mA
IE = 0.65 mA V
re  T  25
V 25 IE
re = T   38.5  V  R c  3000
I E 0.65 Ad  0   (or) –gmRc
Vi re 25
Apply small signal analysis Ad = –120
V RE 26.
Av = 0  = 0.995
Vi re  R E Sol: Io

Ri = RB ||  R E Total 3k

R E Total = (RE + re) VB +


0.7 –
Ri = 10 k || 803.85k = 9.87 k 9k 8.3k
R0 = RE || re = 38.3 
–12V
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 11 : Postal Coaching Solutions

0   12
I1   1mA 1mH
12k
0  VB –1000
I1 
3K Leq
VB = –3V
VB – VE = 0.7 1mH
L eq   1H
VE = VB – 0.7 1  1000
VE = –3.7 Volt
1F
 3.7  12
I0  –106
8.3k
I o  1mA Ceq
I E  0.5mA

C eq  1F 1  10 6  1F 
25mV
re   50
0.5mA 30.
 R C  2000 Sol: Maximum power across the Transistor will
Ad  
re 50 be at the middle of active region
V
A d  40 Ideally at VCE  CC
2
27. VCE = 12V
Sol: Voltage shunt feedback amplifier and 24  12
IC   1.5mA
8k
V0  R f  10k
   10 PTmax = VCE  IC
Vin RS 1k = 12  1.5
= 18mW

28. 31.
Sol: Current – series feedback amplifier and  R 
 R C  4.7k Sol: V0  1  f Vi
AV    1.4242  R1 
RE 3.3k
 2k 
V0  1  2
29.  3k 
Sol: 10
V0  volt
1k 3
2k
–100 3k
 I2
Req Vo
+ Io I1
using millers effect, 1k
2V
1k
R eq   9.9
1  100
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 12 : Analog Electronics

V0 10 V01
I1   mA &  I 2  V02
1k 3 1
10 V01  I 2  V02
2
V 2 3 2
I2  0   mA  I1  I 2  V02
2k 2k 3
 I 0  I1  I 2  4mA V02  (I1  I 2 ) volt
I01  I1  I x
32.  V01 
 R2 I01  I1  V01  I x  1 
Sol: V0  Vin  
R1
I01  V01  I1

33. 1k
I01  2I1  V01  I1 
Sol: I 02  I 2  I x 

I02  I 2  V01 
+ Io
Iin V0
I02  I1  I 2 A
– + 0.5k
IL 2k

V0 = –Iin 1K 35.
I  1K Iin Sol: 0.5k
IL  i  I1 2k
2K 2

I0 + Iin+ IL = 0 Va Vb
3k V
b
+ Vo
I 1mA
I0  Iin  in  0 I2
2 1k
2I0  2Iin  Iin = 0
Apply KCL at Va :
2I0 = –3Iin
Va  Vb Va  Vb
I0  3 1m  
 = –1.5 2k 3K
Iin 2
3Va  3Vb  2Va  2Vb
1m 
6k
34.
Sol: 6 = 5Va – 5Vb
1 6
 Va – Vb =
+ 1
I1  1 5
– + I01 V01 +
Ix I2 Va  Vb  1.2Volt
– + I02 V02
Va  Vb 1.2
I1    0.6mA
V01 = –I1 2k 2k
Apply KCL: 1.2
I2   0.4mA
0  V02 3k
Ix  I2 
1 Vb = 0.4m  1k = 0.4 Volt

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 13 : Postal Coaching Solutions

Vb  V0 39.
I1 
0.5k Sol: SR= 2fmax V0max
0.4  V0 SR
0.6m  V0 max 
0.5k 2f max
0.3 = 0.4 – V0 106
  7.95Volt
V0 = 0.1 Volt 2  20 103
V
V0  A  Vi  Vi  0  79.5mV
36. A
I  10  10 3
Sol: VC  .t =  0.5  10 3 40.
C 10 6 Sol:
C
VC = –5Volt R2
R1 L
37. 
+ Vo
Sol: Given open loop gain = 10 Vin 
– +
 Rf 
1  
V0  R 1 
 1 R2
Vi  R  1 z2 = R2|| =
1  1  f   sC sCR 2  1
 R1  A0L
z1 = R1 + sL
V0 1  3 R2

Vi 1  4 V0 sCR 2  1
10 
Vi R1  sL
4
V0  Vi  V0 R2
4 
1 Vi (sCR 2  1)(R1  sL)
10
2 4 It represent low pass filter with
V0   5.715Volt
4 R
1 D.C gain = 2
10 R1

38. 41.
 Rf
V0 R1 Sol: (i)
Sol: 
Vi
1
1  R f / R 1 
A OL 
V0 9 Ii Vi
 Vi +
Vi 10 I1 20k
1
10 Vx
V0  9 Ii 10k
 I2 5k
Vi 2 Ri
.V0 = –4.5Volt

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 14 : Analog Electronics

Apply KCL at Vx : R 2  R1  R 2 
Ix =  
Vx
 Ii  I1 R 2  R s  R1R 2 
5k
Vx Vi  Vx Vi  Vx 1  Rs  R2 
R0   R1
5k

10k

20k I x  R1  R 2 
Vx 3Vi  3Vx

5 20 42.
3 Sol: VE = Vin
Vx = Vi
7 VCE = VC – VE
V  Vx VCE = 15 – Vin
Ii = i given Vin 0 to 5 Volt
10k
3 Transistor is in active region
Vi  Vi Vin  15 17
Ii = 7 IE = I0 =   1.7 A [Vin = 2V ]
10k 10 10
Vi I0 1.7
 17.5 k IB = = A
Ii 1   100
VB = Vin + 0.7 = 2.7V
(ii) V  VB
Vp
 IB = op
R1 Ix 100
Vp
+ Vp Vop  2.7 1.7

I1 100 100
R2
Vop = 4.4 Volt
RS + 1V

43
Sol:
1 (a) n-stage
R0 =
Ix
Rs K K K
Vp =
R2  Rs
K
LPF single stage gain =
1  Vp 1  Vp f
Ix =  1 j
R2 R1 fc
n
 1 1   
Ix = (1–Vp)     K 
 R 2 R1  For n stages gain =  f 
1  j 
 R s  R1  R 2   fc 
Ix = 1    
 R 2  R s  R1R 2  3dB cut-off frequency (f3dB) is given by

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 15 : Postal Coaching Solutions

 
n
1M
f 3dB  100kHz , f3dB = 100kHz(for
  10
n  K 
K single stage)
 2 
2  1   f 3dB  
  f   9k
 c  9k
 
1k
 f3dB = fc 21/ n  1 –
– V0
1k +
K +
K
2
1

f
f3dB ft = Kf3dB Overall BW = f3dB 21/ 2  1
= 100k (0.04)
(b) Gain = 40dB = 100, ft = 1MHz = Gain BW = 64 kHz
f 106
BW  f 3dB  t   10kHz 44
Gain 100 Sol:
(a)
R2=1M 
100
R1
100 –
2
+ V0
+
10kHz 1MHz Vin
f –
99k

V0 1M
– Gain= 1  100  R 1  10.1k
1k Vin R1
+
IB
1M
10.1k

IB oV 100 V0
I=0 +
(c)
Gain=10 Gain=10
ft=1MHz ft=1MHz

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 16 : Analog Electronics

V0=IB(1M) 1
 100nA1M 
=100nA(1M) 10
= 0.1V = 0.01V
(b) (d)
 op-amp draws current R2
 op-amp CKT the curve doesn’t pass
through ‘0’ (transfer characteristics) R V0
1

1M  +

10.1k R2//R

100nA +
+ Vo
–s
+
V0s=1mV
– V0  V0 Offset Voltage  V0 Bios current
= 0.1 + 0.01
V0  V0 Bios current  V0 Offset Voltage = 0.11

 R  45.
 1MI B   1  2 Vos Sol: Given
 R1 
R1 = R3 = 10k
= 1M (100nA) +100(1mV)
R2 = R4 = 1M
= 0.2V
(c) R2 R2
Vin1 R1

R1 Vin2 V0
– +
R3
+
R4

Rcomp = R1//R2 R2
+ V0  Vin 2  Vin1 
R1
Vin 1M
–  Vin 2  Vin1 
10k
 Rcomp = R1//R2, then V0 = (IB1 – IB2) R2
Given Vos = 4mV
= Ios R2
IB = 0.3 A
V0 = (IB1 –IB2) R2
Ios = 50 nA
= Ios R2
= 1/10 (IBR2)
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 17 : Postal Coaching Solutions

R2 1
=
1
[3  SCR  ]
R1 SCR

1
= (S = j)
+  1 
3  j RC  
+  RC 
Vos
– Rx
R

R3 R4
Vo
+

 R  Vf
V0  1  2  Vos  I os R 2
 R1 
 1M  V0 R
 1  4mV  50nA1M  A= = 1+ x
 10k  Vf R

= 454mV Loop gain =1  A = 1/

46. A = 1
Sol:
Vx R Vf Rx  1 
1+ = 3 + j  RC  
1/sC + R  RC 
+
V0 R 1/sC Vf
Equate img. parts

– 1
0 = RC –
RC
KCL
1
2 =
Vx  V0 Vx Vx  Vf R C2 2
  = 0 -------(1)
(1 / SC) R R 1
f= frequency of oscillation
2RC
Vf  Vx Vf
 = 0 -------(2)
R (1 / SC)
Equate A=3

Rx
From (1) and (2) eliminate Vx 1+ 3
R
Vf SCR = 1/3
= = 2 2 2 Rx = 2R
V0 [S C R  3SCR  1]

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 18 : Analog Electronics

47.  96
Vth – VC = 2103I  I  
Sol: 0 =
1
 3 k 
LC
Vth – VC = 2 V
VF 0.5 k VC = Vth – 2 = 4 V

V0 R x  0.5 1
Vtrigger = VCC = 3 V
9k 3
A = 1  10
1k VC = 3 V to 4 V
A = 1 for sustained oscillations
0.5 k 50.
 10  1 Sol:
R x  0.5 k + 4V –
 Rx = 4.5 k +
+
Vi  RL Vo
48. –
1 –
Sol: Given  =
6 Vi = 8 sint V
R During –Ve cycle, Zener is Forward
A = 1 2
R1 biased and act as short circuit.
A = 1 for sustained oscillations V0 = Vi
 R2  1 During + Ve cycle,
1  .  1
 R 1  6 For 0 < Vi < 4, Zener OFF Since
R2 Zener is not in break down
=5
R1 V0 = 0
R2 = 5 R1 For Vi > 4, Zener is in break down.
V0 = Vi – 4
Vi
49.
Sol: 8
+9V

4
R1=3k
VCC
Threshold
R2 =2k
Output
trigger
–8
Discharge
V0
+ 3k
VC 4

2 2
Vth = VCC =  9  6 V –8
3 3
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 19 : Postal Coaching Solutions

51. 30  10
Sol: I z max   0.22A I L min  0A 
90.9
I 300
+ Pz = Vz Izmax
+ + Pz = 10  0.22
VS  10V 1K Vo Pz = 2.2W
– –

53.
+18V
Iz = 1mA to 60mA Sol:

Vs  Vz I1
I 300
300
Vs min  10 +
V0
I min  _______(I) Iz 10
300 – RL 1k
Vsmax  10
I max  _____(II)
300
VB = 10volt
 V  VE = 10 – 0.7 = 9.3volt
Imin = Izmin + IL  I L  z  10mA 
 1k 
IE = 9.3mA
Imin = 1mA + 10mA = 11mA IE 9.3mA
IB    92.07A
Imax = 60mA + 10mA = 70mA 1  101

From equation (1) and (2) required range of 18  10


I1   26.67mA
VS is 13.3 to 31 volt. 300
I z  I1  I B  26.57 mA
52.
54.
Sol: RS Sol:
+ IL 0 –100mA 30Volt IE
Vo
Vs:20 to 30volt  RL
10V – IL
300

I1 1k 100
+
The current in the diode is minimum when + –
the load current is maximum and vs is 10V

minimum. VP
V  Vz I1 5k
R s  s min Vp = 10volt
I z min  I L max
10
20  10 I1   2mA
Rs  5k
10  100mA V0 = (6k) I1=12V = VE
Rs = 90.9 VC = 30volt
ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 20 : Analog Electronics

 VCE = VC – VE =18 volt. V0 = –gmVgs (rd||RD)


IE = I1 + I L
 AV = –gm(rd||RD)
12
IE = 2 m   122mA  V 
2
100 I D  I DSS 1  GS 
 VP 

 IC  IE VG = – 2V
1 
VGS = –2 – 0 = – 2V (VS = 0V)
 IC = 0.120Amp  - 2
2
I D  10m 1  
 PT = IC  VCE  -5
 PT = 2.17W ID = 3.6 mA
2 ID IDSS
55. gm 
VP
Sol:
20Volt 2 (3.6m)(10m) 2  6m
   2.4ms
5 5
+ IC 1k  AV = – (2.4  10–3)[30 k || 6.8 k]
5V VP V0
– I = AV = – 13.3
VP I=0 – Vgs
+ R2
10k 10 6
I Vgs = Vs
RL 10 6  10 4
= 0.99 Vs
Io
V0
20  5 15 = AVs
I  mA Vs
10k 10 = – 13.30.99
VP = 10k I = 15volt = –13.16
VG = – 2V
20  VP 20  15
IC    5mA VGS = –2 – 0 = – 2V (VS = 0V)
1k 1k 2
 - 2
I D  10m 1  
 large  IB  0A  -5
 IC = I0 = 5mA ID = 3.6 mA
2 ID IDSS
56. gm 
VP
Sol: Given IDSS = 10 mA, VP = – 5V,
VGG = – 2V and rd = 30 k 2 (3.6m)(10m) 2  6m
   2.4ms
10k
5 5
G D
 AV = – (2.4  10–3)[30 k || 6.8 k]
RS + + +
V0
RG
Vin
RD
= AV = – 13.3
Vs Vgs rd=30k V Vgs
=1M gmVgs =6.8k 0
10 6
– – – Vgs = Vs
S 10 6  10 4

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

: 21 : Postal Coaching Solutions

57. I DS  V  1 
Sol: DC Equivalent (ii) gm =  2I DSS 1  GSQ   
VGS  VP   VP 
VDD
 0.607   1 
 2(1.65 mA) 1 
Rd  2   2 
IG = 0 = 1.149 ms
+
VGS ID (iii) VG = VGS + IDSRS = 0
RG – R  – 0.607 + 0.8 mA(RS) = 0
S
 0.607
RS =  758.75 
 0.8 mA
AC Equivalent
(iv) Voltage gain (AV) = – gmRd
+
V0 Gain (db) = 20 log AV
Rd
20 = 20 log AV
+ –  AV = 10
Vin RG
–  10 = gmRd
 10 = (1.149 m)Rd
Device equation  Rd = 8.7 k
2
 
(i) IDS = IDSS 1  VGS 
 VP 
2
 0.8 mA = 1.65 mA 1  VGS 
  2 
 VGSQ = – 0.607 V

ACE Engg. Publications Hyderabad|Delhi|Bhopal |Pune |Bhubaneswar |Bengaluru |Lucknow |Patna|Chennai |Vijayawada |Vizag | Tirupati |Kukatpally | Kolkata

You might also like