IN
GA
   &
MODULE -I
  MA
BE
                           NETWORK TOPOLOGY
1. Introduction: When all the elements in a network are replaces by lines with circles or
   dots at both ends, configuration is called the graph of the network.
A. Terminology used in network graph:-
   (i)     Path:- A sequence of branches traversed in going from one node to another is
           called a path.
   (ii)    Node:- A node point is defined as an end point of a line segment and exits at the
           junction between two branches or at the end of an isolated branch.
   (iii)   Degree of a node:- It is the no. of branches incident to it.
                                                         IN
   (iv)
                                           GA
             Tree:- It is an interconnected open set of branches which include all the nodes of
            the given graph. In a tree of the graph there        t be any closed loop.
   (v)      Tree branch(Twig):- It is the branch of a tree. It is also named as twig.
                               &
   (vi)     Tree link(or chord):- It is the branch of a graph that does not belong to the
            particular tree.
   (vii)    Loop:- This is the closed contour selected in a graph.
                    M
   (viii)   Cut-Set:- It is that set of elements or branches of a graph that separated two parts
            of a network. If any branch of the cut-set is not removed, the network remains
            connected. The term cut-set is derived from the property designated by the way by
   A
            which the network can be divided in to two parts.
   (ix)     Tie-Set:- It is a unique set with respect to a given tree at a connected graph
BE
            containing on chord and all of the free branches contained in the free path formed
            between two vertices of the chord.
   (x)      Network variables:- A network consists of passive elements as well as sources of
            energy . In order to find out the response of the network the through current and
            voltages across each branch of the network are to be obtained.
   (xi)     Directed(or Oriented) graph:- A graph is said to be directed (or oriented ) when
            all the nodes and branches are numbered or direction assigned to the branches by
            arrow.
   (xii)    Sub graph:- A graph          said to be sub-graph of a graph G if every node of  is a
            node of G and every branch of         is also a branch of G.
   (xiii)   Connected Graph:- When at least one path along branches between every pair of
            a graph exits , it is called a connected graph.
   (xiv)   Incidence matrix:- Any oriented graph can be described completely in a compact
           matrix form. Here we specify the orientation of each branch in the graph and the
           nodes at which this branch is incident. This branch is called incident matrix.
                    When one row is completely deleted from the matrix the remaining
           matrix is called a reduced incidence matrix.
   (xv) Isomorphism:- It is the property between two graphs so that both have got same
           incidence matrix.
B. Relation between twigs and links-
               Let       N=no. of nodes
                          L= total no. of links
                          B= total no. of branches
                No. of twigs= N-1
                                                       IN
       Then, L= B-(N-1)
C. Properties of a Tree-
   (i)     It consists of all the nodes of the graph.
   (ii)
   (iii)
   (iv)
                                         GA
           If the graph has N nodes, then the tree has (N-1) branch.
           There will be no closed path in a tree.
           There can be many possible different trees for a given graph depending on the no.
           of nodes and branches.
                              &
1. FORMATION OF INCIDENCE MATRIX:-
             This matrix shows which branch is incident to which node.
             Each row of the matrix being representing the corresponding node of the
                   M
             graph.
             Each column corresponds to a branch.
             If a graph contain N- nodes and B branches then the size of the incidence
   A
             matrix [A] will be NXB.
A. Procedure:-
BE
   (i)   If the branch j is incident at the node I and oriented away from the node,     =1. In
         other words, when =1, branch j leaves away node i.
   (ii)  If branch j is incident at node j and is oriented towards node i,   =-1. In other
         words j enters node i.
   (iii) If branch j is not incident at node i. =0.
                The complete set of incidence matrix is called augmented incidence matrix.
Ex-1:- Obtain the incidence matrix of the following graph.
         Node-a:- Branches connected are 1& 5 and both are away from the node.
         Node-b:- Branches incident at this node are 1,2 &4. Here branch is oriented towards
                   the node whereas branches 2 &4 are directed away from the node.
         Node-c:- Branches 2 &3 are incident on this node. Here, branch 2 is oriented towards
                  the node whereas the branch 3 is directed away from the node.
         Node-d:- Branch 3,4 &5 are incident on the node. Here all the branches are directed
                   towards the node.
               So,
                                       branch
                     Node
                                                          IN
  B. Properties:-
                                            GA
     (i)   Algebraic sum of the column entries of an incidence matrix is zero.
     (ii)  Determinant of the incidence matrix of a closed loop is zero.
                                      &
  C. Reduced Incidence Matrix :-
       If any row of a matrix is completely deleted, then the remaining matrix is known as
     reduced Incidence matrix. For the above example, after deleting row,
                       M
     we get
      [Ai ]=
    A
       Ai is the reduced matrix of Ai .
 BE
Ex-2: Draw the directed graph for the following incidence matrix.
                                       Branch
                 Node       1    2     3   4    5    6     7
                    1       -1   0    -1   1    0    0     1
                     2       0   -1    0   -1   0    -1    0
                     3       1    1   0     0   -1   1     0
                     4       0    0   1     0   1     0    -1
Solution:-
   From node
   From branch
                                                              IN
                                                GA
                                    &
     A                   M
  BE
Tie-set Matrix:
                                      Branch
                              1     2 3 4           5
      Loop currents I1        1     0 0 1           1
                    I2        -1   -1 1 0           -1
      Bi= 1       0 0     1   1 = 1 0 0 1 1
          -1      -1 1    0   -1  1 1 -1 0 1
  Let V1, V2, V3, V4 & V5 be the voltage of branch 1,2,3,4,5 respectively and j 1, j2, j3, j4, j5 are
current through the branch 1,2,3,4,5 respectively.
So, algebraic sum of branch voltages in a loop is zero.
Now, we can write,
             V1 + V4 + V5 = 0
             V1 + V2 -V3 + V5 =0
Similarly, j1 I 1 I 2         j2   I2           j3 I 2              j4   I1
              j5   I1   I2
Fundamental of cut-set matrix:-
                          A fundamental cut-set of a graph w.r.t a tree is a cut-set formed by one
twig and a set of links. Thus in a graph for each twig of a chosen tree th ere would be a
fundamental cut set.
                                                            IN
                No. of cut-sets=No. of twigs=N-1.
Procedure of obtaining cut-set matrix:-
   (i)     Arbitrarily at tree is selected in a graph.
   (ii)    From fundamental cut-sets with each twig in the graph for the entire tree.
   (iii)
   (iv)
                                              GA
           Assume directions of the cut-sets oriented in the same direction of the concerned twig.
           Fundamental cut-set matrix[ ]
                    =+1; when branch has the same orientation of the cut-set
                    =-1; when branch has the opposite orientation of the cut-set
                                   &
                    =0; when branch is not in the cut-set
Fundamental of Tie-set matrix:-
       A fundamental tie-set of a graph w.r.t a tree is a loop formed by only one link associated
                        M
with other twigs.
                No. of fundamental loops=No. of links=B-(N-1)
Procedure of obtaining Tie-set matrix:-
     A
    (i)     Arbitrarily a tree is selected in the graph.
    (ii)    From fundamental loops with each link in the graph for the entire tree.
  BE
    (iii)   Assume directions of loop currents oriented in the same direction as that of the link.
    (iv)    From fundamental tie-set matrix[ ] where
               =1; when branch b j is in the fundamental loop i and their reference directions are
                   oriented same.
               =-1; when branch b j is in the fundamental loop i but, their reference directions are
                   oriented oppositely.
               =0; when branch b j is not in the fundamental loop i .
Ex-3: Determine the tie set matrix of the following graph. Also find the equation of branch
current and voltages.
Solution
      Tree
                                           No. of loops= No. of links= 2
                                                       IN
     Loop 1
                                         GA
                                        Loop 2
                               &
Q1. Draw the graph and write down the tie-set matrix. Obtain the network equilibrium
equations in matrix form using KVL.
                    M
Solution
    A
 BE
Tie-set
                                             1    2    3        4 5 6
                                I1           1    0    0       1 -1 0
                                I2           0    1    0        0 1 -1
                                I3           0    0    1       -1 0 1
         V1 V4 V5                0                j1   I1
        V2 V5 V6                0                 j2   I2
        V3 V4 V6                0                 j3   I3
                                                                         IN
Again, V 1= e2 e2                             i4= I1- I3
       V2= e3-e2                                i5=I2- I1
      V4= e4 e1                              i6 = I3- I2
       V5=e2- e4
       V 6 = e3 - e 4
                                                                   GA
Q2. Develop the cut-set matrix and equilibrium equation on nodal basis.
                                                       &
     A                           M
Ans.
          1            3                      2
  BE
       Cut set             1         2       3    4    5
              C1           0         0       1    1    -1
              C2           -1        1       0    -1       1
Ex- Determine the cut-set matrix and the current balance equation of the following graph?
Solution:
    Tree
                                                                       IN
      No of twigs=1, 2, 5                              GA
Cut-set matrix
                                             &
                                    branch
             cut-set        1   2    3    4    5
                                M
                   C1       0   1    1    0    0
                   C2       0   0    1    -1    1
     A
                   C3       1   0    1    -1    0
  BE
        i2     i3       0
        i3    i4    i5      0        where, i1 , i2 , i3 , i4 , i5 are respective branch currents.
        i1    i3    i4      0
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
        IN
       GA
MODULE- II
   &
  MA
BE
                                      LAPLACE TRANSFORM
Definition:
    Given a function f (t), its Laplace transform, denoted by F(s) or L[f (t)], is given by,
         where, s is a complex variable given by,
* The Laplace transform is an integral transformation of a function f (t) from the time domain
into the complex frequency domain, giving F(s).
Properties of L.T.
                                                                  IN
(i) Multiplication by a constant:-
        Let, K be a constant
      F(s) be the L.T. of f(t)                      GA
      Then;
(ii) Sum and Difference:-
                                        &
        Let          &           are the L.T. of the functions           respectively.
                              M
 (iii) Differentiation w.r.t. time [Time       differentiation]
       A
Proof
    BE
F(S)=
Let, f(t)=u; then,
&
So,                      =-
=>F(s)=        +
=>F(s)=
=>                    s F(s)
(iv)                                -
                                              dt
             U=                =>
         dv =          dt => v=
                                                               IN
       So,
                                             +
                                                 GA
(v) . Differentiation w.r.to S [frequency differentiation]:-
                                            &
             Proof:
                                M
                                                               ]
(vi) .                          -
       A
    BE
Proof;
(vii). Shifting Theorem:-
       (a)        L[f(t-1).U(t-a)] =
       (b)        F(s+a) =L[            ]
             Proof: L [
(viii). Initial Value Theorem:-
f(
proof :    sF(s) - f(
          =>s(s) = f(
          =>                   f(
(ix). Final Value Theorem:-
F(
Proof :- [sf(s) - f(
                                                                       IN
           =f(             =
(x). Theorem of periodic functions:-
Let
function          whose time periods is T.
                                                       GA
                                     the functions described by 1 st ,2nd & 3rd ...cycles of the periodic
                                           &
                                           =          [1+                      =
        A                 M
(xi). Convolution Theorem:
                                                  t
     BE
                L' F1 s F2 s        f1 t   f2 t       f1 (t   )f   d
                                                  0
(xii). Time Scaling:
                         1   s
               L f at      F
                         a   a
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
        IN
       GA
MODULE- III
   &
  MA
BE
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN
BE
   AM
        &
            GA
              IN