0% found this document useful (0 votes)
186 views16 pages

Thermodynamics Homework Solutions

The document provides solutions to several homework problems involving thermodynamic processes for ideal gases. Problem P2.3 involves the isothermal compression of 3 moles of an ideal gas. The work, internal energy change, and enthalpy change are calculated. Problem P2.7 calculates the same parameters for the cooling of 1 mole of ideal gas at constant pressure. The summary concludes after summarizing the key details and calculations provided in the first two example problems.

Uploaded by

Arvin Dalisay
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
186 views16 pages

Thermodynamics Homework Solutions

The document provides solutions to several homework problems involving thermodynamic processes for ideal gases. Problem P2.3 involves the isothermal compression of 3 moles of an ideal gas. The work, internal energy change, and enthalpy change are calculated. Problem P2.7 calculates the same parameters for the cooling of 1 mole of ideal gas at constant pressure. The summary concludes after summarizing the key details and calculations provided in the first two example problems.

Uploaded by

Arvin Dalisay
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

Homework 3 Answer

(Due 02/04/2011 Friday)

P2.3, P2.7, P2.8, P2.11, P2.16, P2.19, P2.20, P2.21, P2.23, P2.25, P2.26

P2.3) 3.00 moles of an ideal gas are compressed isothermally from 60.0 to 20.0 L using a constant

external pressure of 5.00 atm. Calculate q, w, U, and H.

The work against a constant pressure:


 
w   p external V  5  101325 Pa   20  10 3 m 3  60  10 3 m 3  2.03  10 4 J

U  0 and H  0 since T  0 and H  U  PV


q   w   2.03  10 4 J

P2.7) For 1.00 mol of an ideal gas, Pexternal = P = 200.0  103 Pa. The temperature is changed from

100.0°C to 25.0°C, and CV,m = 3/2R. Calculate q, w, U, and H.

U  n C V,m T 
3
2
 
 1.0 mol  8.314472 J K -1 mol -1  298 K - 373 K    935 J

H  n C p,m T  n C V,m  R  T 
5
2
 
 1.0 mol  8.314472 J K -1 mol-1  298 K - 373 K    1559 J

q P  H   1559 J

w  U - q P  (935 J )  (1559 J )  624 J

P2.11) Calculate H and U for the transformation of 1.00 mol of an ideal gas from 27.0°C and 1.00

atm to 327°C and 17.0 atm if

T 1 1
C P,m  20.9  0.042 in units of J K mol
K

For an ideal gas, H is given by:

1
Tf 600 K
 T
ΔH  n  C p,m dT  n   20.9  0.042  dT
Ti 300 K 
K

ΔH  20.9  600 K  300K  J  0.021 T 2   600 K


300 K J
   
 6.27  10 J  5.67  10 J  11.94  10 J
3 3 3

ΔU  ΔH  ΔpV   ΔH  n R ΔT
   
 11.94  10 3 J  1 mol  8.314472 J mol-1 K -1  300 K   9.45  103 J
P2.12) Calculate w for the adiabatic expansion of 1.00 mol of an ideal gas at an initial pressure of 2.00

bar from an initial temperature of 450. K to a final temperature of 300. K. Write an expression for the

work done in the isothermal reversible expansion of the gas at 300. K from an initial pressure of 2.00

bar. What value of the final pressure would give the same value of w as the first part of this problem?

Assume that CP,m = 5/2R.

 3
2

 
w ad  U  n C p,m  R  T    mol   8.314472 J K -1 mol-1  150 K    1.87  103 J
 

p   p   w reversible
w reversible  n R T ln i  and ln i  
 pf   pf  nRT

p
ln i
  w reversible
  

1.87 103 J   0.7497
 pf  nRT 
1 mol 8.314472 J K -1 mol-1  300 K 
pi
 2.12
pf

pi
pf   0.944bar
2.12

P2.15) An ideal gas undergoes an expansion from the initial state described by Pi, Vi, T to a final state

described by Pf, Vf, T in (a) a process at the constant external pressure Pf and (b) in a reversible process.

Derive expressions for the largest mass that can be lifted through a height h in the surroundings in these

processes.

2
p f V f  Vi 
w  mgh   p f V f  Vi  m 
gh

 Vf  nRT  V f 
w  mgh   nRT ln   m  ln  
 Vi  gh  Vi 

Alternate answer:

mg
pext 
A
 pext V f  Vi   
mg
 Ah  mgh
A
pext V f  Vi 
m
gh

If w is the average weight to be lifted

m g Vf
w  Ah  m gh  nRT ln
A Vi
nRT V f
m  ln
gh Vi

If m is the final weight

mg
pf   Ah  V  V f  Vi
A
A pf p f V f  Vi 
m 
g gh

P2.19) 3.50 moles of an ideal gas are expanded from 450. K and an initial pressure of 5.00 bar to a

final pressure of 1.00 bar, and CP,m = 5/2R. Calculate w for the following two cases:

a. The expansion is isothermal and reversible.

b. The expansion is adiabatic and reversible.

3
Without resorting to equations, explain why the result for part (b) is greater than or less than the result

for part (a).

a) Calculating the initial and final volumina:

Vi  

n R T 3.50 mol  8.314472 J K 1 mol 1  450 K  
 0.0262 m 3
pi 5.00  10 Pa
5
 
Vf  

n R T 3.50 mol  8.314472 J K 1 mol 1  450 K  
 0.1310 m 3
pf 1.00  10 Pa
5
 
w for an isothermal, reversible process is then given by:
 Vfinal 
  0.1310 m 3 
  
   3.50 mol  8.314472 J K mol  450 K   ln 0.0262 m 3 
 1 1
w   n R T ln
 Vinitial     
w  -21076 J  -21.1 kJ
b) For an adiabatic, reversible process:
T  V 
ln final    - 1 ln final  , where γ  C P, m /C V,m equation 2.43
 Tinitial   Vinitial 

T  T p   T  p 
ln final    - 1 ln final initial    - 1ln final   ln initial 
 Tinitial   Tinitial p final    Tinitial   p final 

T 
ln final   
 - 1 ln p initial 
 p 
 Tinitial   final 
Therefore:
 γ - 1  p initial 
Tfinal  Tinitial Exp  ln 
 γ  p final 
With C P,m  52 R, and C V,m  32 R , the final temperature is:

  5bar 
Tfinal  450 K  Exp  0.4  ln   236 K
  1bar 
And finally w for an adiabatic process and for 3.5 moles of gas:

3
w  qV  nCV T  (3.5mol )   (8.314472 JK 1mol 1 )  (236 K  450 K )  9341.31J   9.34kJ
2

Less work is done on the surroundings in part b) because in the adiabatic expansion, the temperature
falls and therefore the final volume is less that that in part a).

4
P2.20) An ideal gas described by Ti = 300. K, Pi = 1.00 bar, and Vi = 10.0 L is heated at constant

volume until P = 10.0 bar. It then undergoes a reversible isothermal expansion until P = 1.00 bar. It is

then restored to its original state by the extraction of heat at constant pressure. Depict this closed-cycle

process in a P–V diagram. Calculate w for each step and for the total process. What values for w would

you calculate if the cycle were traversed in the opposite direction?

p 1 Vi
10

p [bar]
6

2
pi Vi p i V2

0
10 20 30 40 50 60 70 80 90 100 110 120 130

V [L]

First we calculate the number of moles:

n
p i Vi

1.00 bar   10.0 L   0.401 mol
R Ti 
0.0831451 L bar K 1 mol 1  300 K  
The process in the diagram above is described by the steps:

step 1: pi, Vi, Ti → p1,Vi, T1


step 2: p1, Vi, T1 → pi,V2, T1
step 3: pi, V2, T1 → pi,Vi, Ti

In step 1 (pi, Vi, Ti → p1,Vi, T1) w1 = 0 since V stays constant

In step 2 (p1, Vi, T1 → pi,V2, T1) we first calculate T1:

5
T1  Ti
p1
 300 K  
10.0 bar   3000 K
pi 1.00 bar 

Then the work is:

V  p 
w 2  n R T ln f   n R T ln f 
 Vi   pi 

   10.0 bar 
 0.401 mol  8.314472 J K -1 mol -1  3000 K   ln
1.00 bar
   23.0  10 J
3

 

In step 3 (pi, V2, T1 → p1,Vi, Ti) we first calculate V2:

p 1 Vi
p 1 Vi  p i V2 and V2   10Vi  100L
pi

And the work:

w 3  p externmal V  1.00 bar  


10 5
Pa  
 10 L  100 L  
10 3 m 3 9.00  10 3 J
1 bar  1 L 

And for the entire circle:

w cycle  w 1  w 2  w 3  0 J  23.0  10 3 J  9.00  10 3 J   14.0  10 3 J

If the cycle were traversed in the opposite direction, work of each step has the same value with
opposite sign.
P2.23) A pellet of Zn of mass 10.0 g is dropped into a flask containing dilute H2SO4 at a pressure of P

= 1.00 bar and temperature of T = 298 K. What is the reaction that occurs? Calculate w for the process.

The chemical equation for the process is:

2-
 Zn 2 (aq)  SO 4 (aq)  H 2 (g)
Zn (s)  H 2 SO 4 (aq) 

First we calculate the volume of H2 that is produced:

6
10g
n H 2  n Zn   0.1529mol
65.39gmol -1
nH RT 0.1529mol  8.314472 JK 1mol 1  298 K
VH 2  2   3.79  10 3 m 3
P 1  10 Pa
5

Assuming that Vf  Vi   VH 2 , the work is:

   
w  p ext Vf  Vi    1  105 Pa  3.79  10 -3 m 3  - 379 J

P2.25) One mole of an ideal gas, for which CV,m = 3/2R, initially at 20.0°C and 1.00  106 Pa

undergoes a two-stage transformation. For each of the stages described in the following list, calculate

the final pressure, as well as q, w, U, and H. Also calculate q, w, U, and H for the complete

process.

a. The gas is expanded isothermally and reversibly until the volume doubles.

b. Beginning at the end of the first stage, the temperature is raised to 80.0°C at constant volume.

p1 V1 p1
a) p 2    0.500  10 6 Pa
V2 2

V 
w   n R T ln f  
  1.0 mol  8.314472 J K -1 mol -1  293.15 K   ln 2    1.69  10 3 J
 Vi 

U  H  0 because T  0

q   w  1.69  10 3 J

b) constant volume, then


T1 T2

T p
, therefore p 2  2 1 

0.500  10 6 Pa  353 K  6.02  10 5 Pa
p1 p 2 T1 293 K 

3
 
U  n C V,m T  1.0 mol  8.314472 J K -1 mol -1  353 K - 293 K   748 J
2

7
w = 0 because V = 0

q = U = 748 J

H  n C p, m T  n C V, m  R T  1.0 mol 


5
2
 
 8.314472 J K -1 mol -1  353 K - 293 K   1.25  10 3 J

For the overall process:

 
q  1.69  10 3 J  748 J   2.44  10 3 J

 
w   1.69  10 3 J  0 J    1.69  10 3 J

U  748 J   0 J   748 J

 
H  1.25  10 3 J  0 J   1.25  10 3 J

P2.26) One mole of an ideal gas, for which CV,m = 3/2R, initially at 298 K and 1.00  105 Pa undergoes

a reversible adiabatic compression. At the end of the process, the pressure is 1.00  106 Pa. Calculate

the final temperature of the gas. Calculate q, w, U, and H for this process.

1 1 1


Tf  Vf  T   pi 
    f   
Ti  Vi   Ti   pf 

 1
 Tf  p 
    i 
 Ti   pf 

1 
 Tf   pi  
    
 Ti   pf 

 5
 1 

 
 3
 Tf   1.00  10 5 Pa  5
 0.100
   0.4
      2.51
 
3
 Ti   1.00  10 6
Pa 

8
Tf   2.51   298 K   749 K

q = 0 for an adiabatic process.

3
 
w  U  n C V,m T  1.0 mol  8.314472 J K -1 mol -1  749 K - 298 K   5.62  10 3 J
2

H  U    p V   U  R T   5.62  103 J    8.314472 J K -1 mol-1    749 K-298 K   9.37 103 J

P2.26) One mole of an ideal gas, for which CV,m = 3/2R, initially at 298 K and 1.00  105 Pa undergoes

a reversible adiabatic compression. At the end of the process, the pressure is 1.00  106 Pa. Calculate

the final temperature of the gas. Calculate q, w, U, and H for this process.

1 1 1


Tf  Vf  T   pi 
    f   
Ti  Vi   Ti   pf 

 1
 Tf  p 
    i 
 Ti   pf 

1 
 Tf   pi  
    
 Ti   pf 

 5
 1 

 
 3
 Tf   1.00  10 5 Pa  5
 0.100 
   0.4
      2.51
 
3
 Ti   1.00  10 6
Pa 

Tf   2.51   298 K   749 K

q = 0 for an adiabatic process.

3
 
w  U  n C p,m T  1.0 mol   8.314472 J K -1 mol -1  749 K - 298 K   5.62  10 3 J
2

H  U    p V   U  R T   5.62 103 J    8.314472 J K -1 mol-1    749 K-298 K   9.37 103 J

P2.29) A cylindrical vessel with rigid adiabatic walls is separated into two parts by a frictionless

9
adiabatic piston. Each part contains 50.0 L of an ideal monatomic gas with CV,m = 3/2R. Initially, Ti =

298 K and Pi = 1.00 bar in each part. Heat is slowly introduced into the left part using an electrical

heater until the piston has moved sufficiently to the right to result in a final pressure Pf = 7.50 bar in the

right part. Consider the compression of the gas in the right part to be a reversible process.

a. Calculate the work done on the right part in this process and the final temperature in the right

part.

b. Calculate the final temperature in the left part and the amount of heat that flowed into this part.

The number of moles in each part is given by:

n
p i Vi

1.00 bar   50.0 L   2.02 mol
R Ti 
8.314472  10 -2 L bar K 1 mol 1  298 K  
a) We first calculate the final temperature in the right side:

1 1 1


Tf  Vf  T   pi 
    f   
Ti  Vi   Ti   pf 

 1
 Tf  p 
    i 
 Ti   pf 

1 
 Tf   pi  
    
 Ti   pf 

 5
 1 
 3
 Tf   1.00 bar   5
      
3  2.24
 Ti   7.50 bar  

Tf   2.24    298 K   667 K

10
3
 
w  ΔU  n C V ΔT  2.02 mol   8.314472 J K 1 mol 1  667 K - 298 K   9.30  10 3 J
2

b) First we calculate the volume of the right part:

n R Trf  2.02 mol    8.314472  10 bar L K mol    667 K 


-2 1 1

Vrf    14.9 L
p rf  7.50 bar 

Therefore Vlf  1000 L   14.9 L   85.1 L , and

Tlf 
p lf Vlf

 7.50 bar   85.1 L   3800 K
nR  2.02 mol   8.314472 10-2 bar L K 1 mol 1 

3
 
ΔU  n C V ΔT  2.02 mol   8.314472 J K 1 mol 1  3800 K - 298 K   88.2  10 3 J
2

From part a) w = 9.30  10 3 J

q = U – w = 88.2  10 3 J + 9.30  10 3 J  97.5  10 3 J

P2.43) One mole of N2 in a state defined by Ti = 300. K and Vi = 2.50 L undergoes an isothermal

reversible expansion until Vf = 23.0 L. Calculate w assuming (a) that the gas is described by the ideal

gas law and (b) that the gas is described by the van der Waals equation of state. What is the percent

error in using the ideal gas law instead of the van der Waals equation? The van der Waals parameters

for N2 are listed in Table 1.3.

a) For an ideal gas:

V 
w reversible  n R T ln f    23.0 L 
  1.0 mol  8.314472 J K -1 mol -1  300 K   ln    5.54  10 J
3

 Vi   2.50 L 

b) For a van der Waals gas:

11
Vf
 RT
Vf
a  Vf
 
Vf
 
w    p external dV      dV    R T dV    a dV

V b V 2
Vi 
 V  Vm  b  V  V 2 
Vi m m  i i m 

The first integral can be solved by substituting y = Vm - b:

Vf y
 RT  f
RT
   dV     dy   R TlnVf  b   lnVi  b 
V b
Vi  m yi 
y 

Therefore, the work is given by:

 V  b   1 1 
w reversible   n R T ln f   a   
 Vi  b    Vi Vf 
 23.0 L  0.0380 L  
 
 1.0 mol  8.314472 J K -1 mol-1  300 K   ln 
 2.50 L  0.0380 L  

  10 Pa 
 10   
5
6 1 1
 1.366 L2 bar  m 6 L2       5.52  103 J
1 bar   2.50  10 m
-3 3
 
23.0  10 -3 m 3  

And the percent error is:

percent error  100 


 5.52 10 J    5.54 10 J 
3 3

  0.4%
 5.52 10 J 
3

12
1. Calculate dy/dx for the following y: (a) y =ax+b; (b) y =2x2; (c) y = 3x5 + 2(x+a)-3 (d) y = ln(x/3);
(e) y = C exp(-ax); (f) Acos(x) (g) Asin(bx) +Ccos(x/b) (h) y = x2exp(-ax2)

a)
dy d(ax+b)
 a
dx dx

b)
dy d(2x 2 )
  2  2  x1  4 x
dx dx

c)
dy d (3 x  2  x  a  ) d (3 x 5 ) d (2  x  a  )
5 -3 -3

 3  5  x 4  2  (3)   x  a   15 x 4  6  x  a 
4 4
  
dx dx dx dx

d)
 x   x 
d ln( )  d ln( ) 
dy a    a   1a  1
 
dx dx x a x x
ad  
a

e)
dy d [C exp(-ax)] Cd [exp(-ax)]
   aC exp(ax)
dx dx 1
 d (-ax)
a

f)
dy d [ A cos( x)] Ad [cos( x)]
    A sin( x)
dx dx d ( x)

g)
dy d [ A sin(bx)  C cos( x / b)] d [ A sin(bx)] d [C cos( x / b)]
    Ab cos(bx)  C / b sin( x / b)
dx dx dx dx

h)
dy d [ x 2 exp(-ax 2 )] d ( x2 ) d [exp(-ax 2 )] d [exp(ax 2 )]
  exp(ax 2 )  x2  exp(ax 2 )  2 x  x 2
1
dx dx dx dx d (ax 2 )
a 2 x
2 3
 2 x exp(ax )  2ax exp(ax ) 2

 2 x exp(ax 2 )(1  ax 2 )
{ d (uv)  udv  vdu }

2. Calculate dy/dx from the following equations


(a) ln(x) + y = xy (b) 1 = cos(x)y

13
a)
ln( x)
ln( x)  y  xy  y 
x 1

 ln(x)  d[ln(x)] d(x - 1) 1


d  (x - 1) - ln(x) ( x  1)  ln( x)
dy x  1  x ln( x)
  
x - 1 dx dx  x 
dx dx (x - 1) 2
( x  1) 2
x( x  1) 2

{ d ( u )  vdu 2 udv }
v v

b)
1
1  cos( x) y  y 
cos( x)

 1 
d
dy cos(x)  cos(x)  0 - 1  (-sinx) sin( x)
   2

dx dx (cosx) (cos x) 2

 m C2  3
3. P (C )  4C 2 exp 
 
 / Z . (a) Calculate dP(C)/dC. (b) Show there are two solutions of
 2kT 
dP(C)/dC = 0 (C ≥ 0) and one solution gives the most probable speed, C =(2RT/M)1/2, where m is
the weight of a gas molecule, M is its molar mass, and k is the Boltzmann constant.

a)
4 2  mC 2 
P (C )  3
C exp  
Z  2kT 

  mC 2     mC 2  
 d  exp(  ) 2   d exp( ) 2 
dP(C ) 4  2  2kT   mC  d (C )  4  2
2
 2kT   m2C   mC  d (C ) 
2
 3 C  exp     3 C    exp   
dC Z  dC  2kT  dC  Z   mC 
2
 2kT   2kT  dC 
d   
    2kT  
   
4  mC 3
 mC  2
 mC  2

 3  exp    2C exp  
Z  kT  2 kT   2kT 
4  mC 2   mC 2 
 C exp  
 2kT    2  
Z3    kT 

b)
dP(C ) 4  mC 2   mC 2 
 0  3 C exp     2    0
dC Z  2kT   kT 

14
1/2
 mC 2  2kT 2 N A kT 2 RT  2 RT 
 2  0C 
2
   C   
C  0 or  kT  m N A m M  M 
2 RT
C C  0
M

4. Calculate ∂f/∂x and ∂f/∂y for the following f(x, y, z): (a) f = xy-2 (b) f = sin(3xy)
(c) f = ln(x2y) (d) f = yx4 + exp(-xy2)

a)
f   x y    2y
2 3 3

x x x 3

f   x y   x   y )   3x
2 3 2 3
2
 y2
y y   y
b)
f sin 3 xy  sin 3 xy 
   3 y cos(3 xy )
x x 1
 3 xy 
3y
f sin 3 xy  sin 3 xy 
   3 x cos(3 xy )
y y 1
 3 xy 
3x
c)
f  ln  xy    ln  xy  
3 3
1 1
   y3  3 
x x   xy 
3
xy x
y3
f  ln  xy    ln  xy  
3 3
1 3
   3 xy 2  3 
y y   xy 3  xy y
3 xy 2
d)
f   y x  y exp( xy )    y x    y exp( xy ) 
2 4 2 2 2 4 2 2

    4 y 2 x3  y 4 exp   xy 2 
x x x x

f   y x  y exp( xy )    y x    y exp( xy ) 
2 4 2 2 2 4 2 2

    2 x 4 y  2 y exp   xy 2   2 xy 3 exp   xy 2 
y y y y

5. Calculate Cv = (∂U/∂T)V and Cp = {∂(U + PV)/∂T}P for n mole of ideal gas assuming that U =
5nRT/2 and n is a constant. What kind of molecular properties do they depend on?

5
U nRT
2

15
 5 
   nRT  
 U  2    5 nR
CV    
 T V  T  2
 
V

 5   7 
   nRT  nRT      nRT  
  U  PV    2     2    7 nR
CP       
 T P  T   T  2
  P   P

CV and CP depend on moles n.

16

You might also like