0% found this document useful (0 votes)
99 views3 pages

Exercise 5A: y y X X

Uploaded by

Calixto Jaxon
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
99 views3 pages

Exercise 5A: y y X X

Uploaded by

Calixto Jaxon
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Exercise 5A

1 a (x1, y1) = (4, 2), (x2, y2) = (6, 3) g (x1, y1) = (−2, −4), (x2, y2) = (10, 2)
y2  y1 3  2 y2  y1 2   4 
 
x2  x1 6  4 x2  x1 10   2 
1 6
 
2 12
1
b (x1, y1) = (−1, 3), (x2, y2) = (5, 4) 
2
y2  y1 43

x2  x1 5   1
h  x1, y1    12 , 2 ,  x2 , y2    43 , 4
1 y2  y1 4  2
 
6 x2  x1 34  12
c (x1, y1) = (−4, 5), (x2, y2) = (1, 2) 2

y2  y1 25 1
4

x2  x1 1   4  8
3

5
i  x1, y1    14 , 12  ,  x2 , y2    12 , 23 
y2  y1 23  12

d (x1, y1) = (2, −3), (x2, y2) = (6, 5) x2  x1 12  14
y2  y1 5   3 1
  6
x2  x1 62 1
4
8 2
 
4 3
2
j (x1, y1) = (−2.4, 9.6), (x2, y2) = (0, 0)
e (x1, y1) = (−3, 4), (x2, y2) = (7, −6) y2  y1 0  9.6
y2  y1 6  4 
 x2  x1 0   2.4 
x2  x1 7   3
9.6
10 
 2.4
10  4
 1
k (x1, y1) = (1.3, −2.2), (x2, y2) = (8.8, −4.7)
f (x1, y1) = (−12, 3), (x2, y2) = (−2, 8) y2  y1 4.7   2.2 
y2  y1 83 
 x2  x1 8.8  1.3
x2  x1 2   12 
1

2

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 1
y2  y1 2.5 3 (x1, y1) = (5, b), (x2, y2) = (8, 3)
1 k 
x2  x1 7.5 3b
 3
1 85
 3b
3  3
3
l (x1, y1) = (0, 5a), (x2, y2) = (10a, 0) 3  b  9
y2  y1 0  5a b  12

x2  x1 10a  0
5a 4 (x1, y1) = (c, 4), (x2, y2) = (7, 6)
 64 3
10a 
5 7c 4
 2 3
10 
1 7c 4
 3
2 2  7  c
4
m (x1, y1) = (3b, −2b), (x2, y2) = (7b, 2b) 8  37  c
y2  y1 2b   2b  8  21  3c

x2  x1 7b  3b 13  3c
4b 13
 c
4b 3
1 13

3
n (x1, y1) = (p, p2), (x2, y2) = (q, q2)
1
y2  y1 q 2  p 2 4
 3
x2  x1 q p


 q  p  q  p  5 (x1, y1) = (−1, 2d), (x2, y2) = (1, 4)
q p 4  2d 1

q p 1   1 4
4  2d 1

2 (x1, y1) = (3, −5), (x2, y2) = (6, a) 2 4
y2  y1 1
4 2d  
x2  x1 4
a   5  1
So 4 2 d 0
63 4
a5 1
 4 d 2
3 4
 a  5  12
a7

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 2
6 (x1, y1) = (−3, −2), (x2, y2) = (2e, 5) 9 The gradient of AB is:
5   2  43 1
2 
2e   3 42 2
The gradient of AC is:
7
2 73 4
2e  3 
10  2 8
7  2  2e  3  1

7  4e  6 2
4e  1 The gradients are equal and there is a
point in common between the two line
1
e segments so the points can be joined by
4 a straight line.
7 (x1, y1) = (7, 2), (x2, y2) = ( f, 3f ) 10 If the points A(−2a, 5a), B(0, 4a) and
3f 2 C(6a, a) are collinear, then they all lie
4
f 7 on the same straight line.
3 f  2  4( f  7)
The gradient of AB is:
3 f  2  4 f  28
4a  5a a
2  f  28 
0  (2a) 2a
28  2  f
1
f  26 
2
The gradient of AC is:
8 (x1, y1) = (3, −4), (x2, y2) = (−g, 2g) a  5a 4a
2 g   4  
 3 6a  (2a) 8a
g  3 1

2g  4 2
 3
g  3 The gradients are both  12 and there is
2 g  4  3   g  3 a point in common between the two line
segments so the points are collinear.
2 g  4  3g  9
4  g 9
g  5

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free. 3

You might also like