2.
A reinforced concrete beam having a width of 310 mm and an overall depth of 550mm is reinforced with 2-25 mm
compression bars and 8-25 mm tension bars both having fy = 415 MPa. Concrete protective covering is 50 mm from the
centroid of the bar group. Unit weight of concrete is 23.5 kN/m3. Concrete strength fc’ = 21 MPa. The beams is supported
as shown. L1 = 8m and L2 = 3m. Other than the weight of the beam, the beam will support a uniform live load. 
        Calculate the following: 
        a)  the balance tension steel area. 
        b)  the ultimate moment capacity of the beam. 
        c)  maximum uniform service liveload  that the beam can carry. 
        SOLUTION :
                                                                           8m                             3m
                                                      A                                           B
        Fc’ = 21Mpa, fy = 415MPa, γ = 23.5 Kn/m
Continuation:
ρ=
       As
          =
            8   ( π4 ( 25) )
                         2
       bd 310(500)
ρ=0.02534
         0.85 ( 21 )( 0.85 ) 120
ρ bal=
                415          203 ( )
ρbal=0.021612
ρbal < ρ therefore doubly reinforced concrete beam
C 1+C 2=T
0.85 ( 21 ) a ( 310 )+ 2     ( π4 ( 25 ) ) (415−0.85 ( 21) )=8 ( π4 ( 25 ) )(415)
                                     2                                 2
a=289.1748
c=281.3821
         600
fs=             ( 500−281.3821 )=466.16589>fy
       281.3821
         600
fs=             ( 281.3821−50 )=493.3834> fy
       281.3821
        0.003
ε t=            ( 500−281.3821) =0.0023308
       281.3821
       250    29
∅=         ε + =0.6776
        3 t 60
                                                   239.1748
M 1n=0.85 ( 21 ) ( 239.1748 )( 310 ) 500−  (           2       )( 10001 )
                                                                        2
M 1n=503.4661 Kn−m
M 2n=2   ( π4 ( 25) )( 415−0.85 (21 )) (218.3821−50)( 10001 )
                    2
                                                                       2
M 2n=90.216 Kn−m
M n=503.4461+90.2161 M n=593.682 2
Mu=(0.6776)(593.6822)
Mu=402.2791 Kn−m
b.)
As bal=ρ bal bd
¿ 0.021612(310)(500)
¿ 3349.86 mm2
                                    W                        W
                             R 1=      ( L 12−L 22)   R 2=      ( L 12+ L22 )
                                    2L                       2L
                       V1
                                                                                V3
                                                         V2
                                        a2                     WL 22
                             L 1(1−         )          M 2=
                                        L12                     2
                402.2791=¿
W ¿ =39.5501 KN −m