CIGRE Green Books
Series Editor
CIGRE
International Council on Large Electric Systems (CIGRE)
Paris, France
CIGRE presents their expertise in unique reference books on electrical power
networks. These books are of a self-contained handbook character covering the
entire knowledge of the subject within power engineering. The books are created
by CIGRE experts within their study committees and are recognized by the engi-
neering community as the top reference books in their fields.
More information about this series at http://www.springer.com/series/15209
Terry Krieg • John Finn
Editors
Substations
With 375 Figures and 86 Tables
Editors
Terry Krieg John Finn
CIGRE Study Committee B3 CIGRE UK
Power Network Consulting Pty Ltd Newcastle upon Tyne, UK
Adelaide, Australia
ISSN 2367-2625 ISSN 2367-2633 (electronic)
CIGRE Green Books
ISBN 978-3-319-49573-6 ISBN 978-3-319-49574-3 (eBook)
ISBN 978-3-319-49575-0 (print and electronic bundle)
https://doi.org/10.1007/978-3-319-49574-3
Library of Congress Control Number: 2018945912
# Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
This book is dedicated to the memory of
Dr. Adriaan Zomers
Message from the President
CIGRE is the global expert community for electric power systems. It is a
nonprofit organization based in Paris. It consists of members from 90 countries
representing 58 national committees. It functions as a virtual organization with
members, who are experts in their technical field, forming working groups
dealing with issues facing the power delivery industry. At present, there are
around 230 working groups comprising 3000 experts working together to resolve
the identified issues. The output of the working groups is technical brochures.
These brochures, of which there are now over 700, comprise the combined
knowledge and practice of engineering experts from all continents. The brochures
are practical in nature enabling the engineer to plan, design, construct, operate,
and maintain the power delivery solution required. CIGRE has over 10,000
reference papers and other documents supporting the brochures and dealing
with other technical matters.
This book on substations, developed by Study Committee (SC) B3, represents the
latest thinking in substation design, operation, technology selection, and asset
management. It comprises input from published brochures as well as contributions
from experts in the field. CIGRE is a source of unbiased technical information.
Engineers can refer to this book without fear of favoring one supplier or country. It is
a compilation of the combined expertise of many international experts providing an
unbiased objective textbook in substation design.
This book is unique in that it consists of input from many experts, not only one or
two. These experts are from all continents of the globe providing technical solutions
no matter where the reader is residing. The views expressed and suggestions made
are unbiased objective statements. These can be used as references for engineers to
develop standards and guidelines within their organizations.
This book is a reference book for academia, substation design departments, and
consultants. The sections on asset management provide vital information for asset
managers involved in this technology.
I would like to congratulate those involved from SC B3 who have compiled this
book. Many of them have had to work in their spare time for hours to complete this
task, for which they worked as volunteers.
vii
viii Message from the President
I would recommend this book in forming the basis for substation activities now
and in the future.
February 2018 Dr. Rob Stephen
Dr. Rob Stephen was born in Johannesburg,
South Africa. He graduated from the University of the
Witwatersrand in 1979 with a B.Sc. Electrical Engineer-
ing degree. He joined the Eskom, electricity utility, in
1980. He holds M.Sc. and M.B.A. degrees as well as a
Ph.D. in overhead line design. He is currently the Master
Specialist in the Technology Group in Eskom and is
responsible for distribution and transmission technolo-
gies of all voltages covering both AC and DC and was
responsible for the smart grid strategy for Eskom. He is
past chairman of CIGRE SC B2 on overhead lines and
has held positions in CIGRE as special Reporter and
Working Group Chairman and has authored over
100 technical papers. He was recently elected Interna-
tional President of CIGRE in 2016. He is also a Fellow
of the South African Institute of Electrical Engineers
(SAIEE) and was elected Honorary Vice President in
2005. He received the SAIEE President’s Award
in 2016.
Message from the Chairman of the Technical
Committee
Efficient use of electric energy is at the very heart of a sustainable future for all of us
and for almost 100 years now, CIGRE has provided a worldwide platform for
achieving such an ambitious target.
Initially, as integrated, high voltage, electric power networks were developed and
became established in various parts of the world, CIGRE was very much focused on
the technical aspects of transmission of electric energy. As the electric power
industry evolved, it was vital that CIGRE also evolved. Over time, greater focus
was placed on aspects such as markets, regulation, system planning, sustainability,
and information systems, but this was certainly not at the expense of the more
fundamental technical aspects.
Today, as the distinctions between transmission and distribution and between end
user and electricity provider have eroded and as the entire electric power system has
become more interactive and reliant upon intelligent systems, CIGRE’s focus has, of
course, widened to address the entire electric power system. Generation, transmis-
sion, distribution, and end use of electric energy are all addressed across the entire
spectrum from 1200 kV transmission grids to local micro-grids, employing AC
or DC.
The present-day activities of CIGRE can be divided into three key themes,
namely, “developing the power system of the future,” “making best use of existing
power systems,” and “environment and sustainability.” Within this framework,
CIGRE strives to bring together the widest possible range of experts from across
the world to share and exchange knowledge and to use this combined knowledge and
experience to develop and publish preeminent technical information and state-of-
the-art guidance.
Our aim is to prepare documents and communications that are clear, readily
accessible, unambiguous, and appropriate to the intended audience, and which also
promote the value and importance of electrical engineering and the electric power
industry within technical, political, business, and academic arenas. This has been
achieved very successfully over many years and CIGRE’s ever-growing library of
technical brochures, conference papers, tutorials, and articles is a unique and unpar-
alleled resource in the electric power industry. Nevertheless, recognizing that dis-
semination of high-quality, unbiased information is CIGRE’s singular focus, finding
ix
x Message from the Chairman of the Technical Committee
new ways to make our work visible is always a priority, which brings us to the
CIGRE Green Book initiative.
CIGRE Green Books are a way of consolidating, enhancing, and disseminating
CIGRE’s accumulated knowledge in specific fields. Addressing all aspects of
CIGRE’s key themes prepared and edited by world-recognized experts and building
upon CIGRE’s established library of world-class publications, the Green Books
provide a single, invaluable reference source within their specific field of applica-
tion. They also provide a unique resource for those wishing to develop themselves,
for those wanting to make their contribution to the power system of the future, and to
the vision of access to reliable, affordable, and sustainable electric energy.
The Technical Council is committed to the continuing development of CIGRE’s
technical leadership in the electric power industry, and the future expansion of the
Green Book series is a key part of this commitment.
February 2018 Mark Waldron
Mark Waldron graduated in Electrical Engineering in
1988 and joined the Research Division of the Central
Electricity Generating Board, and then, following pri-
vatization, National Grid in the UK by whom he is still
employed. He has been involved in all aspects of life-
time management of switchgear and substation equip-
ment, including research and development,
specification, assessment, maintenance and monitoring,
condition assessment, and end-of-life management. He
presently holds the position of Switchgear Technical
Leader in addition to his role as the Technical Council
Chairman of CIGRE. His involvement in CIGRE spans
over 20 years, during which he has been a participant in
several working groups, working group convener, and
Study Committee Chairman of Study Committee A3
and has led the Technical Committee project on Ultra
High Voltage Transmission.
Message from the Secretary General
Four years ago, I had the pleasure to comment on the launching of a new CIGRE
publication collection in an introductory message about the first CIGRE Green
Book, the one on Overhead Lines.
The idea to evaluate the collective work of the study committees accumulated
over more than 20 years, by putting together all the technical brochures of a given
field, in a single book, was first proposed by Dr. Konstantin Papailiou to the
Technical Committee (now Council) in 2011.
One year later in 2015, the cooperation with Springer allowed CIGRE to publish
it again as a “Major Reference Work” distributed through the vast network of this
well-known international publisher.
Two years ago, in 2016, the collection was enriched with a new category of Green
Books, the CIGRE “Compact Series,” to satisfy the needs of the study committees
when they want to publish shorter, concise volumes.
The first CIGRE Compact Book was prepared by Study Committee D2, under the
title Utility Communication Networks and Services.
Since then, the concept of the CIGRE Green Books series has continued to
evolve, and recently we introduced a third subcategory of the series, the “CIGRE
Green Book Technical Brochures” (GBTB).
CIGRE has published more than 700 technical brochures since 1969, and it is
interesting to note that in the first one, on Tele-protection, the first reference was a
Springer publication of 1963.
A CIGRE Technical Brochure produced by a CIGRE working group, following
specific Terms of Reference, is published by the CIGRE Central Office and is
available from the CIGRE online library, e-cigre, one of the most comprehensive,
accessible databases of relevant technical literature on power engineering.
Between 40 and 50 new technical brochures are published yearly, and these
brochures are announced in Electra, CIGRE’s bimonthly journal, and are available
for downloading from e-cigre.
From now on, the Technical Council of CIGRE may decide to publish a technical
brochure as a Green Book in addition to the traditional CIGRE Technical Brochure.
The motivation of the Technical Council to make such a decision is to disseminate
the related information beyond the CIGRE community, through the Springer
network.
xi
xii Message from the Secretary General
As the other publications of the CIGRE Green Books series, the GBTB will be
available from e-cigre in electronic format free of charge for CIGRE members.
CIGRE plans to copublish new Green Books edited by the different study
committees, and the series will grow progressively at a pace of about one or two
volumes per year.
This new Green Book, a Major Reference Work prepared by Study Committee
B3, is the third of this subcategory.
I want to congratulate all the authors, contributors, and reviewers of this book,
which gives the reader a clear and comprehensive vision of the past, recent, and
future developments of substations.
Philippe Adam
Secretary General
Graduate of the École Centrale de Paris, Philippe Adam
began his career in EDF in 1980 as a research engineer
in the field of HVDC and was involved in the studies
and tests of outstanding projects like the Cross Channel
2000 MW link and the first multi terminal DC link
between Sardinia, Corsica, and Italy. After this
pioneering period, he managed the team of engineers
in charge of HVDC and FACTS studies of the R&D
division of EDF. In this period, his CIGRE membership
as a working group expert and then as a working group
convener in Study Committee 14 was a genuine support
to his professional activities. Then he held several man-
agement positions in the EDF Generation and Transmis-
sion division in the fields of substation engineering,
network planning, transmission asset management, and
international consulting until 2000. When RTE, the
French TSO, was created in 2000, he was appointed
Manager of the Financial and Management Control
Department, in order to install this corporate function
and the necessary tools. In 2004, he contributed to the
creation of RTE international activities as Project Direc-
tor first and then Deputy Head of the International
Relations Department. From 2011 to 2014, he has
been the Strategy Director of Infrastructures and Tech-
nologies of the Medgrid industrial initiative. In the
meantime, between 2002 and 2012 he has served
CIGRE as the Technical Committee Secretary and as
the Secretary and Treasurer of the French National
Committee from 2009 till 2014. He was appointed Sec-
retary General of CIGRE in March 2014.
Preface
Looking back in history, we can see how substations have developed over time, and
we can appreciate the work of pioneers such as Thomas Edison, Nikola Tesla,
George Westinghouse, and many others from those early years.
The first three-phase AC line is believed to have been installed in 1891, a 40 Hz,
15 kV line running 175 km between Lauffen am Neckar and Frankfurt am Main.
Presumably, the line was terminated at the first ever substations.
The very first substations were considered to be directly associated with single
power stations, and so the name “substations” was used. Today, there are a range of
types of substations used throughout the power system providing switching, voltage
transformation, protection, and auxiliary functions within the global power grid,
which is ever expanding and changing to meet the needs of the world community.
At this time in world history, we are seeing incredible changes in the way the grid
is used, meeting the needs of rapidly developing nations, growth in population, and
increased use of renewables throughout the power system. Access to electricity is
now vital to the functioning of society, but still today more than one billion people do
not have access to reliable sources of electricity around the globe. Many of those
people live in sub-Saharan Africa. To achieve full potential, every community needs
access to reliable electricity that can power economic growth.
The topic that we call “substations” covers a diverse scope. We deal not only with
the design and construction of substations but also the management of substations as
an asset throughout their lifetime, including technical, economic, environmental, and
social aspects of substations. As a study committee covering this topic, we aim to
provide information to support organizations in life-cycle management of substa-
tions, including the management of renovation, maintenance, monitoring, and reli-
ability, all in a safe and sustainable manner. Our work aims to improve plant safety,
reliability, and availability; optimize asset management; and minimize cost, risk, and
environmental footprint, recognizing the diverse range of social needs and priorities
of the broad range of substation stakeholders.
Historically, there are very few textbooks that cover the full topic of high voltage
substations. This book aims to provide a reference book containing the collective
knowledge of the members of CIGRE who are currently involved in the study of
xiii
xiv Preface
many aspects of substations, as an aid to those who want to know more about the
topic. CIGRE Study Committee B3 includes more than 400 experts from almost
50 countries in 16 different working groups. Of course, the experts today follow in
the steps of those who went before them. These experts have been willing to share
their knowledge and experience to assist the world community manage the chal-
lenges associated with building and managing substations.
In 2012 when the idea of a reference book was first discussed in our study
committee, there were some who were against it, arguing that the information was
already available in the myriad of existing publications of CIGRE over the years
since 1921. The intention with this book is to present that information in a summa-
rized and readable manner, bringing information up to date where necessary. The
book is the work of many authors who have freely given of their time and expertise.
This book, as with others in the Green Book series, will continue to grow and
expand as we gather more knowledge in the field and as new experts join our global
community.
Some people have described substations as merely shelters for their precious
protection relays, but I think that you will appreciate the richness and depth of the
topic of substations as you read this book and refer to it over the years. I hope that
you enjoy it and the book becomes a valuable addition to your technical library for
many years to come.
Chairman of Study Committee B3 – Substations Terry Krieg
Gawler, South Australia
February 2018
Acknowledgments
A major reference book of this type is not the work of one person but is the collected
knowledge of many individual authors contributing over a number of years. Some of
these authors have passed away or have retired from the industry, but their work
remains in the form of the many technical brochures and technical papers that have
been published.
One special mention should be made here of Adriaan Zomers from the Nether-
lands. Adriaan passed away in January 2017 at the age of 78. He was extremely
knowledgeable in the field of substations, passionate in the causes he believed in,
and very active in the field of rural electrification and addressing problems in
providing universal access to electricity. Adriaan produced the first plan for this
book and was a keen supporter of the project from the outset. He is sadly missed by
all of us. This book is dedicated to the memory of our friend and colleague, Adriaan.
This book was assembled by a team of dedicated individuals who were lead
authors, reviewers, chapter authors, or contributors for the period from 2012 to 2016
predominantly. However, there is one person who all of us involved with this project,
especially myself, are very grateful to, and that is the person who pulled it all
together as convener, John Finn from the UK. John had a long career in the study
committee and in industry and had the right mix of technical skills and, importantly,
the ability to manage complex projects such as the Green Book, managing a team of
busy professionals. When I asked him to take on the task of convener, he readily
agreed, perhaps not knowing what lay in front of him. To John, I offer my sincerest
thanks on behalf of the study committee and the global substation community.
Without him, this book would not have become a reality.
Chairman of Study Committee B3 – Substations Terry Krieg
Gawler, South Australia
28 February 2018
xv
xvi Acknowledgments
Adriaan Zomers started his professional career in 1961
as construction and design engineer at Smit Slikkerveer
and, in 1971, joined the Electricity Board of Friesland,
responsible for the design, construction, operation, and
maintenance of power stations and the high voltage
network up to 220 kV.
In 1985, Adriaan joined CIGRE and became the
Dutch representative of Study Committee 23 (now B3)
“Substations.” His membership of this SC continued
until 1996. At the same time, he convened the Dutch
mirror committee 23, encouraging a number of young
engineers to become involved in CIGRE work. He suc-
cessfully convened the working group on substation
secondary equipment for more than 10 years.
In 2001, Adriaan was awarded a Doctoral degree by
the University of Twente, Netherlands, on the basis of
the dissertation “Rural electrification: utilities’ chafe or
challenge?” He was an energy adviser for the Dutch
Government for two decades, and after the reorganiza-
tion of CIGRE’s technical activities in 2005, he was
invited to also join the new SC C6 on Distribution and
Dispersed Generation as an expert member to address
the electrification of rural and remote areas. In SC C6, he
has been secretary or member of specific working
groups, member of panels, and keynote speaker as
well as chairman of the International Advisory Group
on Rural Electrification.
Adriaan remained active in the SC B3 Strategic and
Tutorial Advisory Groups but sadly passed away on
January 5, 2017, aged 78 years.
Contents
Volume 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
John Finn and Adriaan Zomers
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 How to Use the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Part A Planning and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
John Finn
2 Introduction to Substation Planning and Concepts . . . . . . . . . . . . 7
John Finn
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Site Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Type of Switchgear to Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Colm Twomey
3.1 Types of Switchgear Available . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Air-Insulated Switchgear (AIS) . . . . . . . . . . . . . . 12
3.1.2 Gas-Insulated Switchgear (GIS) . . . . . . . . . . . . . . 12
3.1.3 Mixed-Technology Switchgear (MTS) . . . . . . . . . 12
3.2 Choosing the Type to be Applied . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Reasons for Using AIS . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Reasons for Using GIS . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Reasons for Using MTS . . . . . . . . . . . . . . . . . . . . 13
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Selecting Circuit Arrangements: Requirements and Reliability . . . 15
Gerd Lingner
4.1 Main Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 Further Requirements and Implications . . . . . . . . 17
4.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
xvii
xviii Contents
4.3 Selecting Circuit Arrangements . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Description of Assessment Criteria . . . . . . . . . . . . 20
4.3.2 Service Security . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Availability During Maintenance . . . . . . . . . . . . . 21
4.3.4 Operational Flexibility of a Substation . . . . . . . . . 23
4.4 Substation Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Substation Connecting to a Power Station . . . . . . 25
4.5 Interconnection Substation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Step-Up/Step-Down Substations . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Circuit Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7.1 Single Busbar Arrangements . . . . . . . . . . . . . . . . 29
4.7.2 Multiple Busbar Arrangements . . . . . . . . . . . . . . 32
4.7.3 Ring Bus and Mesh Substation . . . . . . . . . . . . . . 36
4.8 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Effect of Safety Regulations and Safe Working Practices on
Substation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
John Finn
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Segregation of Live Conductors and Bare Live
Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Techniques for Segregation . . . . . . . . . . . . . . . . . 43
5.2.2 Choice of Technique as a Function of the
Voltage Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Calculation of the Basic Value . . . . . . . . . . . . . . . 47
5.3.3 Determination of the Safety Zone . . . . . . . . . . . . . 47
5.3.4 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Earthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 General Earth Mat or Grid . . . . . . . . . . . . . . . . . . 55
5.4.2 Safety Earths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Operation of High-Voltage Switchgear . . . . . . . . . . . . . . . . . 58
5.5.1 Types of Control . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.2 Locking Off Switches . . . . . . . . . . . . . . . . . . . . . 60
5.5.3 Auxiliary Operating Supplies . . . . . . . . . . . . . . . . 60
5.5.4 Current and Voltage Instrument Circuits . . . . . . . . 61
5.6 Protection Against Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6.1 Limitation of the Damage Zone . . . . . . . . . . . . . . 61
5.6.2 Extinguishing of the Fire . . . . . . . . . . . . . . . . . . . 63
5.7 Fences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.1 External Fences . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.2 Internal Fences . . . . . . . . . . . . . . . . . . . . . . . . . . 65
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Contents xix
6 Incorporating New Functionalities Into the Substation . . . . . . . . . 67
John Finn
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 General Observations on Substation Design . . . . . . . . . . . . . 69
6.2.1 System Impact on Substation Design . . . . . . . . . . 69
6.2.2 The Impact on the Substation
Single-Line Diagram . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Impact on the Substation Bay . . . . . . . . . . . . . . . 72
6.3 Impact of Technology on Substation Design . . . . . . . . . . . . . 74
6.3.1 Mixed Technology Switchgear . . . . . . . . . . . . . . . 75
6.3.2 Compact and Integrated AIS Switchgear . . . . . . . 75
6.3.3 Dispersed Generation . . . . . . . . . . . . . . . . . . . . . . 76
6.3.4 Reactive Compensation . . . . . . . . . . . . . . . . . . . . 77
6.3.5 Nonconventional Instrument Transformers . . . . . . 78
6.3.6 Power Flow Control Devices . . . . . . . . . . . . . . . . 79
6.3.7 Custom Power Technology . . . . . . . . . . . . . . . . . 80
6.3.8 Fault Current Limiters . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 HVDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.10 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.11 Gas-Insulated Lines, Transformers, and
Superconducting Cables . . . . . . . . . . . . . . . . . . . . 82
6.3.12 Monitoring and Diagnostic Equipment . . . . . . . . . 83
6.4 Example of Detail for Line-Commutated
Converter HVDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Mobile Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.3 Typical Transport Restrictions Associated with
Mobile Substations . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.4 Site Preparations . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5.5 Design Guidelines for Mobile Substations . . . . . . 97
7 Substation Specification and Evaluation . . . . . . . . . . . . . . . . . . . . . 101
John Finn
7.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Conventional Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2.1 Location and Spatial Constraints . . . . . . . . . . . . . 102
7.2.2 Effects of Environment on Substation . . . . . . . . . 102
7.2.3 Circuit Definitions, Terminal Points, and
Physical Boundaries . . . . . . . . . . . . . . . . . . . . . . 103
7.2.4 Basic Information for Civil Works . . . . . . . . . . . . 103
7.2.5 Basic System Parameters (Repeat for Each
Different Voltage in the Substation) . . . . . . . . . . . 104
7.2.6 The Required Switching Configuration . . . . . . . . 104
7.2.7 Secondary System Requirements . . . . . . . . . . . . . 104
xx Contents
7.2.8 Standards and Regulations . . . . . . . . . . . . . . . . . . 106
7.2.9 Health, Safety, and Environment . . . . . . . . . . . . . 106
7.3 Evaluation of Substation Concepts . . . . . . . . . . . . . . . . . . . . 107
7.3.1 The Life Cycle of a Substation . . . . . . . . . . . . . . . 107
7.3.2 Method of Substation Evaluation . . . . . . . . . . . . . 107
7.4 Functional Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8 Type of Contract for Substations (In House or Turnkey) . . . . . . . . 115
John Finn
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Advantages of Turnkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.1 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.2 Variety of Options . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.3 Implementation of New Technologies . . . . . . . . . 117
8.2.4 Better Price Certainty . . . . . . . . . . . . . . . . . . . . . . 117
8.2.5 Time Schedule Certainty . . . . . . . . . . . . . . . . . . . 117
8.2.6 Reduced Asset Owner’s Resources . . . . . . . . . . . 117
8.3 Disadvantages of Turnkey . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.1 Loss of Control . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.2 Requirement for Detailed Up-Front
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.3 More Complex Evaluation . . . . . . . . . . . . . . . . . . 118
8.3.4 Limited Number of Bids . . . . . . . . . . . . . . . . . . . 118
8.3.5 Risk of Poor Construction Quality . . . . . . . . . . . . 118
8.3.6 Risk of Solution Provider Insolvency . . . . . . . . . . 119
8.3.7 Risk of Inferior Quality Equipment . . . . . . . . . . . 119
8.3.8 Higher Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.9 Loss of Engineering Expertise Within
Asset Owner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4 Transition from In-House Projects to Turnkey Projects . . . . . 119
8.4.1 The Summation of Two Experiences . . . . . . . . . . 120
8.4.2 Sharing for Success . . . . . . . . . . . . . . . . . . . . . . . 120
8.5 Key Actions to Minimize the Disadvantages of
Turnkey Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.5.1 Organizational Aspects . . . . . . . . . . . . . . . . . . . . 121
8.5.2 Establish a Basic Framework for the Execution
of the Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9 Innovation and Standardization of Substation Equipment . . . . . . 123
Colm Twomey
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2.1 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2.2 Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.3 Standardization Versus Innovation . . . . . . . . . . . . . . . . . . . . 127
Contents xxi
9.4 Guidelines for Controlled Introduction of Innovation . . . . . . 128
9.4.1 Future Development Structure . . . . . . . . . . . . . . . 129
9.4.2 Future Development Strategy . . . . . . . . . . . . . . . . 132
9.4.3 Future Development Road Maps
(Implementation Plan) . . . . . . . . . . . . . . . . . . . . . 133
9.4.4 Future Development Projects (Execution Stage) . . . 135
9.5 Integrating Innovative Solutions into the New Generation
of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5.2 Review of Initial Pilot Project . . . . . . . . . . . . . . . 137
9.5.3 Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.5.4 Implementation Process and Issues . . . . . . . . . . . 138
9.5.5 Rollout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.5.6 Review Process . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Part B Air-Insulated Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Koji Kawakita
10 Introduction to Air-Insulated Substations . . . . . . . . . . . . . . . . . . . 143
Koji Kawakita
10.1 Site Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.2 Site Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.3 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.4 Project Management Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11 Basic Design and Analysis of Air-Insulated Substations . . . . . . . . . 149
Colm Twomey, Hugh Cunningham, Fabio Nepomuceno Fraga,
Antonio Varejão de Godoy, and Koji Kawakita
11.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2 Substation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2.1 First Step: Busbar Phase Disposition . . . . . . . . . . 152
11.2.2 Second Step: Selection of Busbar Conductors . . . 154
11.2.3 Third Step: The Disposition of the
High-Voltage Equipment in Each Standard Type
of Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.2.4 Fourth Step: The Type of Connection Between
the Busbar and the Individual Circuit . . . . . . . . . . 157
11.3 Electrical Clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.4 Insulation Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.4.1 Protection of Substation Against Traveling Waves
on Incoming Lines . . . . . . . . . . . . . . . . . . . . . . . . 171
11.4.2 Impact of Traveling Waves on a Substation . . . . . 172
11.4.3 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.5 Bus and Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.5.1 Current Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 174
xxii Contents
11.5.2 Electrical Clearances . . . . . . . . . . . . . . . . . . . . . . 175
11.5.3 Mechanical Forces . . . . . . . . . . . . . . . . . . . . . . . . 175
11.6 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.6.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.6.2 Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.6.3 Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.6.4 Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.7 Earthing (Grounding) and Lightning Protection . . . . . . . . . . . 183
11.7.1 Functions of a Substation Earth Grid . . . . . . . . . . 183
11.7.2 Earth Grid Resistance Value . . . . . . . . . . . . . . . . . 185
11.7.3 Soil Resistivity Measurements . . . . . . . . . . . . . . . 187
11.7.4 Design Touch and Step Voltage Limits . . . . . . . . . 187
11.7.5 Transferred Voltages and Hot Zones . . . . . . . . . . . 188
11.7.6 Earthing of GIS . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.7.7 Control of Electromagnetic Interference . . . . . . . . 192
11.7.8 Earth Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.7.9 Design Earth Fault Current . . . . . . . . . . . . . . . . . 194
11.7.10 Earth Grid Conductor . . . . . . . . . . . . . . . . . . . . . 195
11.7.11 Exceptional Cases . . . . . . . . . . . . . . . . . . . . . . . . 196
11.7.12 Verification of Earthing System Model . . . . . . . . . 199
11.7.13 Protection Against Direct Lightning Strokes . . . . . 199
11.7.14 GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.8 Contamination (Salt and Dust Pollution, Creepage
Distance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.9 Audible Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.9.2 Characteristics of Transformer Noise . . . . . . . . . . 205
11.9.3 Propagation of Sound . . . . . . . . . . . . . . . . . . . . . 206
11.9.4 Noise Level Limits . . . . . . . . . . . . . . . . . . . . . . . 206
11.9.5 Noise Level Measurement . . . . . . . . . . . . . . . . . . 207
11.9.6 Calculation of Noise Levels . . . . . . . . . . . . . . . . . 208
11.9.7 Methods of Substation Noise Control . . . . . . . . . . 208
11.9.8 Transformer Noise Control Measures . . . . . . . . . . 210
11.9.9 Other Noise Sources and Control Measures . . . . . 212
11.10 Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.10.1 Fire Protection Systems . . . . . . . . . . . . . . . . . . . . 214
11.10.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.10.3 Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.10.4 Control, Relay, and Cable Rooms . . . . . . . . . . . . 219
11.10.5 Other Measures in the Substations . . . . . . . . . . . . 220
11.10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.11 Seismic (CIGRE 1992) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.11.1 Seismic Design Procedures . . . . . . . . . . . . . . . . . 222
11.11.2 Practical Means to Enhance the Seismic
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Contents xxiii
11.12 Foundations, Buildings, Cable Trenches, Oil
Containments, Etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.12.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.12.2 Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.12.3 Cable Trenches . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.12.4 Oil Containment . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.13 Fences, Gates, Security, and Animal Deterrents . . . . . . . . . . . 238
11.13.1 Fencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11.13.2 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.13.3 Substation Security . . . . . . . . . . . . . . . . . . . . . . . 242
11.13.4 Animal Deterrents . . . . . . . . . . . . . . . . . . . . . . . . 242
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
12 Specification and Selection of Main Components for
Air-Insulated Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
John Nixon, Gerd Lingner, and Eugene Bergin
12.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
12.2 Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
12.3 Disconnectors, Earthing or Grounding Switches, and
Earthing or Grounding Poles . . . . . . . . . . . . . . . . . . . . . . . . 264
12.4 Surge Arresters (or Lightning Arresters) . . . . . . . . . . . . . . . . 267
12.5 Instrument Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.6 High-Voltage Conductors and Connectors . . . . . . . . . . . . . . . 285
12.6.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
12.6.2 Conductor and Connector Material . . . . . . . . . . . . 286
12.6.3 Selection of Conductors, Singular or Bundled . . . 286
12.6.4 Variation Caused by Temperature and Ice . . . . . . . 287
12.6.5 Movement Caused by Short-Circuit Forces
and Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
12.6.6 Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
12.6.7 Connector Types, E.g., Welded, Bolted,
and Compression . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.6.8 Fixed and Thermal Expansion Connectors . . . . . . 289
12.6.9 Corona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.6.10 Jointing Methodology . . . . . . . . . . . . . . . . . . . . . 291
12.6.11 Joint Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.7 Solid-Core and Hollow Insulators . . . . . . . . . . . . . . . . . . . . . 292
12.7.1 Purpose of Insulators . . . . . . . . . . . . . . . . . . . . . . 292
12.7.2 Insulator Material and Types . . . . . . . . . . . . . . . . 295
12.7.3 Resistive Glaze . . . . . . . . . . . . . . . . . . . . . . . . . . 299
12.7.4 Strength Selection Due to Static and Dynamic
Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
12.7.5 Earthquake Ground Acceleration . . . . . . . . . . . . . 301
12.7.6 Bushings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.8 High-Voltage Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.8.1 Single-Core or Three-Core . . . . . . . . . . . . . . . . . . 303
xxiv Contents
12.8.2 Cable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.8.3 Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.8.4 Cable Insulation Materials . . . . . . . . . . . . . . . . . . 304
12.8.5 Sheathing Material . . . . . . . . . . . . . . . . . . . . . . . . 308
12.8.6 Outer Serving . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.8.7 Bonding Design . . . . . . . . . . . . . . . . . . . . . . . . . . 309
12.8.8 Current Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 309
12.8.9 Cable Accessories . . . . . . . . . . . . . . . . . . . . . . . . 310
12.8.10 Laying Arrangements . . . . . . . . . . . . . . . . . . . . . 310
12.8.11 Mechanical Considerations . . . . . . . . . . . . . . . . . 311
12.8.12 Jointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
12.8.13 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
12.8.14 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
12.8.15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
12.9 Earthing or Grounding Grid . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.9.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.9.2 Materials Used in the Earthing or Grounding
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.9.3 Different Earth Rod Types . . . . . . . . . . . . . . . . . . 313
12.9.4 Soil-Conditioning Agents . . . . . . . . . . . . . . . . . . 314
12.10 Power Transformers and Compensation Equipment . . . . . . . . 316
12.10.1 Impedance and Regulation . . . . . . . . . . . . . . . . . . 316
12.10.2 Cooling Arrangements . . . . . . . . . . . . . . . . . . . . . 317
12.10.3 Winding Arrangements and Vector Groups . . . . . . 317
12.10.4 Typical Transformer Arrangements . . . . . . . . . . . 318
12.10.5 Tertiary Winding Voltage and Rating . . . . . . . . . . 318
12.10.6 Insulation Media . . . . . . . . . . . . . . . . . . . . . . . . . 320
12.10.7 Variation of Voltage . . . . . . . . . . . . . . . . . . . . . . . 321
12.10.8 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.10.9 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.10.10 Terminal Arrangements . . . . . . . . . . . . . . . . . . . . 322
12.10.11 FACTS Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 322
12.10.12 Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.10.13 Filters (Harmonic Filtering) . . . . . . . . . . . . . . . . . 324
12.10.14 Capacitors (Capacitor Banks) . . . . . . . . . . . . . . . . 324
12.10.15 Static Var Compensator . . . . . . . . . . . . . . . . . . . . 326
12.10.16 Voltage Source Converter Devices, E.g.,
STATCOMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.11 Miscellaneous Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.11.1 Purpose of Miscellaneous Equipment . . . . . . . . . . 327
12.11.2 Line or Wave Traps . . . . . . . . . . . . . . . . . . . . . . . 327
12.11.3 Neutral Earthing or Grounding Resistors . . . . . . . 328
12.11.4 SF6 Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.11.5 SF6 Gas Analysis and Processing
Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Contents xxv
13 Construction of Air-Insulated Substations . . . . . . . . . . . . . . . . . . . 333
Akira Okada
13.1 Construction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
13.2 Site Logistics and Transportation . . . . . . . . . . . . . . . . . . . . . 339
13.3 Construction Quality Control . . . . . . . . . . . . . . . . . . . . . . . . 340
13.4 Outage Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
14 Instruction Manuals and Training for Air-Insulated
Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Mark McVey
14.1 Instruction Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.2 General Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
14.3 Operations, Installation, and Maintenance Training . . . . . . . . 346
14.3.1 Installation Training . . . . . . . . . . . . . . . . . . . . . . . 346
14.3.2 Maintenance Policy . . . . . . . . . . . . . . . . . . . . . . . 347
14.4 Safety Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
14.5 Safety Procedure for On-Site Work . . . . . . . . . . . . . . . . . . . . 350
14.5.1 Work Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
14.5.2 Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.5.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.6 Design for Safety and Human Protection . . . . . . . . . . . . . . . 355
Part C Gas-Insulated Substations .......................... 359
Peter Glaubitz
15 Why Choose GIS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
15.1 Benefits of GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
15.2 Impact of Environmental Conditions on Switchgear . . . . . . . 363
15.3 Switchgear Impact on Environment . . . . . . . . . . . . . . . . . . . 365
15.4 Quality Assurance/Reliability . . . . . . . . . . . . . . . . . . . . . . . . 365
15.5 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
15.6 Life Cycle Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
15.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
16 GIS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
16.1 Establishing a Preliminary Configuration for the GIS . . . . . . 370
16.2 Further Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
16.3 Detailed Design and Design Approval . . . . . . . . . . . . . . . . . 370
16.4 Manufacturing Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
16.5 Selection of GIS Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
16.6 Type of Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
16.6.1 Extent of SF6-Insulated Modules . . . . . . . . . . . . . 373
16.6.2 Hybrid Installation: Mixed Technology
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
16.6.3 Service Conditions . . . . . . . . . . . . . . . . . . . . . . . . 374
xxvi Contents
16.7 Single-Line Diagram Design . . . . . . . . . . . . . . . . . . . . . . . . . 377
16.8 Layout Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
16.9 Information to be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
16.9.1 Basic User Input Data . . . . . . . . . . . . . . . . . . . . . 380
16.9.2 Basic Manufacturer Input Data . . . . . . . . . . . . . . . 381
16.9.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
17 Insulation Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
17.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
17.2 SF6 Breakdown Characteristic . . . . . . . . . . . . . . . . . . . . . . . 384
17.3 Insulation Coordination Procedure . . . . . . . . . . . . . . . . . . . . 385
17.4 Determination of Withstand Voltages . . . . . . . . . . . . . . . . . . 387
17.5 Actions Which May Be Taken to Achieve Insulation
Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
17.6 Information to Be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
18 GIS Primary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
18.1 Conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18.2 Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18.2.1 Three-Phase or Single-Phase-Enclosed . . . . . . . . . 391
18.2.2 Segregation of Gas Zones . . . . . . . . . . . . . . . . . . 393
18.2.3 Insulating Spacers/Parts: Bushings . . . . . . . . . . . . 394
18.2.4 Pressure Relief Devices: Rupture Disks . . . . . . . . 394
18.3 Switching Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
18.3.1 Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 396
18.3.2 Other Switches . . . . . . . . . . . . . . . . . . . . . . . . . . 397
18.4 Current Transformers (CTs)/ Core-in-Air CT . . . . . . . . . . . . . 398
18.5 Voltage Transformers (VTs) . . . . . . . . . . . . . . . . . . . . . . . . . 400
18.6 Nonconventional VTs and CTs . . . . . . . . . . . . . . . . . . . . . . . 400
18.7 Surge Arresters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
18.8 GIS Cable Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
18.9 Air Bushings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
18.10 Connection to Transformers and Reactors . . . . . . . . . . . . . . . 405
18.10.1 Direct Connection via SF6-Insulated Bus
Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
18.10.2 Connection via Cable . . . . . . . . . . . . . . . . . . . . . . 406
18.10.3 Connection with Short Overhead Lines . . . . . . . . 406
18.11 Connection Elements Within GIS . . . . . . . . . . . . . . . . . . . . . 407
18.11.1 Compensators . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
18.11.2 Coupling Element . . . . . . . . . . . . . . . . . . . . . . . . 407
18.11.3 X-, T-, and Angle-Type Enclosures . . . . . . . . . . . 407
Contents xxvii
18.12 Nameplates/Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
18.13 Online Monitoring and Diagnostics . . . . . . . . . . . . . . . . . . . 408
18.14 Integration of Protection and Control Devices into GIS . . . . . 409
18.15 Information to Be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
19 GIS Secondary Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
19.1 Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
19.2 Gas Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
19.3 GIS Condition Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 413
19.3.1 Partial Discharge (PD) Detection . . . . . . . . . . . . . 413
19.3.2 Fault Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
19.4 Special GIS Demands on Protection System . . . . . . . . . . . . . 414
19.4.1 Protection System Timing . . . . . . . . . . . . . . . . . . 414
19.4.2 Auto-Reclosing . . . . . . . . . . . . . . . . . . . . . . . . . . 414
19.4.3 Busbar and Bay Protection . . . . . . . . . . . . . . . . . . 415
19.4.4 Intertripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
19.4.5 Earth Fault Protection . . . . . . . . . . . . . . . . . . . . . 415
19.5 Electromagnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . 415
19.6 Information to Be Given by the User and the Manufacturer . . . 416
19.6.1 Basic Users Input Data . . . . . . . . . . . . . . . . . . . . 416
19.6.2 Basic Manufacturers Input Data . . . . . . . . . . . . . . 417
20 Interfaces: Civil Works, Building, Structures, Cables, OHL,
Transformers, and Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
20.1 Training of Operation Personnel . . . . . . . . . . . . . . . . . . . . . . 420
20.2 Building/Civil Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
20.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
20.2.2 Space Requirements . . . . . . . . . . . . . . . . . . . . . . 421
20.2.3 Handling Equipment . . . . . . . . . . . . . . . . . . . . . . 423
20.2.4 Load, Walls and Ceilings . . . . . . . . . . . . . . . . . . . 423
20.2.5 Windows/Doors . . . . . . . . . . . . . . . . . . . . . . . . . . 424
20.2.6 GIS Mounting Points . . . . . . . . . . . . . . . . . . . . . . 424
20.2.7 Cooling/Heating and Ventilation . . . . . . . . . . . . . 425
20.2.8 Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
20.2.9 Noise Abatement . . . . . . . . . . . . . . . . . . . . . . . . . 425
20.2.10 Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
20.2.11 Lighting and Socket Outlets . . . . . . . . . . . . . . . . . 425
20.2.12 Earthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
20.3 Support Structures and Accessibility . . . . . . . . . . . . . . . . . . . 426
20.4 Information to Be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
20.4.1 Basic Users Input Data . . . . . . . . . . . . . . . . . . . . 427
20.4.2 Basic Manufacturers Input Data . . . . . . . . . . . . . . 427
xxviii Contents
21 GIS Earthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
21.1 Effect of GIS on Design of Earthing Systems . . . . . . . . . . . . 430
21.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
21.1.2 Physical Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
21.1.3 Transient Enclosure Voltage (TEV) . . . . . . . . . . . 430
21.1.4 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
21.1.5 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
21.1.6 Effects on Personnel . . . . . . . . . . . . . . . . . . . . . . 432
21.2 Design of GIS Earthing System . . . . . . . . . . . . . . . . . . . . . . 432
21.2.1 Design of Earth Grid . . . . . . . . . . . . . . . . . . . . . . 432
21.2.2 Connections to the Earth Grid . . . . . . . . . . . . . . . 433
21.2.3 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
21.2.4 Effects on Control Circuit . . . . . . . . . . . . . . . . . . 437
21.2.5 Treatment of Sensitive Control Equipment . . . . . . 438
21.2.6 Instrument Transformers . . . . . . . . . . . . . . . . . . . 438
21.3 Testing and Maintenance of Earthing Installations . . . . . . . . . 438
21.3.1 Power Frequency Compatibility . . . . . . . . . . . . . . 438
21.3.2 High-Frequency Compatibility . . . . . . . . . . . . . . . 439
22 GIS Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
22.1 Type Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
22.2 Routine Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
22.3 Tests After Installation On-Site . . . . . . . . . . . . . . . . . . . . . . . 443
22.4 Installation, On-Site Test, Commissioning, and Formal
Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
22.5 Site Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
22.6 Work Crew Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
22.7 Installation of New GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
22.8 Installation of GIS Extensions . . . . . . . . . . . . . . . . . . . . . . . 446
22.9 Service Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
22.10 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
22.10.1 Commissioning of Primary Equipment . . . . . . . . . 448
22.10.2 Commissioning of Secondary Equipment . . . . . . . 448
22.10.3 Commissioning of the SF6 Insulation Medium . . . 448
22.11 Information to be Given by the Manufacturer and
the User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
22.11.1 Basic Users Input Data . . . . . . . . . . . . . . . . . . . . 449
22.11.2 Basic Manufacturers Input Data . . . . . . . . . . . . . . 449
23 SF6, Its Handling Procedures and Regulations . . . . . . . . . . . . . . . . 451
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
23.1 The EU-F-Gas-Regulation (EU) 517/2014 . . . . . . . . . . . . . . 453
23.1.1 Leakage Detection Systems . . . . . . . . . . . . . . . . . 454
23.1.2 Handling and Repair . . . . . . . . . . . . . . . . . . . . . . 454
Contents xxix
23.1.3 Training and Certification . . . . . . . . . . . . . . . . . . 455
23.1.4 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
23.2 SF6 Handling During Installation and Commissioning . . . . . . 455
23.3 Storage and Transportation of SF6 Bottles . . . . . . . . . . . . . . . 456
23.4 Reuse of SF6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
23.5 Handling of SF6 Decomposition Products . . . . . . . . . . . . . . . 458
23.6 Information to Be Given by the Users and the
Manufactures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
23.6.1 Basic Users Input Data . . . . . . . . . . . . . . . . . . . . 459
23.6.2 Basic Manufacturers Input Data . . . . . . . . . . . . . . 459
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
24 Training, Service, and Maintenance of Gas-Insulated
Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
24.1 Training of Operation Personnel . . . . . . . . . . . . . . . . . . . . . . 462
24.2 Operational Aspects and After Sales Support . . . . . . . . . . . . 462
24.3 Types of Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
24.4 Maintenance Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
24.5 Operation and Maintenance Provisions . . . . . . . . . . . . . . . . . 464
24.5.1 Operational and Maintenance Safety . . . . . . . . . . 464
24.5.2 Operational and Maintenance Opening
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
24.5.3 Substation Equipment . . . . . . . . . . . . . . . . . . . . . 469
24.6 Special Aspects of Repair Maintenance after Major
Dielectric Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
24.7 Basic Input Data and Additional Recommendations . . . . . . . 471
24.7.1 Information to Be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
24.7.2 Additional Recommendations for the User
and the Manufacturer . . . . . . . . . . . . . . . . . . . . . . 472
24.8 General Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
24.9 Training for Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
24.10 Training for Operating and Maintenance . . . . . . . . . . . . . . . . 475
24.11 Specialized Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
24.12 Information to Be Given by the User and the
Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
24.12.1 Basic Users Input Data . . . . . . . . . . . . . . . . . . . . 476
24.12.2 Basic Manufacturers Input Data . . . . . . . . . . . . . . 477
25 Execution of a GIS Substation Project . . . . . . . . . . . . . . . . . . . . . . 479
Peter Glaubitz, Carolin Siebert, and Klaus Zuber
25.1 Initiation of a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
25.2 Engineering Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
25.3 Planning the GIS Project Construction and Installation . . . . . 480
25.4 Site Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
xxx Contents
25.5 Installation of the New GIS . . . . . . . . . . . . . . . . . . . . . . . . . 482
25.6 Installation of GIS Extensions . . . . . . . . . . . . . . . . . . . . . . . 482
25.7 Equipment Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
25.8 Preparation of Inquiry for Tendering . . . . . . . . . . . . . . . . . . . 483
25.9 Relevant Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Part D Mixed Technology Switchgear Substations and Gas
Insulated Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Tokio Yamagiwa
26 Mixed Technology Switchgear (MTS) Substations . . . . . . . . . . . . . 487
Tokio Yamagiwa and Colm Twomey
26.1 Introduction to MTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
26.1.1 Why Use MTS? . . . . . . . . . . . . . . . . . . . . . . . . . . 490
26.2 AIS, GIS, and MTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
26.2.1 Insulation Technology Considerations . . . . . . . . . 491
26.2.2 AIS, GIS, and MTS Definitions . . . . . . . . . . . . . . 492
26.2.3 Evaluation of Applicability of AIS, GIS,
and MTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
26.3 Conventional, Compact, and Combined Switchgear . . . . . . . 496
26.3.1 Installation and Functionality considerations . . . . 496
26.4 Conventional, Compact, and Combined Switchgear
Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
26.4.1 Examples of Compact and Combined
Switchgear Assemblies . . . . . . . . . . . . . . . . . . . . 501
26.5 Common Considerations of Insulation and Installation +
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
26.6 Application of Standards to MTS . . . . . . . . . . . . . . . . . . . . . 504
26.7 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
27 Gas Insulated Lines (GIL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Hermann Koch
27.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
27.1.1 Basic Explanation . . . . . . . . . . . . . . . . . . . . . . . . 508
27.1.2 Properties of the Insulating Gas . . . . . . . . . . . . . . 509
27.1.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
27.1.4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
27.2 Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
27.2.1 GIL Electrical Parameters . . . . . . . . . . . . . . . . . . 515
27.2.2 Directly Buried GIL . . . . . . . . . . . . . . . . . . . . . . . 516
27.2.3 Thermal Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 516
27.2.4 Short-Time Rating . . . . . . . . . . . . . . . . . . . . . . . . 517
27.2.5 Insulation Coordination . . . . . . . . . . . . . . . . . . . . 518
27.2.6 Standard Values . . . . . . . . . . . . . . . . . . . . . . . . . . 519
27.2.7 Capacity of GIL . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Contents xxxi
27.3 Installation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
27.3.1 Directly Buried GIL . . . . . . . . . . . . . . . . . . . . . . . 523
27.3.2 GIL in Structures . . . . . . . . . . . . . . . . . . . . . . . . . 528
27.3.3 Automated Laying Processes of GIL . . . . . . . . . . 535
27.4 Environmental Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
27.4.1 Environmental Life Cycle Assessment . . . . . . . . . 537
27.4.2 General Environmental Aspects . . . . . . . . . . . . . . 538
27.4.3 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 538
27.4.4 Environmental Aspects . . . . . . . . . . . . . . . . . . . . 539
27.5 Long-Term Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
27.5.1 Feasibility Study of 420 kV GIL . . . . . . . . . . . . . 539
27.6 Example Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
27.6.1 PP9 Saudi Arabia . . . . . . . . . . . . . . . . . . . . . . . . 540
27.6.2 Limberg, Austria . . . . . . . . . . . . . . . . . . . . . . . . . 541
27.6.3 Kelsterbach GIL . . . . . . . . . . . . . . . . . . . . . . . . . 542
27.7 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
27.7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
27.7.2 Possible Future Uses of GIL Associated with
Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
27.8 Project Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
27.8.1 Site Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
27.8.2 Factory Preassembly . . . . . . . . . . . . . . . . . . . . . . 548
27.8.3 Gas Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
27.8.4 High-Voltage Test . . . . . . . . . . . . . . . . . . . . . . . . 553
27.8.5 Pressure Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
27.9 Operation, Maintenance, and Repair . . . . . . . . . . . . . . . . . . . 556
27.9.1 Online Insulation Monitoring . . . . . . . . . . . . . . . . 556
27.9.2 Bonding and Grounding for Permanent and
Transient Voltages . . . . . . . . . . . . . . . . . . . . . . . . 556
27.9.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
27.9.4 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
27.9.5 Repair Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
27.10 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
27.10.1 Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 559
27.10.2 Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
27.11 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
27.11.1 Overall Economic Aspects . . . . . . . . . . . . . . . . . . 561
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Volume 2
Part E UHV and Offshore Substations . . . . . . . . . . . . . . . . . . . . . . . 565
Kyoichi Uehara
28 UHV Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Kyoichi Uehara
28.1 UHV Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
xxxii Contents
28.2 Technical Requirements for UHV Substation Equipment . . . . 572
28.3 Reliability Issues in Substation Equipment . . . . . . . . . . . . . . 576
28.3.1 Data on Reliability Issues in Substation
Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
28.4 Transportation and On-Site Tests of UHV Substation . . . . . . 579
28.4.1 General Consideration Concerning
Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
28.4.2 Transportation Restriction for Transformers . . . . . 579
28.4.3 On-Site Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
28.5 Maintenance and Diagnostic Tests . . . . . . . . . . . . . . . . . . . . 582
28.6 Recommended Optimization of UHV Substation . . . . . . . . . 582
28.6.1 Insulation Coordination for UHV Substation . . . . 583
28.6.2 Layout for UHV Substation . . . . . . . . . . . . . . . . . 585
28.6.3 On-Site Acceptance Test and Commissioning
Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
28.6.4 Substation Comparison (GIS, Hybrid-IS,
and AIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
28.7 Future UHV AC Transmission System Planning, Design,
On-Site Assembly and Test, Maintenance, and Operation . . . 589
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
29 AC Offshore Substations Associated with Wind Power Plants . . . 591
John Finn and Peter Sandeberg
29.1 Introduction and Fundamental Considerations . . . . . . . . . . . . 592
29.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
29.1.2 Fundamental Considerations . . . . . . . . . . . . . . . . 594
29.2 System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
29.2.1 Reliability and Availability . . . . . . . . . . . . . . . . . 599
29.2.2 Overloading Capability . . . . . . . . . . . . . . . . . . . . 602
29.2.3 Substation Size and Number Required . . . . . . . . . 602
29.2.4 Grid Code Compliance . . . . . . . . . . . . . . . . . . . . 603
29.2.5 Reactive Compensation and Voltage Control . . . . 606
29.2.6 Fault Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
29.2.7 General Substation Configuration . . . . . . . . . . . . . 611
29.2.8 Neutral Earthing . . . . . . . . . . . . . . . . . . . . . . . . . 613
29.2.9 Insulation Coordination . . . . . . . . . . . . . . . . . . . . 613
29.2.10 Flicker and Voltage Fluctuations . . . . . . . . . . . . . 615
29.2.11 Systems Studies Required . . . . . . . . . . . . . . . . . . 617
29.3 Electrical Equipment Considerations . . . . . . . . . . . . . . . . . . . 617
29.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
29.3.2 MV Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . . 618
29.3.3 Main Transformers and Reactors . . . . . . . . . . . . . 626
29.3.4 Earthing/Auxiliary Transformers . . . . . . . . . . . . . 640
29.3.5 HV Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . . 644
29.3.6 Export and Inter-array Cables . . . . . . . . . . . . . . . 648
29.3.7 Site Tests and Commissioning . . . . . . . . . . . . . . . 651
Contents xxxiii
29.4 Physical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
29.4.1 About Design Considerations . . . . . . . . . . . . . . . . 657
29.4.2 Overall Health and Safety Aspects . . . . . . . . . . . . 658
29.4.3 Fundamental Design Parameters . . . . . . . . . . . . . 659
29.4.4 Additional Design Inputs . . . . . . . . . . . . . . . . . . . 660
29.4.5 Development of Design . . . . . . . . . . . . . . . . . . . . 665
29.4.6 Platform Concepts . . . . . . . . . . . . . . . . . . . . . . . . 674
29.4.7 Substructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
29.4.8 Fire and Explosion Design . . . . . . . . . . . . . . . . . . 681
29.5 Substation Secondary Systems . . . . . . . . . . . . . . . . . . . . . . . 683
29.5.1 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . 683
29.5.2 DC Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
29.5.3 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
29.5.4 Control and Supervisory Control and Data
Acquisition (SCADA) System Requirements . . . . 698
29.5.5 CCTV and Security Systems . . . . . . . . . . . . . . . . 703
29.5.6 Navigation Aids . . . . . . . . . . . . . . . . . . . . . . . . . 704
29.5.7 Communications . . . . . . . . . . . . . . . . . . . . . . . . . 705
29.5.8 Equipment Accommodation and Environmental
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
29.5.9 Maintenance Management . . . . . . . . . . . . . . . . . . 707
29.5.10 Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
29.6 Special Considerations When Connected by HVDC Link . . . 708
29.6.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
29.6.2 Grid Code Compliance . . . . . . . . . . . . . . . . . . . . 720
29.6.3 Power Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
29.6.4 Technical Studies . . . . . . . . . . . . . . . . . . . . . . . . . 726
29.6.5 Protection, Control, and Communications . . . . . . 726
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Part F Secondary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
John Finn, Ray Zhang, and Yang Ruoling
30 Secondary Systems: Introduction and Scope . . . . . . . . . . . . . . . . . 731
John Finn and Adriaan Zomers
30.1 Auxiliary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
30.2 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
30.3 Control and Automatic Switching . . . . . . . . . . . . . . . . . . . . . 732
30.4 Metering and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
30.5 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
30.6 Digital Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
30.7 Equipment Considerations and Interfaces . . . . . . . . . . . . . . . 733
30.8 Management of Secondary Systems . . . . . . . . . . . . . . . . . . . 734
30.9 General Considerations and Requirements . . . . . . . . . . . . . . 734
30.9.1 Secondary System Functions . . . . . . . . . . . . . . . . 734
30.9.2 Economic Aspects . . . . . . . . . . . . . . . . . . . . . . . . 737
xxxiv Contents
30.9.3 Operational and Maintenance Requirements . . . . . 738
30.9.4 Environmental Requirements . . . . . . . . . . . . . . . . 739
30.9.5 Use in Seismic Areas, Shocks, and Vibrations . . . 740
30.9.6 Electromagnetic Compatibility . . . . . . . . . . . . . . . 741
30.9.7 Ergonomic Requirements . . . . . . . . . . . . . . . . . . . 743
31 Substation Auxiliary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
Mick Mackey
31.1 Low-Voltage AC System . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
31.2 Secure AC Auxiliary Supply Systems and Emergency
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
31.3 Batteries and DC Supply Systems . . . . . . . . . . . . . . . . . . . . . 747
31.4 Power System Interruption and “Black Start”
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
32 Substation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
Richard Adams
32.1 Principles and Philosophies . . . . . . . . . . . . . . . . . . . . . . . . . 753
32.1.1 Current-Operated Protection . . . . . . . . . . . . . . . . . 754
32.1.2 Impedance Protection . . . . . . . . . . . . . . . . . . . . . 756
32.1.3 Differential (Unit) Protection . . . . . . . . . . . . . . . . 758
32.1.4 Tripping Philosophies . . . . . . . . . . . . . . . . . . . . . 761
32.1.5 Relay Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
32.2 Protection: Commonly Used Schemes . . . . . . . . . . . . . . . . . 762
32.2.1 Feeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
32.2.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
32.2.3 Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
32.2.4 Busbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
32.3 Backup Protection Principles . . . . . . . . . . . . . . . . . . . . . . . . 767
32.3.1 High-Set Overcurrent . . . . . . . . . . . . . . . . . . . . . . 768
32.3.2 Circuit Breaker Fail . . . . . . . . . . . . . . . . . . . . . . . 768
32.4 Protection: Safety Considerations . . . . . . . . . . . . . . . . . . . . . 769
32.5 Fault Level Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 769
32.6 Power System Faults, Types, Categories, Consequences,
and Arc Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
32.7 Fuses HV and LV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
33 Substation Control and Automatic Switching . . . . . . . . . . . . . . . . 775
John Finn
33.1 Basic Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
33.1.1 Details of Conventional HMI . . . . . . . . . . . . . . . . 776
33.1.2 Details of Computer-Based HMI . . . . . . . . . . . . . 778
33.1.3 Computer Performance Criteria . . . . . . . . . . . . . . 779
33.1.4 Control from the Substation . . . . . . . . . . . . . . . . . 779
33.1.5 Control from a Network Control Center . . . . . . . . 780
Contents xxxv
33.1.6 Architectures of Control Systems . . . . . . . . . . . . . 781
33.1.7 Extension and Modification Requirements . . . . . . 781
33.1.8 Avoiding Unwanted Operations Within the
Control System . . . . . . . . . . . . . . . . . . . . . . . . . . 782
33.2 Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
33.3 Synchronizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
33.4 Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
33.4.1 Automatic Tap Change Control . . . . . . . . . . . . . . 786
33.4.2 Automatic Reactive Switching . . . . . . . . . . . . . . . 788
33.5 Controlled Switching: Point on Wave Control . . . . . . . . . . . . 790
33.6 Automatic Switching: Reclosing, Closing, and Operational
Tripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
33.6.1 Automatic Reclosing . . . . . . . . . . . . . . . . . . . . . . 792
33.6.2 Automatic Closing . . . . . . . . . . . . . . . . . . . . . . . . 794
33.6.3 Operational Tripping . . . . . . . . . . . . . . . . . . . . . . 794
33.7 Frequency Control and Consumer Load Control . . . . . . . . . . 795
33.7.1 Underfrequency Load Shedding . . . . . . . . . . . . . . 795
33.7.2 Consumer Load Control . . . . . . . . . . . . . . . . . . . . 795
34 Metering and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
John Finn
34.1 Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
34.1.1 Accuracy Class . . . . . . . . . . . . . . . . . . . . . . . . . . 798
34.1.2 Digital Measuring Equipment . . . . . . . . . . . . . . . 799
34.1.3 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
34.1.4 Digital Transducers . . . . . . . . . . . . . . . . . . . . . . . 799
34.2 Fault Locating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
34.3 Fault Recording and Event Recording . . . . . . . . . . . . . . . . . . 800
34.4 Supervision and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
34.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
35 Substation Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
John Finn
35.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
35.2 Communications Within the Substation . . . . . . . . . . . . . . . . . 805
35.2.1 Substation Automation with Electromechanical
Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
35.2.2 Substation Automation with Numerical Relays . . . 806
35.3 Communications Outside of the Substation . . . . . . . . . . . . . . 808
35.3.1 Information to Be Communicated . . . . . . . . . . . . 809
35.3.2 Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
35.3.3 Digital Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 810
35.3.4 PDH, SDH, and SONET . . . . . . . . . . . . . . . . . . . 810
35.4 Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
35.4.1 Pilot Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
35.4.2 Power Line Carrier Communication (PLCC) . . . . 815
xxxvi Contents
35.4.3 Microwave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
35.4.4 Basic Communication Requirements for
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
36 Substation Digital Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Richard Adams
36.1 Digital Systems Within Substations and IEC 61850
Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
36.2 Software and Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
37 Equipment Considerations and Interfaces for Substations . . . . . . 827
John Finn
37.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
37.1.1 Circuit Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . 828
37.1.2 Current Transformers . . . . . . . . . . . . . . . . . . . . . . 828
37.1.3 Voltage Transformers . . . . . . . . . . . . . . . . . . . . . . 831
37.1.4 Other Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
37.2 Testing Associated with Primary Plant . . . . . . . . . . . . . . . . . 834
37.2.1 Circuit Breaker Interface Testing . . . . . . . . . . . . . 834
37.2.2 Primary Injection of Current Transformers . . . . . . 834
37.3 Secondary System Isolation . . . . . . . . . . . . . . . . . . . . . . . . . 835
37.3.1 DC Voltage Isolation . . . . . . . . . . . . . . . . . . . . . . 835
37.3.2 Trip Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
37.3.3 Current Transformer Isolation . . . . . . . . . . . . . . . 836
37.3.4 Voltage Transformer Isolation . . . . . . . . . . . . . . . 836
37.4 Secondary Equipment Considerations . . . . . . . . . . . . . . . . . . 836
37.4.1 Separation of Cubicles/Rooms . . . . . . . . . . . . . . . 837
37.4.2 DC Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 837
37.4.3 Relay Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
37.4.4 Cabling and Wiring . . . . . . . . . . . . . . . . . . . . . . . 838
37.4.5 Accommodation of Equipment and Ventilation . . . 838
37.4.6 Fire Detection and Extinguishing . . . . . . . . . . . . . 839
37.5 Earthing Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
37.5.1 Measures to Be Taken on Secondary
Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
37.5.2 Measures to Be Taken in the Installation . . . . . . . 842
37.5.3 Screening of Relay Rooms and Control
Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
38 Asset Management of Secondary Systems of Substations . . . . . . . 845
Mick Mackey
38.1 Design, Installation, and Building Requirements . . . . . . . . . . 847
Contents xxxvii
38.2 Reliability Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
38.2.1 Reliability and Availability of Systems/
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
38.2.2 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
38.3 Plant Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
38.3.1 Panel/Kiosk Labelling . . . . . . . . . . . . . . . . . . . . . 851
38.3.2 Wire and Fiber Identification . . . . . . . . . . . . . . . . 851
38.4 Quality Assurance Requirements and Testing . . . . . . . . . . . . 852
38.4.1 Quality Assurance: Introduction . . . . . . . . . . . . . . 852
38.4.2 Quality Assurance: Manufacturer’s Perspective . . 855
38.4.3 Quality Assurance: Utility’s Perspective . . . . . . . . 857
38.4.4 Laboratory, Factory, and On-Site Tests . . . . . . . . . 859
38.4.5 Test of Software . . . . . . . . . . . . . . . . . . . . . . . . . 861
38.4.6 Test of Printed Circuit Boards . . . . . . . . . . . . . . . 863
38.4.7 Cost-Benefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
38.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
38.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
38.5.2 Cause and Effects of Deterioration and
Aging Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
38.5.3 Maintenance of Secondary Equipment . . . . . . . . . 867
38.5.4 Fault-Finding and Recovery: Influence on
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
38.5.5 Conventional Equipment . . . . . . . . . . . . . . . . . . . 869
38.5.6 Microcomputer-Based Equipment . . . . . . . . . . . . 869
38.5.7 Spare Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
38.5.8 Training of Staff . . . . . . . . . . . . . . . . . . . . . . . . . 874
38.6 Asset Lifetime Expectancy and Replacement . . . . . . . . . . . . 875
38.6.1 General Considerations . . . . . . . . . . . . . . . . . . . . 876
38.6.2 Updating of Secondary Systems with
Computer-Based Systems . . . . . . . . . . . . . . . . . . 879
38.7 Security of Electronic Systems . . . . . . . . . . . . . . . . . . . . . . . 880
38.7.1 Cyber-Induced Attacks . . . . . . . . . . . . . . . . . . . . 881
38.7.2 Intentional Electromagnetic Interference . . . . . . . . 889
38.8 Physical Security Requirements . . . . . . . . . . . . . . . . . . . . . . 895
38.8.1 Site Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
38.8.2 Alarm System . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
38.8.3 CCTV and Intruder Alarm Systems . . . . . . . . . . . 896
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Part G Environmental Impact of and on Substations .......... 899
Jarmo Elovaara
39 Introduction to the Environmental Impact of and on
Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
Jarmo Elovaara
xxxviii Contents
40 Impact of Ambient Conditions on Substations . . . . . . . . . . . . . . . . 903
Jarmo Elovaara and Angela Klepac
40.1 Normal Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 904
40.2 Polluted Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
40.3 Abnormal Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . 907
40.3.1 Heavy Wind and Storms . . . . . . . . . . . . . . . . . . . 907
40.3.2 Winter Conditions . . . . . . . . . . . . . . . . . . . . . . . . 909
40.3.3 Substations in Very Hot and Dry Conditions . . . . 910
40.3.4 Earthquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
40.4 Substations under Special Conditions . . . . . . . . . . . . . . . . . . 913
40.5 Effects of Wild Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
41 Electromagnetic Interference (EMI) in Substations . . . . . . . . . . . . 917
Jarmo Elovaara
42 Impact of the Substation on the Environment . . . . . . . . . . . . . . . . 919
Jarmo Elovaara
42.1 Site Selection and Impact of the Substation on Environment
in Construction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920
42.2 Impact of the Substation during Operation . . . . . . . . . . . . . . 921
42.2.1 Visual Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
42.2.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
42.2.3 Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . 925
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
43 Special Risks Related to Substation Equipment (Transformers,
Reactors, and Capacitor Banks) . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
Jarmo Elovaara
44 Use of SF6 and CF4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
Jarmo Elovaara
44.1 Properties and Electrotechnical Use of SF6 Gas and
SF6-Based Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
44.2 Obligations to the User of SF6 and SF6 Gas Mixtures . . . . . . 935
44.3 Possibilities to Replace SF6 with Some Other
Insulating Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
45 Handling, Recycling, Disposal, and Reuse of Substations ....... 939
Jarmo Elovaara
Part H Substation Management Issues . . . . . . . . . . . . . . . . . . . . . . 941
Johan Smit
46 Asset Management in an Electric Infrastructure . . . . . . . . . . . . . . 943
Alan Wilson, Mark Osborne, and Johan Smit
46.1 Managing the Asset Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
46.2 Driving Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
Contents xxxix
46.3 The Asset Manager Role . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
46.4 Utility Organization to Achieve Business Goals . . . . . . . . . . 947
46.5 The Historical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
46.6 Legislation and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
46.7 Asset Management Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 950
47 Developing Strategic Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
Paul Leemans, Mark Osborne, and Johan Smit
47.1 Asset Management Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
47.2 Setting Corporate Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 957
47.3 Asset Intervention Planning . . . . . . . . . . . . . . . . . . . . . . . . . 959
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
48 Whole Life Management of Substations . . . . . . . . . . . . . . . . . . . . . 961
Nhora Barrera, Mark Osborne, and Johan Smit
48.1 Life-Cycle Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
48.2 Life-Cycle Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
48.3 Life-Cycle Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
48.4 Application of Whole-Life Costing . . . . . . . . . . . . . . . . . . . . 965
48.4.1 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . 966
48.4.2 Procurement Process . . . . . . . . . . . . . . . . . . . . . . 966
48.4.3 Construction Process . . . . . . . . . . . . . . . . . . . . . . 967
48.4.4 Testing and Commissioning Process . . . . . . . . . . 967
48.4.5 Maintenance Regimes and Condition Assessment
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
48.4.6 End of Life Options . . . . . . . . . . . . . . . . . . . . . . . 968
48.5 Evaluation of Substation Life-Cycle Costs . . . . . . . . . . . . . . 968
48.6 Optimizing Asset Management . . . . . . . . . . . . . . . . . . . . . . . 969
48.6.1 Reliability Centered Asset Management . . . . . . . . 969
48.6.2 Stochastic Optimization Algorithm . . . . . . . . . . . 970
48.6.3 Standard Substation Bays . . . . . . . . . . . . . . . . . . . 970
48.7 Managing the Design for the Future . . . . . . . . . . . . . . . . . . . 971
49 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
John Finn, Mark Osborne, and Johan Smit
49.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974
49.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974
49.3 Stage 1 Pre-commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . 977
49.3.1 Purpose and General Principles . . . . . . . . . . . . . . 977
49.3.2 Order for Inspection and Testing . . . . . . . . . . . . . 978
49.3.3 LVAC Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . 979
49.3.4 Building Services . . . . . . . . . . . . . . . . . . . . . . . . 979
49.3.5 Batteries and Chargers . . . . . . . . . . . . . . . . . . . . . 979
49.3.6 Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
49.3.7 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
49.3.8 Power Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
xl Contents
49.3.9 Earthing System . . . . . . . . . . . . . . . . . . . . . . . . . 986
49.3.10 Instrument Transformers . . . . . . . . . . . . . . . . . . . 988
49.3.11 Protection Equipment . . . . . . . . . . . . . . . . . . . . . . 989
49.3.12 Control, Indications, and Alarms . . . . . . . . . . . . . 990
49.3.13 Other Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 991
49.3.14 Overall Checks, Interlocking, Synchronizing, etc. . . . 991
49.3.15 Final Pre-energisation Checks . . . . . . . . . . . . . . . 992
49.4 Stage 2 Energization and Final Commissioning . . . . . . . . . . . 992
49.4.1 Preparation of Switching Program . . . . . . . . . . . . 993
49.4.2 Authorization to Proceed to Stage 2 . . . . . . . . . . . 993
49.4.3 General Principle . . . . . . . . . . . . . . . . . . . . . . . . . 994
49.4.4 Soak Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
49.4.5 Load Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
49.4.6 Handover for Operation . . . . . . . . . . . . . . . . . . . . 995
49.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
50 Substation Maintenance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 997
Ravish Mehairjan, Mark Osborne, and Johan Smit
50.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
50.2 Maintenance Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
50.2.1 Failure-Based Maintenance (FBM) . . . . . . . . . . . 999
50.2.2 Time-Based Maintenance (TBM) . . . . . . . . . . . . . 999
50.2.3 Condition-Based Maintenance (CBM) . . . . . . . . . 1000
50.2.4 Reliability Centered Maintenance (RCM) . . . . . . . 1001
50.2.5 Risk-Based Maintenance (RBM) . . . . . . . . . . . . . 1003
50.3 CIGRE Survey of Maintenance Strategies . . . . . . . . . . . . . . . 1004
50.4 Maintenance Management Strategies . . . . . . . . . . . . . . . . . . 1004
50.5 Developments in Maintenance Management . . . . . . . . . . . . . 1006
50.6 Key Elements of Maintenance Management . . . . . . . . . . . . . 1008
50.7 Developing Future Strategies . . . . . . . . . . . . . . . . . . . . . . . . 1009
51 Substation Condition Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
Nicolaie Fantana, Mark Osborne, and Johan Smit
51.1 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 1012
51.2 Incentives for Condition Monitoring . . . . . . . . . . . . . . . . . . . 1014
51.3 Condition Monitoring Principles . . . . . . . . . . . . . . . . . . . . . . 1016
51.4 Condition Monitoring Strategies . . . . . . . . . . . . . . . . . . . . . . 1018
51.4.1 CIGRE Survey of Common Preventive
Maintenance Methods . . . . . . . . . . . . . . . . . . . . . 1019
51.4.2 In-Service Monitoring . . . . . . . . . . . . . . . . . . . . . 1019
51.5 Permanent Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
51.6 Analysis and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
51.6.1 Traditional Condition Monitoring . . . . . . . . . . . . . 1027
51.6.2 On-line Condition Monitoring (OLCM) . . . . . . . . 1027
Contents xli
51.7 Evolving Condition Monitoring Strategies . . . . . . . . . . . . . . 1029
51.7.1 Hybrid Condition Monitoring . . . . . . . . . . . . . . . 1029
51.7.2 Holistic Condition Monitoring . . . . . . . . . . . . . . . 1029
51.8 Data Collection and Management for Condition Monitoring . 1031
51.8.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
51.8.2 Data Management Over Equipment Lifetime . . . . 1033
51.9 Condition Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
51.10 Value from Condition Monitoring . . . . . . . . . . . . . . . . . . . . . 1037
51.11 Outlook for Condition Monitoring . . . . . . . . . . . . . . . . . . . . 1042
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
52 Managing Asset Risk and Reliability of Substations . . . . . . . . . . . 1043
Gerd Balzer, Mark Osborne, and Johan Smit
52.1 Risk Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
52.2 Risk Assessment Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
52.3 Applying Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
52.3.1 Failure Mode and Effect Analysis . . . . . . . . . . . . 1048
52.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
52.4 Residual Life Concepts Applied to HV GIS . . . . . . . . . . . . . 1053
52.4.1 Asset Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
52.4.2 Obsolescence Management . . . . . . . . . . . . . . . . . 1055
52.4.3 Life Extension Functional Requirements . . . . . . . 1055
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
53 Managing Obsolete and New Technologies in Substations
Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
Jan Bednarik, Mark Osborne, and Johan Smit
53.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
53.2 HV Equipment Replacement . . . . . . . . . . . . . . . . . . . . . . . . 1058
53.3 Protection Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
53.4 Control System Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
53.4.1 Existing Hardwired Control Systems May Need to
be Modified/Expanded to Contain New Bays . . . . 1060
53.4.2 A New Numerical Control System May Replace
an Existing Hardwired or Numerical Scheme . . . . 1060
53.4.3 Hybrid: A New Numerical Control System May
be Used for New Bays While Keeping the Existing
System for Existing Bays . . . . . . . . . . . . . . . . . . . 1060
53.5 New Bay Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
53.5.1 New Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
53.5.2 Increase the Load Capacity . . . . . . . . . . . . . . . . . 1061
53.5.3 Change in Busbar Configuration . . . . . . . . . . . . . 1061
53.6 Managing the Design for the Future . . . . . . . . . . . . . . . . . . . 1061
53.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062
xlii Contents
Part I Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
Mark Osborne
54 Future Developments in Substation Design . . . . . . . . . . . . . . . . . . 1067
Mark Osborne
54.1 Evolution of Substations to Date . . . . . . . . . . . . . . . . . . . . . . 1068
54.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
54.1.2 Looking Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
54.2 Digital Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
54.2.1 Automated System Operation . . . . . . . . . . . . . . . . 1071
54.2.2 Asset Awareness . . . . . . . . . . . . . . . . . . . . . . . . . 1071
54.2.3 Commissioning and Testing . . . . . . . . . . . . . . . . . 1071
54.3 Novel Materials and Technologies . . . . . . . . . . . . . . . . . . . . 1073
54.3.1 Drivers for New Materials . . . . . . . . . . . . . . . . . . 1073
54.3.2 Generic Issues to Consider . . . . . . . . . . . . . . . . . . 1073
54.3.3 Commissioning and Testing . . . . . . . . . . . . . . . . . 1074
54.3.4 Roles for New Technology . . . . . . . . . . . . . . . . . 1074
54.4 Designing for Modularity and Flexibility . . . . . . . . . . . . . . . 1075
54.4.1 New Installation Techniques . . . . . . . . . . . . . . . . 1076
54.4.2 Changing Attitudes to Maintenance . . . . . . . . . . . 1077
54.5 DC Substations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
54.5.1 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
54.5.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
54.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
About the Editors
Terry Krieg was born in Gawler, South Australia,
where he currently resides. He studied electrical engi-
neering at the University of South Australia following a
Certificate of Electrical Engineering and an apprentice-
ship as an Electrical Instrument Maker. He was
appointed Chairman of the CIGRE Substation Study
Committee B3 (Substations) in 2012.
In a career that spans more than 40 years in the power
sector, he has held senior management and technical posi-
tions at a number of Australian power utilities in genera-
tion, transmission, and distribution, where he led the
introduction of new approaches to maintenance, substa-
tion design standardization, online condition monitoring,
asset management, and risk management. He has held
senior technical roles including major substation design,
test and commissioning, condition monitoring, high volt-
age, and diagnostic testing of high voltage network plant.
An honors (first class) graduate of the University of
South Australia (Bachelor of Engineering – Electrical),
he is also a Fellow of the Institute of Engineers Australia
(FIEAust) and a Registered Professional Engineer
Queensland (RPEQ). He is an endorsed assessor for
the asset management specification BSi PAS-55:2008
and, as a consultant, assists companies to develop asset
management practices aligned to ISO 55000. In addi-
tion, Terry is a graduate of the Australian Institute of
Company Directors.
He has presented more than 45 engineering and man-
agement papers and keynote addresses on aspects of
substations, strategic asset management, diagnostics
and monitoring, and the management of power networks
to a number of international industry conferences and
events.
xliii
xliv About the Editors
John Finn worked initially in the electricity supply
industry in the UK in protection, operation and mainte-
nance, and system studies. He then joined private indus-
try working with contractors on power station and
substation projects in the UK and overseas at voltages
up to 500 kV and as diverse as the initial 400 kV super-
grid for China Light and Power to project-managing the
power supplies for the Channel Tunnel between
England and France. In his role as an in-house engineer-
ing consultant with Siemens in the UK, he was involved
in developing the onshore and offshore substation
designs associated with offshore wind farms. He has
been involved in CIGRE as Area Advisor on Substation
Concepts from 2002 to 2006 and convenor of working
groups on “standardization and innovation” and “guide-
lines for offshore substations.” He received the Techni-
cal Committee Award for contributions to Study
Committee B3 in 2006 and the Distinguished Member
Award in 2008. He is currently Secretary for the UK
National Committee of CIGRE.
Contributors
Richard Adams Power Systems, Ramboll, Newcastle upon Tyne, UK
Gerd Balzer Institute of Electrical Power Systems, Darmstadt University of
Technology, Darmstadt, Germany
Nhora Barrera HV Substations, Axpo Power AG, Baden, Switzerland
Jan Bednarik Networks Engineering, ESBI, Dublin, Ireland
Eugene Bergin Mott MacDonald, Dublin, Ireland
Hugh Cunningham Substation Design, ESB International, Dublin, Ireland
Antonio Varejão de Godoy Generation Director of Eletrobrás, Casa Forte, Recife,
Brazil
Jarmo Elovaara Grid Investments, Fingrid Oyj, Helsinki, Finland
Nicolaie Fantana Consultant, ex. ABB Research, Agileblue consulting, Heidel-
berg, Germany
John Finn CIGRE UK, Newcastle upon Tyne, UK
Fabio Nepomuceno Fraga DETS, Chesf, Departemento de Engenharia, Recife,
Brazil
Peter Glaubitz GIS Technology, Energy Management Division, Siemens,
Erlangen, Germany
Koji Kawakita Engineering Strategy and Development, Chubu Electric Power
Co., Inc., Nagoya, Japan
Angela Klepac Zinfra, Sydney, Australia
Hermann Koch Gas Insulated Technology, Power Transmission, Siemens,
Erlangen, Germany
Paul Leemans Asset Management Substations, ELIA, Brussels, Belgium
Gerd Lingner DK CIGRE, Adelsdorf, Germany
xlv
xlvi Contributors
Mick Mackey Power System Consultant Section, Dublin, Ireland
Mark McVey Operations Engineering, Dominion Energy, Richmond, Virginia,
USA
Ravish Mehairjan Corporate Risk Management, Stedin Group, Rotterdam, The
Netherlands
John Nixon Global Project Engineering, GE Grid Solutions, Stafford, UK
Akira Okada Global Business Division, Hitachi, Tokyo, Japan
Mark Osborne Asset Policy, Engineering and Asset Management, National Grid,
Warwick, UK
Peter Sandeberg HVDC, ABB, Vasteras, Sweden
Carolin Siebert Energy Management, Siemens AG, Berlin, Germany
Johan Smit High Voltage Technology and Management, Delft University of
Technology, Delft, The Netherlands
Colm Twomey Substation Design, ESB International, Dublin, Ireland
Kyoichi Uehara Transmission and Distribution Systems Division, Toshiba Energy
Systems and Solution Corporation, Kawasaki, Japan
Alan Wilson Doble Engineering, Guildford, UK
Tokio Yamagiwa Power Business Unit, Hitachi Ltd, Hitachi-shi, Ibaraki-ken,
Japan
Adriaan Zomers
Klaus Zuber Energy Division, Gas Insulated Switchgear, Siemens, Erlangen,
Germany
Adriaan Zomers: deceased.