國立成功大學                 微積分 (一)           11 月 9 日, 2018
經濟心理企管交管工資              期中考                  13:10-15:00
 學生姓名:
 學生證號碼:
 助教姓名:
    考試須知:
    1. 本試卷包含封面共 5 頁,試題共有 10 大題,考試時間為 110 分
    鐘。
    2. 請將問題的答案以及解答過程清楚的寫在該題目下方的空白處,
    需要時可利用考卷背面做計算。
    3. 請準備好學生證讓監考人員核對,並在簽到表上簽名。
    4. 考時期間僅能使用作答用的文具,其餘如計算機、手機、參考資
    料等物品皆不能使用。
    5. 若有作弊的情形將依照學校的規定處理。
                 Page     Points Score
                   1       20
                   2       15
                   3       15
                   4       25
                   5       25
                 Total:    100
Calculus I                                Midterm Exam                            Page 1 of 6
 1. (5 points) Find the inverse function of the following function.
                                         √
                                  f (x) = 16 − x2 , 0 ≤ x ≤ 4.
                                                 √
                                              x=   16 − y 2
                                                 √
                                              y = 16 − x2
    不部分給分。
 2. (5 points) Evaluate the limit                √
                                                     x2 + 5 − 3
                                           lim                  .
                                          x→2         x−2
                                          √
                                       x2 + 5 − 3
                                    lim
                                      √x−2
                                 x→2
                                                    √
                                     ( x2 + 5 − 3)( x2 + 5 + 3)
                               = lim            √
                                 x→2    (x − 2)( x2 + 5 + 3)
                                         x+2
                               = lim √
                                 x→2 ( x2 + 5 + 3)
                                      2+2         2
                               = √              =
                                 ( 22 + 5 + 3)    3
 3. (10 points) Find the derivative of the function
                                                √
                                       f (x) = x x3 + 1.
                                      √                    1
                          f ′ (x) =       x3 + 1 + x ·       · 3x2 (x3 + 1)−1/2
                                                           2
                                      √           3
                                 =        x3 + 1 + x3 (x3 + 1)−1/2
                                                  2
    通分後答案為
                                                  5x3 + 2
                                                  √
                                                 2 x3 + 1
Calculus I                                    Midterm Exam                         Page 2 of 6
 4. Consider the function
                                                            3x
                                                 f (x) =
                                                           x2+1
    (a) (4 points) Find f ′ (x).
    (b) (4 points) Find the equation of the tangent line to the graph of f (x) at x = 2.
     (c) (7 points) Find all the absolute extreme values of f (x) on the interval [0, 4].
                                             3(x2 + 1) − 3x · 2x   3(1 − x2 )
                                f ′ (x) =                        =
                                                  (x2 + 1)2        (x2 + 1)2
    f (2) = 6/5, f ′ (2) = −9/25. tangent line:
                                       6   −9
                                y−       =    (x − 2) or 9x + 25y = 48
                                       5   25
    f ′ (x) = 0, ⇒ x = 1.
    f (0) = 0, f (1) = 23 , f (4) =   12
                                      17
                                         .
    Max: x = 1 or f (1) = 32 .
    Min: x = 0 or f (0) = 0.
Calculus I                                 Midterm Exam                           Page 3 of 6
 5. (5 points) Find the tangent line of the curve y 2 + y = x3 + 2x + 3 at the point (1, 2).
    2yy ′ + y ′ = 3x2 + 2
                                                 ′ 3x2 + 2
                                               y =
                                                   2y + 1
    (1, 2) 代入, y ′ = 1.
    tangent line: y − 2 = x − 1 or y = x + 1.
 6. (10 points) A company is increasing the production of a product at the rate of 10 units
    per week. The demand and cost functions are given by p = 50 − 0.01x and C =
    4000 + 40x − 0.02x2 , where x is the number of units produced per week. Find the rate
    of change of the profit with respect to time when the weekly sales are x = 800 units..
    R = px = 50x − 0.01x2 .
    P = R − C = −4000 + 10x + 0.01x2 .
                                          dP     dx       dx
                                             = 10 + 0.02x
                                          dt     dt       dt
    代入,      dP
             dt
                  = 10 · 10 + 0.02 · 800 · 10 = 260.
Calculus I                               Midterm Exam                             Page 4 of 6
 7. (10 points) A company estimate that the cost of a producing x units of a product can
    be modeled by
                               C = 1600 + 0.05x + 0.0001x3 .
    Find the production level that minimizes the average cost per unit.
                             C̄ = C/x = 1600x−1 + 0.05 + 0.0001x2
                                      C̄ ′ = −1600x−2 + 0.0002x
                      C ′ = 0, 1600x−2 = 0.0002x, x3 = 8000000, x = 200.
 8. (8 points) Determine all vertical and horizontal asymptotes of the function
                                                      −2x2 + 7
                                            f (x) =            .
                                                       x2 − 9
                                      lim f (x) = lim f (x) = −2
                                      x→∞         x→−∞
    y = −2. x = 3, x = −3.
                                                      √
 9. (7 points) Using differential, approximate            1.006.
                ′      1 −1/2     ′
    f (1) = 1. f (x) = 2
                         x    , f (1) = 0.5.
    √        .
       1.006 = 1 + 0.5 · 0.006 = 1.003
Calculus I                               Midterm Exam                            Page 5 of 6
                                          5      2
10. Consider the function y = f (x) = x 3 − 5x 3 .
     (a) (3 points) Determine the interval(s) on which f (x) is increasing.
    (b) (3 points) Determine the interval(s) on which f (x) is decreasing.
     (c) (5 points) Find all relative extreme values of f (x).
    (d) (3 points) Determine the intervals(s) on which f (x) is concave up.
     (e) (3 points) Determine the intervals(s) on which f (x) is concave down.
     (f) (3 points) Find all point(s) of inflection of f (x).
     (g) (5 points) Sketch the graph of y = f (x).
                                     5 2 10 −1   5 −1
                            f ′ (x) = x 3 − x 3 = x 3 (x − 2)
                                     3     3     3
                                    10 −1 10 −4       10(x + 1)
                            f ′′ (x) = x3 + x3 =         √
                                                         3
                                     9        9         9 x4
   increasing: x < 0, x > 2.(or (−∞, 0] ∪ [2, ∞))
   decreasing: 0 < x < 2.
   relative maximum: f (0) = 0.                √
                                5        2
   relative minimum: f (2) = 2 3 − 5 · 2 3 = −3 3 4
   concave up: (−1, 0) ∪ (0, ∞).
   concave down: x < −1.
   point of inflection: f (−1) = −1 − 5 = −6, (−1, −6).
Calculus I   Midterm Exam   Page 6 of 6