Chi-Squared Test MCQs Guide
Chi-Squared Test MCQs Guide
CHISQUARED TESTS
MULTIPLE CHOICE QUESTIONS
3.      Which  statistical   technique   is   appropriate   when  we  wish   to   analyze  the   relationship  
        between  two  qualitative  variables  with  two  or more  categories?
        a. The chisquared  test of a multinomial  experiment
        b. The chisquared  test of a contingency  table
        c. The ttest of the difference  between  two  means
        d. Both a and  b
        e. Both b and  c
        ANSWER:         b
                                                           72
73   Chapter Sixteen
7.      The  president  of a  state  university  collected  data  from  students  concerning  building  a  
        new  library,  and  classified  the  responses  into  different  categories  (strongly  agree,  agree,  
        undecided,  disagree,  strongly  disagree)  and  according  to whether  the  student  was  male  
        or  female.  To  determine  whether  the  data  provide  sufficient  evidence  to  indicate  that  
        the responses  depend  upon  gender,  the  most  appropriate  test is:
        a. chisquared  goodness offit test
        b. chisquared  test of a contingency  table  (test of independence)
        c. chisquared  test of normality
        d. chisquared  test for comparing  five proportions
        ANSWER:          b 
9.    A  chisquared  test  of  a  contingency  table  with  4 rows  and  5 columns  shows  that  the  
      value  of the  test  statistic  is 22.18. The  most  accurate  statement  that  can  be  made  about  
      the pvalue  for this test is that  
      a. pvalue  is greater  than  0.05
      b. pvalue  is smaller  than  0.025
      c. pvalue  is greater  than  0.025 but  smaller  than  0.05
      d. pvalue  is greater  than  0.10
      ANSWER:          c
10.   The number  of degrees  of freedom  for a contingency  table with  4 rows  and  8 columns  is
      a. 32
      b. 28
      c. 24
      d. 21
      ANSWER:       d
12.   To determine  whether  a single  coin  is fair, the  coin  was  tossed  100 times,  and  head  was  
      observed  60 times. The value  of the  test  statistic is
      a. 40
      b. 4
      c. 60
      d. 6
      ANSWER:        b
13.   To determine  whether  data  were  drawn  from  any  distribution,  we  use
      a. a chisquared  goodness offit test
      b. a chisquared  test  of a contingency  table
      c. a chisquare  test for normality
      d. None  of the  above  answers  is correct
      ANSWER:        a
18.      If each  element  in a population  is classified  into  one  and  only  one  of several  categories,  
         the population  is a:
         a. normal  population
         b. multinomial  population
         c. chisquared  population  
         d. binomial  population
         ANSWER:         b
19.      To   determine   the   critical   values   in   the   chisquared   distribution   table,   the   process  
         requires  the following:
         a. degrees  of freedom  
         b. probability  of Type  I error
         c. probability  of Type  II error
         d. Both a and  b
         ANSWER:          d
20.      Of the  values  for  a chisquared  test  statistic  listed  below,  which  one  is likely  to  lead  to  
         rejecting  the null hypothesis  in a goodness offit test?
         a. 0
         b. 1
         c. 2
                                                                                       Chi-Squared Tests    76
      d. 40
      ANSWER:          d
21.   The  number  of degrees  of  freedom  in  a  test  of a  contingency  table  with  4 rows  and  3  
      columns  equals:
      a. 4
      b. 7
      c. 6
      d. 3
      ANSWER:       c
23.   The  sampling  distribution  of the  test  statistic for a goodness offit test  with  k categories  
      is:
      a. Student  t distribution  with  k1 degrees  of freedom
      b. normal  distribution
      c. chisquared  distribution  with  k1 degrees  of freedom
      d. approximately  chisquared  distribution  with   k1 degrees  of freedom
      ANSWER:        d
ANSWER: a
         d. Both a and  b
         e. Both b and  c
         ANSWER:         e
27.      Which  of the following  statements  is not  correct?
         a. The chisquared  test of independence  is a onesample  test
         b. Both variables  in the chisquared  test of independence  are qualitative  variables
         c. The chisquared  goodness offit test involves  two  categorical variables
         d. The chisquared  distribution  is skewed  to the  right
         ANSWER:         c
28.      A  left  tail  area  in  the  chisquared  distribution  equals  0.99. For  df  =  8, the  table  value  
         equals:
         a. 20.0902
         b. 3.4895
         c. 2.7326
         d. 15.5073
         ANSWER:            a
30.      The   degrees   of   freedom   in   a   chisquared   test   for   normality,   where   the   number   of  
         standardized  intervals  is 5 and  there  are  2 population  parameters  to be  estimated  from  
         the data,  is equal  to:
         a. 5
         b. 4
         c. 3
         d. 2
         ANSWER:          d
31.      A chisquared  test  for independence  with  6 degrees  of freedom  results  in a test  statistic  
         χ 2 = 13.58 . Using  the χ 2 tables, the  most  accurate  statement  that  can be made  about  the  
         pvalue  for this test is that:
         a. pvalue  > 0.10
         b. pvalue  > 0.05
         c. 0.05 < pvalue  < 0.10
         d. 0.025 < pvalue  < 0.05
         ANSWER:          d
                                                                                          Chi-Squared Tests      78
32.   In  a goodness offit test,  the  null  hypothesis  states  that  the  data  came  from  a  normally  
      distributed  population.   The  researcher  estimated  the  population  mean  and  population  
      standard  deviation  from  a sample  of 500 observations.  In addition,  the  researcher  used  6  
      standardized  intervals  to test  for normality.  Using  a 5% level  of significance, the  critical  
      value  for this test is:
      a. 11.1433
      b. 9.3484
      c. 7.8147
      d. 9.4877
      ANSWER:          c
33.   In   a   chisquared   test   of   a   contingency   table,   the   value   of   the   test   statistic   was  
      χ 2 = 12.678 , and  the critical value  at  α = 0.025  was  14.4494.  Thus,
      a.   we  fail to reject the null hypothesis  at  α = 0.025
      b. we  reject the null hypothesis  at  α = 0.025
      c. we  don’t have  enough  evidence  to accept  or reject the  null  hypothesis  at  α = 0.025
      d. we  should  decrease  the level of significance  in order  to reject the  null  hypothesis
      ANSWER:        a
34.   Which  statistical technique  is appropriate  when  we  compare  two  or more  populations  of  
      qualitative  data  with  two  or more  categories?
      a. ztest  of the difference  between  two  proportions
      b. The chisquared  test of a multinomial  experiment
      c. The chisquared  test of a contingency  table
      d. Both a and  b
      e. Both b and  c
      ANSWER:          c
35.   Which  of the following  tests  does  not  use  the  chisquared  distribution?
      a. Test of a contingency  table
      b. Goodness offit test
      c. Difference  between  two  population  means  test
      d. All of the  above  tests  use  the  chisquared  distribution
      ANSWER:         c
38.      In  a  chisquared  goodness offit  test,  if the  expected  frequencies   ei   and  the  observed  
         frequencies   f i  were  quite  different,  we  would  conclude  that:
         a. the null  hypothesis  is false, and  we  would  reject it
         b. the null  hypothesis  is true, and  we  would  not  reject it
         c. the alternative  hypothesis  is false, and  we  would  reject it
         d. the chisquared  distribution  is invalid,  and  we  would  use  the  tdistribution  instead
         ANSWER:           a
39.      In chisquared  tests, the  conventional  and  conservative  rule  – known  as the   rule of five – 
         is to require  that  the:
         a. observed  frequency  for each cell be at least five 
         b. degrees  of freedom  for the test be at least  five
         c. expected  frequency  for each cell be at least five
         d. difference  between  the observed  and  expected  frequency  for each cell be at least five
         ANSWER:          c
40.      Consider  a multinomial  experiment  with  200 trials, and  the  outcome  of each  trial can  be  
         classified  into  one  of 5 categories.    The  number  of degrees  of freedom  associated  with  
         the chisquared  goodness offit test equals:
         a. 195
         b. 205
         c. 199
         d. 4
         ANSWER:           d
                                                                                       Chi-Squared Tests    80
TRUE/FALSE QUESTIONS
41.   The   null   hypothesis   states   that   the   sample   data   came   from   a   normally   distributed  
      population.   The   researcher   calculates   the   sample   mean   and   the   sample   standard  
      deviation  from  the  data.    The  data  arrangement  consisted  of  five  categories.    Using  a  
      0.05 significance level, the  appropriate  critical value  for this chisquare  test for normality  
      is 5.99147
      ANSWER:          T
42.   A test  for independence  is applied  to a contingency  table  with  3 rows  and  4 columns  for  
      two  qualitative  variables. The degrees  of freedom  for this chisquare  test must  equal  12.
      ANSWER:         F
43.   A chisquare  test  for independence  with  6 degrees  of freedom  results  in a test  statistic of  
      13.25.  Using  the  chisquare  table,  the  most  accurate  statement  that  can  be  made  about  
      the pvalue  for this test is that  pvalue  is greater  than  0.025 but  smaller  than  0.05.
      ANSWER:         T
45.   In  testing  a  population  mean  or  constructing  a  confidence  interval  for  the  population  
      mean,  an essential  assumption  is that  expected  frequencies  are at least five.
      ANSWER:           F
46.   A righttailed  area  in  the  chisquare  distribution  equals  0.05.  For  6 degrees  of freedom  
      the table value  equals  12.5916.
      ANSWER:         T
49.   For a chisquare  distributed  random  variable  with  10 degrees  of freedom  and  a level  of  
      significance of 0.025, the chisquare  value  from  the  table  is 20.4831.  The computed  value  
      of the test statistics is 16.857. This will lead  us  to reject the  null  hypothesis.
      ANSWER:          F
50.   A test  for independence  is applied  to a contingency  table  with  4 rows  and  4 columns  for  
      two  qualitative  variables.  The degrees  of freedom  for this test will be 9.
      ANSWER:         T
81    Chapter Sixteen
51.      A chisquare  test  for independence  with  10 degrees  of freedom  results  in a test  statistic  
         of  17.894.   Using  the  chisquare  table,  the  most  accurate  statement  that  can  be  made  
         about  the pvalue  for this test is that  0.05 < pvalue  < 0.10.
         ANSWER:          T
53.      The  middle  0.95 portion  of  the  chisquare  distribution  with  9 degrees  of  freedom  has  
         table values  of 3.32511 and  16.9190, respectively.
         ANSWER:          F
54.      In   applying   the   chisquare   goodness offit   test,   the   rule   of   thumb   for   all   expected  
         frequencies  is that  each  expected  frequency  equal  or exceeds  5.
         ANSWER:          T
55.      In a chisquared  test  of independence,  the  value  of the  test  statistic was   χ 2 = 15.652, and  
         the  critical  value  at   α = 0.025  was  11.1433.  Thus,  we  must  reject the  null  hypothesis  at  
         α = 0.025 .
         ANSWER:           T
56.      The   chisquared   test   of   independence   is   based   upon   three   or   more   quantitative  
         variables.
         ANSWER:        F
57.      In  a goodness offit test,  the  null  hypothesis  states  that  the  data  came  from  a  normally  
         distributed  population.   The  researcher  estimated  the  population  mean  and  population  
         standard  deviation  from  a sample  of 300 observations.  In addition,  the  researcher  used  6  
         standardized   intervals   to   test   for   normality.   Using   a   2.5%   level   of   significance,   the  
         critical value  for this test is 14.4494.
         ANSWER:           F
59.      A lefttailed  area  in  the  chisquare  distribution  equals  0.90.  For  10 degrees  of freedom  
         the table value  equals  15.9871.
         ANSWER:          T
60.      For a chisquare  distributed  random  variable  with  12 degrees  of freedom  and  a level  of  
         significance  of 0.05, the  chisquare  value  from  the  table  is 21.0261.  The  computed  value  
         of the test statistics is 25.1687. This will lead  us  to reject the  null  hypothesis.
         ANSWER:          T
                                                                                            Chi-Squared Tests      82
61.   In  a goodness offit test,  the  null  hypothesis  states  that  the  data  came  from  a  normally  
      distributed  population.   The  researcher  estimated  the  population  mean  and  population  
      standard  deviation  from  a sample  of 200 observations.  In addition,  the  researcher  used  5  
      standardized  intervals  to test for normality.  Using  a 10% level of significance, the  critical  
      value  for this test is 4.60517.
      ANSWER:          T
62.   In chisquare  tests, the  conventional  and  conservative  rule  – known  as the  Rule of Five – 
      is to require  that  difference  between  the  observed  and  expected  frequency  for  each  cell  
      be at least five.
      ANSWER:           F
64.   The  area  to  the  right  of a chisquare  value  is 0.01.  For  8 degrees  of freedom,  the  table  
      value  is 1.64648.
      ANSWER:           F
65.   A multinomial  experiment,  where  the  outcome  of each  trial  can  be classified  into  one  of  
      two  categories, is identical to the  binomial  experiment.
      ANSWER:         T
67.   The   chisquared   test   of   a   contingency   table   is   used   to   determine   if   there   is   enough  
      evidence  to  infer  that  two  nominal  variables  are  related,  and  to  infer  that  differences  
      exist among  two  or more  populations  of nominal  variables.
      ANSWER:         T
68.   The number  of degrees  of freedom  for a contingency  table  with  r rows  and  c columns  is 
      ν  = rc ,  provided  that  both  r and  c are greater  than  or equal  to 2.
      ANSWER:          F
69.   When  the  problem  objective  is  to  describe  a  population  of  nominal  data  with  exactly  
      two  categories,  we  can  employ  either  the  ztest  of population  proportion  p, or  the  chi
      squared  goodness offit test.
      ANSWER:        T
70.   If we  want  to perform  a onetail test  of a population  proportion  p, we  can  employ  either  
      the ztest of p, or the chisquared  goodness offit test.
      ANSWER:          F
83    Chapter Sixteen
71.      If we  want  to perform  a two tail test  of a population  proportion  p, we  must  employ  the  
         ztest  of p.
         ANSWER:         F
72.      If we  want  to test  for differences  between  two  populations  of nominal  data  with  exactly  
         two  categories,  we  can  employ  either  the  ztest  of   p1 − p2 , or  the  chisquared  test  of a  
         contingency  table (squaring  the  value  of the  z statistic yields  the  value  of  χ 2  statistics).
         ANSWER:        T
73.      If   we   want   to   perform   a   two tail   test   for   differences   between   two   populations   of  
         nominal  data  with  exactly  two  categories,  we  can  employ  either  the  ztest  of  p1 − p2 , or 
         the chisquared  test  of a contingency  table (squaring  the  value  of the  z statistic yields  the  
         value  of  χ 2  statistics).
         ANSWER:            T
75.      The  number  of degrees  of freedom  associated  with  the  chisquared  test  for  normality  is  
         the number  of intervals  used  minus  the  number  of parameters  estimated  from  the  data.
         ANSWER:        F
                                                                                       Chi-Squared Tests     84
TEST QUESTIONS
76. The following data are believed to have come from a normal probability distribution.
                 26        21     25       20      21        29     26         23    22        24
                 24        30     23       32      26        24     32         16    36        26
                 21        31     26       23      32        35     40         30    14        26
                 46        27     33       25      27        21     26         18    29        36
        The  mean  of this  sample  equals  26.80, and  the  standard  deviation  equals  6.378. Use  the  
        goodness offit test at the 5% significance level to test  this claim.
        ANSWER:
        H 0 :  The population  has  a normal  probability  distribution  
              H 1 :  The population  does  not  have  a normal  probability  distribution
             Since the sample  size is less than  80, we  employ  the  minimum  number  of intervals  4.
              Test statistic:  χ 2 = 4.6216
              pvalue  = 0.0316
              Conclusion:  Reject the null hypothesis; concluding  that  the  population  does  not  have     
                                     a  normal  probability  distribution  
77.     Conduct  a  test  to  determine  whether  the  two  classifications  A  and  B are  independent,  
        using  the data  in the accompanying  table and   α = 0.05  
                                                     B1      B2     B3
                                            A1     35        25     20
                                            A2 25            20     25
        ANSWER:
        H 0 : The two  variables  are independent
         H 1 : The two  variables  are dependent
         Rejection  region:  χ > χ 0.05,2 = 5.991
                               2     2
78.      The  personnel  manager  of  a  consumer  product  company  asked  a  random  sample  of  
         employees  how  they  felt  about  the  work  they  were  doing.  The  following  table  gives  a  
         breakdown  of  their  responses  by  gender.  Do  the  data  provide  sufficient  evidence  to  
         conclude  that  the level of job satisfaction  is related  to gender?  Use  α = 0.10.
Response
         ANSWER:
         H 0 : The two  variables  are independent
          H 1 : The two  variables  are dependent
          Rejection  region:  χ > χ 0.10,2 = 4.605
                                2     2
          Test statistic:  χ 2 = 4.708
           pvalue  = 0.095
          Conclusion: Reject the null  hypothesis. Yes
79.      The  personnel  manager  of  a  consumer  products  company  asked  a  random  sample  of  
         employees  how  they  felt  about  the  work  they  were  doing.  The  following  table  gives  a  
         breakdown  of their  responses  by  age.  Is there  sufficient  evidence  to  conclude  that  the  
         level of job satisfaction  is related  to age? Use  α = 0.10.
Response
         ANSWER:
         H 0 : The two  variables  are independent
          H 1 : The two  variables  are dependent
          Rejection  region:  χ > χ 0.10,4 = 7.779
                                2     2
          Test statistic:  χ 2 = 9.692
           pvalue  = 0.046
          Conclusion: Reject the null  hypothesis. Yes
                                                                                         Chi-Squared Tests     86
80.     A  firm  has  been  accused  of  engaging  in  prejudicial  hiring  practices.  According  to  the  
        most   recent   census,   the   percentages   of   whites,   blacks,   and   Hispanics   in   a   certain  
        community  are 72%, 10%, and  18%, respectively.  A random  sample  of 200 employees  of  
        the  firm  revealed  that  165 were  white,  14 were  black, and  21 were  Hispanic. Do the  data  
        provide  sufficient  evidence  to conclude  at  the  5% level  of significance  that  the  firm  has  
        been  engaged  in prejudicial hiring  practices?
        ANSWER:
         H 0 : p1 = 0.72 ,  p2 = 0.10,   p3 = 0.18  
         H 1 :  At least two  proportions  differ from  their  specified  values    
         Rejection  region:  χ > χ 0.05,2 = 5.991
                                2     2
              Test statistic:  χ 2 = 11.113
              pvalue  = 0.0039
              Conclusion:  Reject the null hypothesis. Yes
81.     Five brands  of orange  juice are  displayed  side  by side  in several  supermarkets  in a large  
        city.   It was  noted  that  in  one  day,  180 customers  purchased  orange  juice. Of  these,  30  
        picked  Brand  A,  40 picked  Brand  B, 25 picked  Brand  C,    35 picked  Brand  D,  and  50  
        picked  brand  E.  In this  city, can  you  conclude  at the  5% significance  level that  there  is a  
        preferred  brand  of orange  juice?
        ANSWER:
        H 0 : p1 = p 2 = p3 = p 4 = p 5  
        H 1 :  At least two  proportions  differ from  their  specified  values
        Rejection  region:  χ > χ 0.05,4 = 9.488
                              2    2
        Test statistic:  χ 2 = 10.278
        pvalue  = 0.036
        Conclusion:  Reject the null  hypothesis. Yes
82. A sport preference poll showed the following data for men and women:
Favorite Sport
            ANSWER:
            H 0 : The two  variables  (gender  and  favorite  sport)  are independent
             H 1 : The two  variables  are dependent
             Rejection  region:  χ > χ 0.05,4 = 9.488
                                   2     2
             Test statistic:  χ 2 = 3.30
              pvalue  = 0.509
             Conclusion:  Don’t reject the  null hypothesis. No
83.         Last year, Brand  A microwaves  had  45% of the  market,  Brand  B had  35%, and  Brand  C  
            had  20%.  This year  the makers  of brand  C launched  a heavy  advertising  campaign.   A  
            random  sample  of appliance  stores  shows  that  of 10,000 microwaves  sold, 4350 were  
            Brand  A, 3450 were  Brand  B, and  2200 were  Brand  C.  Has  the  market  changed?   Test at  
            α = 0.01.
            ANSWER:
             H 0 : p1 = 0.45 ,  p2 = 0.35,   p3 = 0.20  
             H 1 :  At least two  proportions  differ from  their  specified  values    
             Rejection  region:  χ > χ 0.01,2 = 9.210
                                    2     2
             Test statistic:  χ 2 = 25.714
             pvalue  = 0.0
             Conclusion: Reject the null  hypothesis. Yes
Party Affiliation
            Use  the  1% level  of significance  and  test  to see  if party  affiliation  is independent  of the  
            educational  level of the voters.
            ANSWER:
            H 0 : The two  variables  (educational  level and  political party  affiliation)  are independent
             H 1 : The two  variables  are dependent
             Rejection  region:  χ > χ 0.01,4 = 13.277
                                   2     2
             Test statistic:  χ 2 = 26.830
             pvalue  = 0.0
             Conclusion:  Reject the null hypothesis. No
                                                                                       Chi-Squared Tests   88
85.     Consider   a   multinomial   experiment  involving   100  trials   and   3  categories  (cells).  The  
        observed  frequencies  resulting   from  the  experiment  are  shown   in   the  accompanying  
        table. 
                   Category           1         2        3
                   Frequency         38        35       27
        ANSWER:
        Rejection  region:  χ > χ 0.05,2 = 5.991
                             2    2
             Test statistic:  χ 2 =  2.082
             pvalue  = 0.3531
             Conclusion:  Don’t reject the null  hypothesis.
86.     In  2000, the  student  body  of  a  state  university  in  Michigan  consists  of  30% freshmen,  
        25% sophomores,  27% juniors,  and  18% seniors.   A  sample  of 400 students  taken  from  
        the  2001 student  body  showed  that  there  are  138 freshmen,  88 sophomores,  94 juniors,  
        and  80 seniors.   Test  with  5% significance  level  to determine  whether  the  student  body  
        proportions  have  changed.
        ANSWER:
         H 0 : p1 = 0.30 ,  p2 = 0.25,   p3 = 0.27,   p4 = 0.18  
         H 1 :  At least two  proportions  differ from  their  specified  values    
         Rejection  region:  χ > χ 0.05,3 = 7.815
                                2     2
         Test statistic:  χ 2 = 6.844
         pvalue  = 0.077
         Conclusion: Don’t reject the null  hypothesis. No
87.     Consider   a   multinomial   experiment   involving   160   trials   4   categories   (cells).   The  
        observed  frequencies  resulting   from  the  experiment  are  shown   in   the  accompanying  
        table. 
                   Category           1         2       3        4
                   Frequency         53        35       30       42
Use the 10% significance level to test the hypotheses
                 H 0 : p1 = p 2 = p3 = p 4  
                 H 1 :  At least two  proportions  differ from  their  specified  values
89    Chapter Sixteen
         ANSWER:
         Rejection  region:  χ > χ 0.10,3 = 6.251
                              2    2
         Test statistic:  χ 2 = 7.450
         pvalue  = 0.0589
         Conclusion:  Reject the null  hypothesis. No
88.      A   statistics   professor   posted   the   following   grade   distribution   guidelines   for   his  
         elementary  statistics  class:  8% A,  35% B, 40% C,  12% D,  and  5% F.   A  sample  of  100  
         elementary  statistics  grades  at  the  end  of last  semester  showed  12 As,  30 Bs, 35 Cs,  15  
         Ds,  and  8 Fs.  Test  at  the  5% significance  level  to  determine  whether  the  actual  grades  
         deviate  significantly  from  the  posted  grade  distribution  guidelines.
         ANSWER:
         H 0 : p1 = 0.08 ,  p2 = 0.35,   p3 = 0.40,   p4 = 0.12,   p4 = 0.05
         H 1 :  At least two  proportions  differ from  their  specified  values    
         Rejection  region:  χ > χ 0.05,4 = 9.488
                                2    2
         Test statistic:  χ 2 = 5.889
         pvalue  = 0.2076
         Conclusion:  Don’t reject the null  hypothesis. No
89.      Conduct  a  test  to  determine  whether  the  two  classifications  A  and  B are  independent,  
         using  the data  in the accompanying  table and   α = .01  
                                           B1        B2
                                   A1      42       28
                                   A2      23       57
         ANSWER:
         H 0 : The two  variables  are independent
          H 1 : The two  variables  are dependent
          Rejection  region:  χ > χ 0.01,1 = 6.635
                                2     2
          Test statistic:  χ 2 = 14.847
           pvalue  = 0.0001
          Conclusion: Reject the null  hypothesis. No
         ANSWER:
         The  rule  of five  requires  that  the  expected  frequency  for  each  cell be  at  least  5. Where  
         necessary,  cells should  be combined  in order  to satisfy this  condition.  The choice of cells  
         to be combined  should  be  made  in  such  a way  that  meaningful  categories  (cells) result  
         from  the combination.
                                                                                             Chi-Squared Tests    90
             ANSWER:
              H 0 : p1 = 0.25 ,  p2 = 0.20,   p3 = 0.10,   p4 = 0.45
              H 1 :  At least two  proportions  differ from  their  specified  values    
              Rejection  region:  χ > χ 0.01,3 = 11.345
                                     2     2
              Test statistic:  χ 2 = 13.324
              pvalue  = 0.004
              Conclusion: Reject the null  hypothesis. Yes
Insurance Preference
             Is there  evidence  that  life insurance  preference  of male  students  is different  than  that  of  
             female students?   Test using  the  5% level of significance.
             ANSWER:
             H 0 : The two  variables  (gender  and  insurance  preference) are independent
              H 1 : The two  variables  are dependent
              Rejection  region:  χ > χ 0.05,2 = 5.991
                                    2     2
              Test statistic:  χ 2 = 15.124
               pvalue  = 0.0005
              Conclusion:  Reject the null hypothesis. Yes
93. The number of cars sold by three salespersons over a 3month period are shown below:
Brand of Car
         ANSWER:
         H 0 : The two  variables  (salesperson  and  brand  of car) are independent
          H 1 : The two  variables  are dependent
          Rejection  region:  χ > χ 0.05,4 = 9.488
                                2     2
          Test statistic:  χ 2 = 2.662
          pvalue  = 0.6158
          Conclusion:  Don’t reject the  null hypothesis. Yes
94.      A telephone  company  prepared  four  versions  of a set  of instructions  for  placing  collect  
         calls.  The  company  asked  a  sample  of  1600 people  which  one  of  the  four  forms  was  
         easiest  to understand.   In the  sample,  425 people  preferred  Form  A, 385 preferred  Form  
         B, 375 preferred  Form  C, and  415 preferred  Form  D.  At the  5% level of significance, can  
         one conclude  that  in the population  there  is a preferred  form?
         ANSWER:
         H 0 : p1 = p 2 = p3 = p 4  
         H 1 :  At least two  proportions  differ from  their  specified  values
         Rejection  region:  χ > χ 0.05,3 = 7.815
                               2     2
         Test statistic:  χ 2 = 4.25
         pvalue  = 0.2357
         Conclusion:  Don’t reject the null  hypothesis. No
95.      Suppose  that  a random  sample  of 60 observations  was  drawn  from  a population.   After  
         calculating  the  mean  and  standard  deviation,  each  observation  was  standardized  and  
         the  number  of observations  in each  of the  intervals  below  was  counted.   Can  we  infer  at  
         the 10% significance level that  the  data  were  drawn  from  a normal  population?
                                      Intervals                Frequency
                                      Z   ≤  1                    8
                                      1 < Z   ≤  0                30
                                      0 < Z   ≤  1                 17
                                      Z  > 1                       5
         ANSWER:
         H 0 : p1 = 0.1587 ,  p2 = 0.3413,   p3 = 0.3413,   p4 = 0.1587
                     (The population  is normal)
              H 1 :  At least two  proportions  differ from  their  specified  values  
                     (The population  is not  normal)   
          Rejection  region:  χ > χ 0.10,1 = 2.7055
                               2    2
          Test statistic:  χ 2 =  4.479
          pvalue  = 0.0343
          Conclusion: Reject the null  hypothesis. No
                                                                                               Chi-Squared Tests   92
96.   Suppose  that  a random  sample  of 150 observations  was  drawn  from  a population.   After  
      calculating  the  mean  and  standard  deviation,  each  observation  was  standardized  and  
      the  number  of observations  in each  of the  intervals  below  was  counted.   Can  we  infer  at  
      the 5% significance level that  the  data  were  drawn  from  a normal  population?
                                 Intervals                     Frequency
                                 Z   ≤  1.5                       15
                                 1.5 < Z   ≤  .5                 32
                                 .5  ≤  Z   ≤  .5                 65
                                 .5 < Z   ≤  1.5                   25
                                 Z  > 1.5                          13
      ANSWER:
      H 0 : p1 = 0.0668 ,  p2 = 0.2417,   p3 = 0.3830,   p4 = 0.2417 ,  p5 = 0.0668  
             (The population  is normal)
       H 1 :  At least two  proportions  differ from  their  specified  values
             (The population  is not  normal)   
       Rejection  region:  χ > χ 0.05,2 = 5.991
                            2    2
       Test statistic:  χ 2 =  8.347
        pvalue  = 0.0154
       Conclusion: Reject the null  hypothesis. No
97.   The   president   of   a   large   university   has   been   studying   the   relationship   between  
      male /female  supervisory  structures  in  his  institution  and  the  level  of  employees’  job  
      satisfaction.   The results  of a recent  survey  are  shown  in the  table  below.   Conduct  a test  
      at the 5% significance level to determine  whether  the  level of job satisfaction  depends  on  
      the boss /em ployee  gender  relationship.
Boss/Employee
      ANSWER:
      H 0 : The two  variables  are independent
       H 1 : The two  variables  are dependent
       Rejection  region:  χ > χ 0.05,6 = 12.592
                             2     2
       Test statistic:  χ 2 = 92.709
       pvalue  = 0.0
       Conclusion: Reject the null  hypothesis. Yes
93    Chapter Sixteen
         Use  0.05 level  of  significance  and  test  to  see  if there  is  a  preference  among  the  three  
         restaurants.
         ANSWER:
         H 0 : p1 = p 2 = p3  
         H 1 :  At least two  proportions  differ from  their  specified  values
         Rejection  region:  χ > χ 0.05,2 = 5.991
                               2    2
         Test statistic:  χ 2 = 4.96
          pvalue  = 0.0837
         Conclusion:  Don’t reject the null  hypothesis. No
99.      A   cafeteria   proposes   to   serve   4   main   entrees.     For   planning   purposes,   the   manager  
         expects  that  the proportions  of each  that  will be selected  by his customers  will be:
                             Selection          Proportion
                             Chicken               0.50
                             Roast  Beef           0.20
                             Steak                 0.10
                             Fish                  0.20
         ANSWER:
          H 0 : p1 = 0.50 ,  p2 = 0.20,   p3 = 0.10,   p4 = 0.20
          H 1 :  At least two  proportions  differ from  their  specified  values    
          Rejection  region:  χ > χ 0.01,3 = 11.345
                                 2     2
          Test statistic:  χ 2 = 7.264
          pvalue  = 0.064
          Conclusion: Don’t reject the null  hypothesis. No
                                                                                         Chi-Squared Tests   94
100.   A  large  carpet  store  wishes  to  determine  if the  brand  of carpet  purchased  is related  to  
       the  purchaser’s  family  income.    As  a  sampling  frame,  they  mailed  a  survey  to  people  
       who  have  a  store  credit  card.    Five  hundred  customers  returned  the  survey  and  the  
       results  follow:
Brand of Carpet
       At  the  5% level  of significance,  can  you  conclude  that  the  brand  of carpet  purchased  is  
       related  to the purchaser’s family  income?
       ANSWER:
       H 0 : The two  variables  (family  income  and  brand  of carpet)  are independent
        H 1 : The two  variables  are dependent
        Rejection  region:  χ > χ 0.05,4 = 9.488
                              2     2
        Test statistic:  χ 2 = 27.372
        pvalue  = 0.0
        Conclusion:  Reject the null hypothesis. Yes
101.   To determine  whether  a single  coin  is fair, the  coin  was  tossed  200 times.   The  observed  
       frequencies  with  which  each  of the  two  sides  of the  coin  turned  up  are  recorded  as  112  
       heads  and  88 tails.  Is there  sufficient  evidence  at  the  5% significance  level to allow  you  
       to conclude  that  the coin is not  fair?
       ANSWER:
       H 0 : p1 = 0.50,  p 2 = 0.50   (the coin is fair)
       H 1 : At least one   pi is not  equal  to its specified  value   (the coin is not  fair)
        Rejection  region:  χ > χ 0.05,1 = 3.841
                             2    2
        Test statistic:  χ 2 = 2.88
        pvalue  = 0.0897
        Conclusion: Don’t reject the null  hypothesis. Yes
95     Chapter Sixteen
Consider  a  multinomial  experiment  involving  n  =  200 trials  and  k  =  5 cells.    The  observed  
frequencies  resulting  from  the experiment  are shown  in the  following  table:
                   Cell               1        2      3          4       5
                   Frequency         16       44      56         48      36
          ANSWER:
          Rejection  region:  χ > χ 0.05,4 = 9.488
                               2    2
          Test statistic:  χ 2 = 4.587
          pvalue  = 0.3324
          Conclusion:  Don’t reject the null  hypothesis.
                 Cell                 1        2      3          4       5
                 Frequency            8       22      28         24      18
          ANSWER:
          Rejection  region:  χ > χ 0.05,4 = 9.488
                               2    2
          Test statistic:  χ 2 = 2.293
          pvalue  = 0.6820
          Conclusion:  Don’t reject the null  hypothesis.
                 Cell                 1        2      3          4        5
                 Frequency            4       11      14         12       9
          ANSWER:
          Rejection  region:  χ > χ 0.05,4 = 9.488
                               2    2
          Test statistic:  χ 2 = 1.147
          pvalue  = 0.8868
          Conclusion:  Don’t reject the null  hypothesis.
                                                                                     Chi-Squared Tests    96
105.    Review  the  results  of Questions  102 to 104.  What  is the  effect of decreasing  the  sample  
        size?
        ANSWER:
        As the  sample   size  decreased   by  50%,  the   value  of the  test statistic also decreased  by 
        50% and  the pvalue  became  much  larger. 
                                         B1         B2
                                 A1      40      80
                                 A2      56      48
106.    Conduct  a  test  to  determine  whether  the  two  classifications   A   and  B  are  independent,  
        using   α = 0.05
        ANSWER:
        H 0 : The two  variables  are independent
         H 1 : The two  variables  are dependent
         Rejection  region:  χ > χ 0.05,1 = 3.841
                               2     2
         Test statistic:  χ 2 = 3.923
         pvalue  = 0.0476
         Conclusion: Reject the null  hypothesis. No
                                         B1         B2
                                 A1      20      30
                                 A2      28      24
        ANSWER:
        H 0 : The two  variables  are independent
         H 1 : The two  variables  are dependent
         Rejection  region:  χ > χ 0.05,1 = 3.841
                               2     2
         Test statistic:  χ 2 = 1.962
         pvalue  = 0.1613
         Conclusion: Don’t reject the null  hypothesis. Yes
97     Chapter Sixteen
                                            B1        B2
                                   A1      10         15
                                   A2      14         12
          ANSWER:
          H 0 : The two  variables  are independent
           H 1 : The two  variables  are dependent
           Rejection  region:  χ > χ 0.05,1 = 3.841
                                 2     2
           Test statistic:  χ 2 = 0.981
           pvalue  = 0.322
           Conclusion: Don’t reject the null  hypothesis. Yes
109.      Review  the  results  of Questions  106 to  108. What  is the  effect  of decreasing  the  sample  
          size?
          ANSWER:
          As the  sample   size  decreased   by  50%,  the   value  of the  test statistic also decreased  by  
          50 % and  the pvalue  became  much  larger. 
          Grade             A        B           C         D      F
          Frequency         18       20          28        23     11
          ANSWER:
          H 0 : p1 = 0.20 ,  p2 = 0.20,   p3 = 0.20,   p4 = 0.20, p5 = 0.20  
          H 1 :  At least two  proportions  differ from  their  specified  values    
          ANSWER:
          Rejection  region:  χ > χ 0.05,4 = 9.488
                               2    2
                                                                                    Chi-Squared Tests    98
        ANSWER:
        Test statistic:  χ 2 = 7.90
        ANSWER:
        pvalue  = 0.0953
        ANSWER:
        Don’t  reject  the  null  hypothesis.  Yes, the  data  provide  enough  evidence  to  support  the  
        professor’s claim.
A  salesperson  makes  five  calls  per  day.  A  sample  of  200 days  gives  the  frequencies  of  sales  
volumes  listed  below
115.    Compute  the  expected  frequencies  for  x  =  0, 1, 2, 3, 4, and  5 by  using  the  binomial  
        probability  function  or  the  binomial  tables.  Combine  categories  if necessary  to  satisfy  
        the rule of five.
ANSWER:
                                         x         fi       pi        ei
                                         0         10    0.0313      6.26
                                         1         38    0.1562     31.24
                                         2         69    0.3125     62.50
                                         3         63    0.3125     62.50
                                         4         18    0.1562     31.24
                                         5          2    0.0313      6.26
99     Chapter Sixteen
          ANSWER:
          H 0 :  The population  has  a binomial  probability  distribution  
              H 1 :  The population  does  not  have  a binomial  probability  distribution
          Rejection  region:  χ > χ 0.05,5 = 11.07
                               2    2
          Test statistic:  χ 2 = 12.888
          pvalue  = 0.0245
          Conclusion:  Reject the null  hypothesis. Yes
Issues
117.      Can   you   infer   at   the   5%   significance   level   that   the   proportional   support   by   the  
          employees  at both  plants  for the  issues  has  changed  since the  pamphlet  was  circulated?
          ANSWER:
           H 0 : p1 = p 2 = p3  
           H 1 :  At least two  proportions  differ from  their  specified  values
           Rejection  region:  χ > χ 0.05,2 = 5.991
                                  2    2
           Test statistic:  χ 2 = 4.460
           pvalue  = 0.1075
           Conclusion: Don’t reject the null  hypothesis. No
                                                                                   Chi-Squared Tests    100
118.   Can  you  infer  at  the  5% significance  level  that  the  proportional  support  by  the  New  
       York employees  for the  three  issues  has  changed  since the  pamphlet  was  circulated?  
       ANSWER:
        H 0 : p1 = p 2 = p3  
        H 1 :  At least two  proportions  differ from  their  specified  values
        Rejection  region:  χ > χ 0.05,2 = 5.991
                               2    2
        Test statistic:  χ 2 = 2.92
        pvalue  = 0.2322
        Conclusion: Don’t reject the null  hypothesis. No
119.   Can  you  infer  at  the  5% significance  level  that  the  proportional  support  by  the  New  
       Jersey employees  for the three  issues  has  changed  since the  pamphlet  was  circulated?  
       ANSWER:
       H 0 : p1 = p 2 = p3  
       H 1 :  At least two  proportions  differ from  their  specified  values
       Rejection  region:  χ > χ 0.05,2 = 5.991
                             2    2
       Test statistic:  χ 2 = 2.68
       pvalue  = 0.2618
       Conclusion:  Don’t reject the null  hypothesis. No
120.   Do  the  data  indicate  at  the  5% significant  level  that  there  are  differences  between  the  
       two  plants  regarding  which  issue  should  be the  primary  one? 
       ANSWER:
       H 0 : The two  variables  (plant  location  and  issues) are independent
        H 1 : The two  variables  are dependent
        Rejection  region:  χ > χ 0.05,2 = 5.991
                              2     2
        Test statistic:  χ 2 = 1.18
        pvalue  = 0.5544
        Conclusion: Don’t reject the null  hypothesis. No