Mark
 Lundstrom	
                                                          	
                                                     10/17/2014	
  
                                              ECE	
  305	
  Homework	
  SOLUTIONS:	
  Week	
  8	
  
                                                                         	
                                                                 Mark	
  Lundstrom	
  
                                                              Purdue	
  University	
  	
  	
  
1)            A	
  silicon	
  diode	
  is	
  asymmetrically	
  doped	
  at	
   N D = 1019 	
  cm-‐3	
  and N A = 1016 	
  cm-‐3.	
  	
  (Note	
  
              that	
  at	
   N D = 1019 the	
  semiconductor	
  is	
  on	
  the	
  edge	
  of	
  degeneracy,	
  but	
  we	
  can	
  assume	
  
              that	
  non-‐degenerate	
  carrier	
  statistics	
  are	
  close	
  enough	
  for	
  this	
  problem.)	
  	
  Answer	
  the	
  
              following	
  questions	
  assuming	
  room	
  temperature.	
  	
  Assume	
  that	
  the	
  minority	
  electron	
  
              and	
  hole	
  lifetimes	
  are	
   ! n = ! p = 10"6 	
  s.	
  	
  The	
  lengths	
  of	
  the	
  N	
  and	
  P	
  regions	
  are	
  
              L = 500 µm 	
  and	
   L >> x p , xn .	
  Assume	
  an	
  “ideal	
  diode”	
  and	
  answer	
  the	
  following	
  
              questions.	
  	
  
                                                                                                                             	
  
       	
  
              1a)	
  	
  Compute	
   J D = I D A ,	
  the	
  diode	
  current	
  density	
  at	
  a	
  forward	
  bias	
  of	
  	
   V A = 0.5 	
  V.	
  
              	
  
                   Solution:	
  
                          Since	
  this	
  in	
  a	
  one-‐sided	
  junction	
  with	
   N D >> N A 	
  ,	
  essentially	
  all	
  of	
  the	
  current	
  is	
  
                          due	
  to	
  electrons	
  injected	
  into	
  the	
  P-‐region.	
  
                          	
  
                              JD = q
                                       N A Ln
                                              (
                                        ni2 Dn qVA kBT
                                                      e         )        (                  )
                                                               ! 1 = J 0 eqVA kBT ! 1 	
  	
       (*)	
  
                          	
  
                          From	
  Fig.	
  3.5	
  on	
  p.	
  80	
  of	
  SDF,	
   µ n = 1248 cm 2 V-s 	
  at	
   N A = 1016 	
  .	
  
                          Using	
  the	
  Einstein	
  relation,	
  we	
  find	
  
              	
  
                                   kT
                              Dn = B µ n = 0.026 ! 1248 = 32.4 cm 2 /s 	
  	
  
                                       q
                          The	
  diffusion	
  length	
  is:	
  
                          	
  
                       Ln = Dn! n = 32.4 " 10#6 = 57 µm 	
  	
  
ECE-‐305	
                                                                  	
     1	
                                                 Fall	
  2014	
  
Mark	
  Lundstrom	
                                                     	
                                                 10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
           	
             Since	
   Ln << L 	
  ,	
  this	
  is	
  indeed	
  a	
  long	
  base	
  diode	
  as	
  assumed	
  in	
  (*)	
  
           Now,	
  putting	
  numbers	
  n	
  (*):	
  
                      n2 D                             1020 32.4
               J 0 = q i n = 1.6 ! 10"19 16                                "4
                                                                              = 9.1! 10"12 A/cm 2 	
  
                      N A Ln                           10 57 ! 10
                                (
                    J D = J 0 eqVA     k BT
                                                  )                 (                  )                   (
                                              ! 1 = 9.1" 10!12 e0.5/0.026 ! 1 = 9.1" 10!12 2.25 " 108 ! 1 = 2.1" 10!3 	
          )                 	
  
                        J D ( 0.5 V ) = 2.1! 10"3 A/cm 2 	
          	
  
        1b)	
  	
  Compute	
   J D = I D A ,	
  the	
  diode	
  current	
  density	
  at	
  a	
  forward	
  bias	
  of	
  	
   V A = 0.6 	
  V.	
          	
  
                    Solution:	
  
                    Under	
  modest	
  forward	
  bias	
  we	
  can	
  ignore	
  the	
  -‐1:	
  
                                (                 )
                    J D = J 0 eqVA kBT ! 1 " J 0 eqVA kBT 	
  
                    J D ( 0.6 V ) = J 0 eq0.6 kBT = J 0 eq0.5 kBT ! eq0.1 kBT = J D ( 0.5 V ) ! 46.8 	
  
                    J D ( 0.6 V ) = J D ( 0.5 V ) ! eq0.1 kBT = 2.1! 10"3 ! e0.1 0.025 = 9.6 ! 10"2 	
                   	
  
                        J D ( 0.6 V ) = 9.6 ! 10"2 A/cm 2 	
  	
  
        1c)	
  	
  Compute	
   J D = I D A ,	
  the	
  diode	
  current	
  density	
  at	
  a	
  reverse	
  bias	
  of	
  	
   V A = !0.5 	
  V.	
          	
  
                    Solution:	
  
                    J D ( !0.5 V ) = J 0 e ( )(
                                          q !0.5       k BT
                                                                 ) (                        )        (
                                                              ! 1 = J 0 e!0.5 0.025 ! 1 = J 0 4.5 " 10!9 ! 1 # ! J 0 	
   )                 	
  
                        J D ( !0.5 V ) = ! J 0 = !9.1" 10!12 A/cm 2 	
          	
  
        1d)	
  	
  Compute	
   J D = I D A ,	
  the	
  diode	
  current	
  density	
  at	
  a	
  reverse	
  bias	
  of	
  	
   V A = !0.6 	
  V.	
                         	
  
                    Solution:	
  
                    J D ( !0.6 V ) = J 0 e ( )(
                                          q !0.6       k BT
                                                                 ) (                        )        (
                                                              ! 1 = J 0 e!0.6 0.025 ! 1 = J 0 9.5 " 10!11 ! 1 # ! J 0 	
      )
                        J D ( !0.6 V ) = ! J 0 = !9.1" 10!12 A/cm 2                                                                           	
                   	
  
                 For	
  an	
  ideal	
  diode,	
  the	
  reverse	
  current	
  is	
  constant	
  at	
   J D = ! J 0 	
  as	
  long	
  as	
  the	
  
                 reverse	
  bias	
  is	
  greater	
  than	
  a	
  few	
   k BT q .	
  
ECE-‐305	
                                                             	
     2	
                                                Fall	
  2014	
  
Mark	
  Lundstrom	
                                                	
                                                  10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
	
  2) Consider	
  the	
  diode	
  in	
  problem	
  1)	
  above	
  and	
  answer	
  the	
  following	
  questions.	
  	
  
     2a)	
  	
  If	
  the	
  diode	
  is	
  biased	
  such	
  that	
   J D = 10!6 A/cm 2 ,	
  what	
  is	
   V A 	
  ?	
       	
  
                 Solution:	
  
                                                 n2 D
                                                        (                  )
                 Begin	
  with	
   J D = q i n eqVA kBT ! 1 = J 0 eqVA kBT ! 1 	
  
                                                 N A Ln
                                                                                         (            )                 	
  
                 In	
  moderate	
  forward	
  bias,	
  we	
  can	
  drop	
  the	
  -‐1:	
                   	
  
                                qV k T
                     J D = J 0 e A B 	
                   	
  
                 so	
  
                             k T !J $
                  V A = B ln # D & 	
  
                              q       "J %
                                       0
                	
  
                Putting	
  in	
  numbers:	
  
                                   # 10!6 &
                 V A = 0.026ln %                  = 0.302 V 	
                    	
             V A = 0.302 V 	
  
                                   $ 9.1" 10 ('
                                              !12
	
  
        2b)	
  	
  If	
  the	
  temperature	
  changes	
  from	
  300	
  K	
  to	
  301	
  K,	
  how	
  much	
  does	
   V A 	
  change?	
  
        	
  
        Solution:	
  
        	
  
        Differentiate	
  the	
  expression	
  that	
  we	
  obtained	
  above:	
  
                           d ') k BT ! J D $ +) k B ! J D $ k BT J 0 d
             dV A
             dT
                    =           (
                          dT *) q
                                    ln # & , = ln # & +
                                       " J 0 % -) q " J 0 %          q J D dT
                                                                                             (         )
                                                                                           J D J 0`.1 	
  
        	
  
             dV A k B ! J D $ k BT ! 1 dJ 0 $
                    = ln # & '                             	
  
             dT           q "J %
                               0
                                           q #" J dT &%
                                                  0
         dJ 0   d ! n Dn $     2
              =    q        	
  
                               i
         dT dT #" N A Ln &%
        	
  
        The	
  strongest	
  part	
  of	
  the	
  temperature-‐dependence	
  comes	
  from	
  the	
  exponential	
  factor	
  
        in	
   ni2 ,	
  so	
  we	
  can	
  ignore	
  the	
  temperature	
  dependence	
  of	
  the	
  diffusion	
  coefficient,	
  the	
  
        diffusion	
  length,	
  and	
  the	
  effective	
  densities-‐of-‐states	
  and	
  write:	
  
        	
  
ECE-‐305	
                                                        	
     3	
                                              Fall	
  2014	
  
Mark	
  Lundstrom	
                                                	
                                                 10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
   	
         J 0 = Ke! EG k BT 	
  	
  
   then	
  
        1 dJ 0          1                       " E % " E %
               =      ! EG k BT
                                  Ke! EG kBT $ G 2 ' = $ G 2 ' ,	
  
        J 0 dT Ke                               # k BT & # k BT &   	
  
   which	
  can	
  be	
  used	
  to	
  find	
     	
  
        dV A k B ! J D $ k BT ! 1 dJ 0 $ k B ! J D $ k BT ! EG $
             = ln # & '                                = ln        '                	
  
        dT     q " J0 %             q #" J 0 dT &% q #" J 0 &%       q #" k BT 2 &%        	
  
        so	
          	
  
             dV A k B ! J D $ ! EG q $
                 = ln # & ' #            .	
  
             dT    q " J 0 % " T &%        	
  
        Putting	
  numbers	
  in:	
          	
  
             dV A 1.38 ! 10"23 # 10"6 & # 1.12 &
                 =             ln              "          	
  
             dT    1.6 ! 10"19 %$ 9.1! 10"12 (' %$ 300 ('        	
  
               dV A
                    = 1.00 ! 10"3 " 3.73! 10"3 = "2.7 ! 10"3 	
  
               dT        	
  
               dV A
                    ! "3 mV/K 	
  
               dT        	
  
        So	
  we	
  need	
  to	
  lower	
  the	
  applied	
  bias	
  about	
  3	
  millivolts	
  to	
  keep	
  the	
  current	
  constant	
  as	
  
        the	
  temperature	
  increases	
  1	
  K	
  or	
  1	
  degree	
  C.	
          	
  
        PN	
  junctions	
  can	
  be	
  used	
  as	
  thermometers	
  because	
  the	
  diode	
  current	
  depends	
  
        sensitively	
  on	
  temperature.	
          	
  
        A	
  more	
  careful	
  treatment	
  would	
  include	
  the	
  temperature	
  dependencies	
  of	
  the	
  
        bandgap,	
  effective	
  densities-‐of-‐states,	
  diffusion	
  coefficient,	
  etc.,	
  but	
  the	
  result	
  would	
  
        be	
  close	
  to	
  the	
  value	
  obtained	
  here.	
  	
  	
  	
  	
  
ECE-‐305	
                                                        	
     4	
                                             Fall	
  2014	
  
Mark	
  Lundstrom	
                                                   	
                                          10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
	
  3) The	
  sketch	
  below	
  shows	
  the	
  carrier	
  concentrations	
  in	
  a	
  PN	
  junction	
  at	
  room	
  
     temperature.	
  	
  Answer	
  the	
  following	
  questions.	
  	
  
                                                                                                                     	
  
	
  
        3a)	
  	
  Is	
  the	
  diode	
  forward	
  or	
  reverse	
  biased?	
  	
  Explain	
  your	
  answer.	
  
        	
  
                    Solution:	
  
                    Forward	
  biased	
  because	
  there	
  are	
  excess	
  electrons	
  on	
  the	
  P-‐side	
  and	
  excess	
  
                    holes	
  on	
  the	
  N-‐side.	
  
                    	
  
        3b)	
  	
  What	
  is	
  the	
  acceptor	
  concentration	
  on	
  the	
  P-‐side?	
  
        	
  
                 Solution:	
  	
   N A = 1016 cm -3 	
  
        	
  
        3c)	
  	
  What	
  is	
  the	
  donor	
  concentration	
  on	
  the	
  N-‐side?	
  
        	
  
                Solution:	
  	
   N D = 1014 cm -3 	
  
	
  
        3d)	
  	
  What	
  is	
  the	
  intrinsic	
  carrier	
  concentration?	
  
        	
  
                   Solution:	
  
                    n0 p0 = ni2 	
  	
  
                 On	
  the	
  P-‐side:	
  	
   n0 p0 = 1016 ! 107 = 1023 	
   	
          ni = 1023 = 3.16 ! 1011 cm -3 	
  	
  
                 On	
  the	
  N-‐side:	
  	
   n0 p0 = 1014 ! 109 = 1023 	
   ni = 1023 = 3.16 ! 1011 cm -3 	
  	
  
	
  
                  ni = 3.16 ! 1011 cm -3 	
  
ECE-‐305	
                                                           	
     5	
                                            Fall	
  2014	
  
Mark	
  Lundstrom	
                                                      	
                                              10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
   	
     3e)	
  	
  Do	
  low	
  level	
  injection	
  conditions	
  apply?	
     	
  
               Solution:	
  
               YES.	
  
               On	
  the	
  P-‐side:	
  	
   !n ( "xn ) = 1010 << p0 = 1016 	
  	
  
                                                 ( )
                 On	
  the	
  N-‐side:	
  	
   !p x p = 1012 << n0 = 1014 	
  	
  
	
  
        3f)	
  	
  What	
  bias	
  (in	
  volts)	
  is	
  applied	
  to	
  the	
  diode?	
  
        	
  
                    Solution:	
  
                    According	
  the	
  the	
  law	
  of	
  the	
  junction:	
  	
  
                                     ni2 qVA kBT
                    !n ( "xn ) =           e              = n p0 eqVA kBT 	
  
                                     NA
                          k BT !n ( "xn )           # 1010 &
                 VA =         ln          = 0.026ln % 7 ( = 0.18 V 	
  
                            q    n p0               $ 10 '
                  V A = 0.18 V 	
  
	
  
        3g)	
   Which	
  is	
  longer:	
  	
  the	
  electron	
  diffusion	
  length	
  on	
  the	
  P-‐side	
  of	
  the	
  junction	
  or	
  the	
  
                hole	
  diffusion	
  length	
  on	
  the	
  N-‐side	
  of	
  the	
  junction.	
  
        	
  
                Solution:	
  
                The	
  electron	
  diffusion	
  length	
  on	
  the	
  P-‐side.	
  	
  (The	
  diffusion	
  length	
  is	
  the	
  distance	
  
                it	
  takes	
  for	
  the	
  minority	
  carrier	
  concentration	
  to	
  return	
  to	
  its	
  value	
  in	
  the	
  bulk.	
  
                                  	
  
	
  
4)      This	
  problem	
  concerns	
  the	
  energy	
  band	
  diagram	
  shown	
  below	
  for	
  a	
  diode	
  under	
  bias.	
  
	
  
ECE-‐305	
                                                              	
     6	
                                                Fall	
  2014	
  
Mark	
  Lundstrom	
                                                     	
                                                   10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
	
       4a)	
  	
   Is	
  the	
  diode	
  forward	
  or	
  reverse	
  biased?	
       	
  
                 Solution:	
  
                 Forward	
  biased	
  because	
   Fn > Fp 	
  .	
          	
  
        4b)	
  	
   What	
  is	
  the	
  value	
  of	
  the	
  applied	
  bias?	
          	
  
                    Solution:	
  
                    qV A = Fn ! Fp 	
  
                  V A = +0.5 V 	
          	
  
        4c)	
  	
   What	
  is	
  the	
  bandgap	
  of	
  the	
  semiconductor?	
          	
  
                    Solution:	
  
                    Reading	
  from	
  the	
  graph:	
  
                   EC ! EV = 1.25 eV 	
          	
  
        4d)	
  	
   What	
  is	
  the	
  built-‐in	
  potential	
  of	
  the	
  junction.	
          	
  
                    Solution:	
  
                    From	
  the	
  plot:	
  	
   V j = Vbi ! V A = 0.25 V 	
  
                 Since:	
   V A = +0.5 V 	
  
                 Vbi = V j + V A = 0.75 V 	
                 Vbi = 0.75 V 	
  	
  	
  
5)      Consider	
  the	
  Si	
  diode	
  of	
  prob.	
  1)	
  and	
  make	
  one	
  change.	
  	
  The	
  minority	
  carrier	
  lifetime	
  
        increases	
  by	
  a	
  factor	
  of	
  1000,	
  so	
   ! n = ! p = 10"3 	
  s.	
  	
  The	
  lengths	
  of	
  the	
  N	
  and	
  P	
  regions	
  
        are	
  still	
   L = 500 µm 	
  and	
   L >> x p , xn 	
  .	
  Assume	
  an	
  “ideal	
  diode”	
  and	
  compute	
  the	
  
        forward-‐biased	
  current	
  at	
   V A = 0.6 	
  V.	
  	
  	
  
        Solution:	
  
        We	
  recognize	
  that	
  the	
  minority	
  carrier	
  diffusion	
  length	
  will	
  change.	
  
                  Ln = Dn! n = 32.4 " 10#3 = 1800 µm 	
  	
                   	
  
                 Now	
   Ln >> L 	
  ,	
  so	
  the	
  long	
  base	
  diode	
  of	
  prob.	
  1)	
  has	
  become	
  a	
  short	
  base	
  diode.	
  
                 Instead	
  of	
  eqn.	
  	
  (*)	
  in	
  prob.	
  1),	
  we	
  have	
  to	
  replace	
  the	
  minority	
  carrier	
  diffusion	
  
                 length	
  by	
  the	
  length	
  of	
  the	
  P-‐region:	
  
ECE-‐305	
                                                             	
     7	
                                                Fall	
  2014	
  
Mark	
  Lundstrom	
                                                    	
                                                    10/17/2014	
  
HW8	
  solutions	
  (continued):	
  
                     n2 D
                                  (                 )
            J D = q i n eqVA kBT ! 1 = J 0 eqVA kBT ! 1
                     NA L
                                                             (                    )                                                                   	
  
        The	
  saturation	
  current	
  density	
  will	
  be	
  smaller	
  by	
  a	
  factor	
  of	
          	
  
             L 500
                =       = 8.8
             Ln 57            	
  	
          	
  
        So	
  we	
  find:	
          	
  
                     n2 D           9.1! 10"16
            J0 = q i n =                       = 1.04 ! 10"16 A/cm 2
                    NA L               8.8                              	
          	
  
        The	
  current	
  becomes:	
          	
  
                        (                )                       (                    )                   (
            J D = J 0 eqVA kBT ! 1 = 1.04 " 10!16 e0.6/0.026 ! 1 = 1.04 " 10!16 1.05 " 1010 ! 1 = 1.1" 10!6                      )                    	
  
                J D ( 0.6 V ) = 1.1! 10 A/cm "6          2
                                                            	
  
           	
  
           	
  
           Note:	
  	
  The	
  lifetime	
  is	
  longer,	
  so	
  the	
  current	
  must	
  be	
  smaller	
  –	
  this	
  is	
  a	
  sanity	
  check.	
  
           	
  
           Key	
  point	
  to	
  remember:	
  
           	
  
           Long	
  base	
  diode:	
   L >> Ln 	
  
               JD = q
                         N A Ln
                                  (
                          ni2 Dn qVA kBT
                                       e      !1    )
                                                     	
  
           	
  
           Short	
  base	
  diode,	
   L << Ln ,	
  replace	
  the	
  diffusion	
  length	
  by	
  the	
  length	
  of	
  the	
  quasi-‐
           neutral	
  region.	
  
           	
  
                          n2 D
                                  (
               J D = q i n eqVA kBT ! 1
                         NA L
                                                    )
                                                     	
  
           If	
  the	
  diode	
  is	
  neither	
  long	
  nor	
  short,	
  then	
  we	
  get	
  more	
  complicated	
  expressions	
  
           involving	
  hyperbolic	
  functions.	
  
           	
  
ECE-‐305	
                                                            	
     8	
                                                 Fall	
  2014