0% found this document useful (0 votes)
51 views8 pages

Class Xii Mathematics (Prepared by Team Maths - Doe) S.NO. Objective Type Questions (Section - I) Marks

This document contains 30 multiple choice and numerical questions related to mathematics. It is divided into 4 sections which cover topics such as algebra, geometry, trigonometry, calculus, relations and functions. The questions test concepts like equations of lines, vectors, limits, derivatives, integrals, probability and more. Sample solutions and explanations are provided for some questions.

Uploaded by

asha jalan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
51 views8 pages

Class Xii Mathematics (Prepared by Team Maths - Doe) S.NO. Objective Type Questions (Section - I) Marks

This document contains 30 multiple choice and numerical questions related to mathematics. It is divided into 4 sections which cover topics such as algebra, geometry, trigonometry, calculus, relations and functions. The questions test concepts like equations of lines, vectors, limits, derivatives, integrals, probability and more. Sample solutions and explanations are provided for some questions.

Uploaded by

asha jalan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

CLASS XII

MATHEMATICS
(PREPARED BY TEAM MATHS – DOE)

S.NO. OBJECTIVE TYPE QUESTIONS MARKS


(SECTION – I)
1.  1
4
2. 1 1
36
3. x=3 1
4. 0 1
5. 16 1
sq.units
3
OR
F(x) = |x – 1| + |x – 2| (Or any Correct Response) 1

6. 3 1
7. 1 unit 1
8. 1 1
x2
9. 0 1
OR
f ( x)  x.e x 1
10. 11 1
11. 1 1
15
12. 1 0  1
I  
0 1
OR 1
m+n=1
13. (1, 0, 0) 1
14. 2 1
OR
0 1
15. 1 1
OR
3 1
16. 1 1
7
SECTION – II
17. (i) (d) 1
17. (ii) (c) 1
17. (iii) (b) 1
17. (iv) (c) 1
17. (v) (a) 1
18. (i) (d) 1
18. (ii) (c) 1
18. (iii) (c) 1
18. (iv) (d) 1
18. (v) (c) 1
SECTION – III
19. Reflexive : Since, a+a=2a, which is even ½
∴ (a,a) ∈ 𝑅 ∀𝑎 ∈ Z Hence R is reflexive

Symmetric: If (a,b) ∈ R, then a+b = 2λ ⇒ b+a = 2 λ ⇒ (b,a) ∈R, ½


Hence R is symmetric

Transitive: If (a,b) ∈ R and (b,c,) ∈ R then


a+b = 2 λ---(1) and b+c =2 𝜇 ---- (2)
Adding (1) and (2) we get a+2b+c=2(λ + 𝜇) ⇒ a+c=2 (λ + 𝜇 − 𝑏) ⇒ a+c=2k ,where λ + μ − b = k 1
⇒ (a,c) ∈R, Hence R is transitive
20. NO. OF REFLEXIVE RELATIONS = 26 = 64 1

NO. OF SYMMETRIC RELATIONS = 23 = 8 1


21. x  4 y  7 z 1 1
Cartesian Equation :  
1 2 2
 1
Vector Equation : r  (4iˆ  7 ˆj  kˆ)   ( iˆ  2 ˆj  2kˆ)
OR
The given lines can be written as:
xq y0 z s x  q' y 0 z  s' 1½
  and  
p 1 r p' 1 r'
½
As lines are perpendicular then pp′ + rr′ + 1 = 0.
22.  
a  iˆ  ˆj  3kˆ and b  2iˆ  7 ˆj  kˆ
iˆ ˆj kˆ
 
a  b  1 1 3  20iˆ  5 ˆj  5kˆ 1

2 7 1
1   1 15
Area of parallelogram = | a  b | 400  25  25  2 sq.units 1
2 2 2
OR
As,Each one of them being perpendicular to the sum of other two
   ½
2( a.b  c .a  b .c )  0
and
        
| a  b  c |2  (a  b  c ).(a  b  c )
     
= |a |2  | b |2  | c |2 2( a.b  c .a  b .c )
1
= 9 + 16 + 25 + 0 =50
  
| a  b  c | 5 2 ½
23. f '( x)  4 x ( x  1)( x  2) 1
so, f ( x) is increasing for x  [0,1]  [2, )
1
24. dx 1 x  2 1 ½+1
I   log c
( x  2)  1 2
2 2
x  2 1
1 x 3 ½
I  log c
2 x 1

25. dy dx 1
 a sin  ,  a cos 
d d
dy a sin 
  tan  1
dx a cos 
26. As 10, 3   R,  3, 2   R but 10, 2   R 1½
so, R is not Transitive. ½
(OR Any Correct Response)
OR
2x  4 2 y  4 ½
Let , f ( x)  f ( y )   xy
3x  9 3 y  9
So, f ( x ) is one-one function.
2x  4 9y  4
Let , y  f ( x)  x
3x  9 3y  2
As, Range  Codomain 1

thus, f(x) is onto function.


So, f(x) is Bijective Function. ½
27.   ½
2 2
sin x cos x
I dx   dx
0
sin x  cos x 0
cos x  sin x
 
2
sin x  cos x 2

2I   dx   1.dx  1
0
sin x  cos x 0
2

I ½
4
28. 2
4 2 32 2 1½
A  2 2 2 x .dx  ( x )0
0
3
32
A sq.units
3 1/2

SECTION - IV
29.
Area of Ellipse = 4 (Area of BOC) ½ + ½ (FOR FIGURE)
6
1 2 1
A  4 6  x 2 .dx 
0
3
4 x 36 x
A  ( 6 2  x 2  sin 1 ( ))60
3 2 2 6
A  12 sq.units 1
30. Let the Events be
E1 : Choosing 1st Coin
E2 : Choosing 2nd Coin
E3 : Choosing 3rd Coin
A: Getting Heads 1
1
P ( E1 )  P( E2 )  P( E3 ) 
3
A 40 A 75 A 1
P( )  , P( )  , P( )  1
E1 100 E2 100 E3 2
1 1
.
E3 3 2 50 10
P( )   
A 1 40  75  50
( ) 165 33 1
3 100
OR
Let X represents the number of defective bulbs drawn.
½
∴ X can take values 0,1 ,2, 3 or 4
PROBABILITY DISTRIBUTION
6 5 4 3 360
P ( X  0)  ( . . . )  X P(X)
10 9 8 7 5040
360
6 5 4 4 1920 0
P ( X  1)  4( . . . )  5040
10 9 8 7 5040
1 1920
6 5 4 3 2160
P ( X  2)  6( . . . )  5040
10 9 8 7 5040 2 2160
6 4 3 2 576
P ( X  3)  4( . . . )  5040
10 9 8 7 5040 3 576
4 3 2 1 24
P ( X  4)  1( . . . )  5040
10 9 8 7 5040 4 24
5040
TOTAL 1 2½
31.

1
32. The function f(x)=2x−∣x∣ can be written as
f(x)={3x , x ≤ 0
x , x>0.
Now,
Lim x→0− f(x) = 0. 1½
And, Lim x→0+ f(x) = 0.
f(0) = 0
So we've, LHL = RHL = f(x=0), Thus the function f(x) is continuous at x = 0.

We observe LHD = 3, RHD = 1 thus LHD is not equal to RHD, thus f(x) is not 1½
differentiable at x = 0.
OR
x x 2
y  cot 1 (cot ) 
2 2
dy 1
 1
dx 2
33. dy 1 2
 y 2
dx x log x x
1
Integrating factor = log x

so, solution of given differential equation is,


2
y.log x   log x dx 1
x2
2
y.log x  (1  log x)  c
x 1
34. dy b
 cot 
dx a
b
so, slope of tangent = 1½
a
a
Slope of Normal =
b

Equation of Tangent: 2(bx  ay )  ab


Equation of Normal: 2 2(by  ax)  b 2  a 2 1½

35. 2 0 1 2 1
I   | x  x | dx   ( x  x )dx   ( x  x )dx   ( x 3  x)dx
3 3 3

1 1 0 1
4 2 4 2 4 2
x x x x x x
I [  ]01  [  ]10  [  ]12
4 2 4 2 4 2
11 2
I
4
OR
x 1 A Bx  C
Let ,   2
( x  3)( x  4) ( x  3) x  4
2

2 2 7
On solving we get, A = , B  ,C  1½
13 13 13
2 1 7 x
I log( x  3)  log( x 2  4)  tan 1 ( )  C 1½
13 13 26 2
SECTION - V
36.  1 7 5 
1 
A   5 1 7 
1 2
18
 7 5 1 
 1 7 5 6 18 1
1 1     1    2½
X  A B   5 1 7  6   18  1
Then 18 18
 7 5 1  6 18 1
Thus, x  1, y  1, z  1 ½
OR
 7 8 3
1 
1
A  6 4 2  2
4  
 5 4 1 
 7 6 5   1   4  1
T 1 1 T 1     1    2½
X  (A ) B  (A ) B  8 4 4   4   4  1
4  4    
 3 2 1  7   4  1
Thus, x  1, y  1, z  1 ½
37. Let the required equation of plane passing through the intersection of planes
x + 3y + 6 =0 and 3x - y -4z = 0 be

2
OR
2x = y = z
38.
Corner points are
A(20,180), B(40, 160) and
C(20, 80)

Z at A = 1,88,000
Z at B = 1,76,000
Z at C = 88,000

SO maximum Z = 1,88,000 C (20, 80)


At x = 20 and y = 180

OR
(i)

𝑀𝑎𝑥 𝑍 = 12 𝑎𝑡 𝐸(4,0) 𝑀𝑖𝑛 𝑍 = −32 𝑎𝑡 𝐴(0,8) 1

(ii) Since maximum value of Z occurs at B(4,10) and C(6, 8)


∴ 4𝑝 + 10𝑞 = 6𝑝 + 8𝑞 2𝑞 = 2𝑝 𝑝 = 𝑞
2
Number of optimal solution are infinite
½

You might also like