0% found this document useful (0 votes)
36 views4 pages

Calcul Des Pièces Soumises À La Traction Simple: Correction de L'Exercice N°1

This document provides corrections to exercises calculating the load capacity of structural elements under simple tension. It calculates the net cross-sectional area and determines the minimum load capacity based on several criteria.

Uploaded by

Mouh Ayden
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
36 views4 pages

Calcul Des Pièces Soumises À La Traction Simple: Correction de L'Exercice N°1

This document provides corrections to exercises calculating the load capacity of structural elements under simple tension. It calculates the net cross-sectional area and determines the minimum load capacity based on several criteria.

Uploaded by

Mouh Ayden
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

CALCUL DES PIÈCES SOUMISES À LA TRACTION SIMPLE

CORRECTION DE L’EXERCICE N°1


 A fy 
 
  
N t.Rd  min  M0
 M0 = 1,10 ; M2 = 1,25 ; fy = 235 N/mm2 ; fu = 360 N/mm2
 0,9 A
net u 
f
 
  M 2 
Calcul de A : A = 500  10 = 5000 mm2
Calcul de Anet : Anet = min {A1 ; A2 ; A3}

1 90mm

2 80mm

80mm
3

4 80mm

80mm
5
90mm

40mm 40mm 40mm

1 1 1
2 2 2
3 3 3
4 4 4
5 5
5

A1=(1,3,5) A2=(1,2,4,5) ou (1,2,3,5) ou (1,3,4,5) A3=(1,2,3,4,5)

A1 = 5000 – (3  24  10) = 4280 mm2


A2 = 5000 – (4  24  10) + {2(402  10) / (4  80)} = 4140 mm2
A3 = 5000 – (5  24  10) + {4(402  10) / (4  80)} = 4000 mm2

Anet = min {4280 ; 4140 ; 4000} = A3 = 4000 mm2


 A f y 5000  0,235 
   1068,18 kN 
  M 0 1,10 
Nt.Rd  min    1036,8 kN
 0,9 A
net u  0,9  4000  0,36  1036,8 kN 
f
  
 M2
1,25 

CORRECTION DE L’EXERCICE N°2


 A fy 
 
  
N t.Rd  min  M0
 M0 = 1,10 ; M2 = 1,25 ; fy = 235 N/mm2 ; fu = 360 N/mm2
 0,9 A
net u 
f
 
  M 2 
Calcul de A : A = 360  10 + 2  160  10 = 6800 mm2
Calcul de Anet : Anet = min {A1 ; A2 ; A3}

1 1
10mm 10mm
95mm 2 12mm
10mm
85mm
3
3 12mm
85mm 4
95mm 12mm
5 5
10mm 10mm
85mm 75mm
50mm 50mm 50mm
A1=(1,3,5)

1 1
p 1
2 2
2
Entre les trous : 3
3 (1) et (2)
et aussi :
4 (5) et (4) 4
p =85-5+95+5=180mm
5 5

A2=(1,2,4,5) A3=(1,2,3,4,5)

A1 = 6800 – (3  12  10) = 6440 mm2


A2 = 6800 – (4  12  10) + 2{(502  10) / (4  180)} = 6389,4 mm2
A3 = 6800 – (5  12  10) + 2{(502  10) / (4  180) + (502  10) / (4  85)} = 6416,5 mm2

Anet = min {6440 ; 6389,4 ; 6416,5} = A2 = 6389,4 mm2


 A f y 6800  0,235 
   1452,7 kN 
  M 0 1,10 
Nt.Rd  min    1452,7 kN
 0,9 A
net u  0,9  6389,4  0,36  1656,13 kN 
f
  
 M2
1,25 

CORRECTION DE L’EXERCICE N°3


 A fy 
 
  
N t.Rd  min  M0
 M0 = 1,10 ; M2 = 1,25 ; fy = 235 N/mm2 ; fu = 360 N/mm2
 0,9 Anet f u 
 
  M 2 
Calcul de A : A = 420  6 + 2  250  10 = 7520 mm2
Calcul de Anet : Anet = min {A1 ; A2 ; A3 ; A4}

1 1
10mm 10mm
70mm 2 14mm

70mm 3
3 14mm
70mm 4
6mm
70mm
5
5 14mm
70mm 6
70mm 14mm
7 7
10mm 10mm

50mm 50mm 50mm 150mm 100mm


A1=(1,3,5,7)

1 p1 1 1 1
t1 =10mm
p2 Entre les trous :
2 2 (1) et (2) 2 2
et aussi :
3 t2 =6mm (5) et (4) 3 3
p1 =150-3=147mm
4 p2 =70+5=75mm
4 4
p =147+75=222mm 5
5 5
s 50
s1   p1   147  33 mm
6 p 222 6 6
s 50
7 s2   p2   75  17 mm 7 7
p 222
A2=(1,2,4,6,7) A3=(1,2,3,4,6,7) A4=(1,2,3,4,5,6,7)
s 2  t s12  t1 s22  t2
  ou bien
4  p 4  p1 4  p2 A3=(1,2,4,5,6,7)
A1  7520  14  2  10  2  6  7072 mm 2
 332  10 172  6 
A2  7520  14  2  10  3  6  2      7036,6 mm
2

 4  147 4  75 
 332  10 172  6 502  6 
A3  7520  14  2  10  4  6  2       7059,7 mm
2

 4  147 4  75 4  70 
 332  10 172  6   502  6 
A4  7520  14  2  10  4  6  2      4    7082,9 mm
2

 4  147 4  75   4  70 

Anet = min {7072 ; 7036,6 ; 7059,7 ; 7082,9} = A2 = 7036,6 mm2

 A f y 7520  0,235 
   1606,5 kN 
  M 0 1,10 
Nt.Rd  min    1606,5 kN
 0,9 Anet fu 0,9  7036,6  0,36 
    1823,9 kN 
 M2
1,25 

CORRECTION DE L’EXERCICE N°4

y
Équilibre du nœud B
FSd  1,35  FG  1,5  Fw1  1,35  20  1,5  20  57 kN
FSd
AB
N Sd
B x
A BC
N Sd
45° BC
N Sd F y  0  2
 FSd  0  N SdBC
 2  FSd
BC
N Sd N BC
F x0 
2
 N SdAB  0  N SdAB  Sd  FSd  57 kN
2

45° On vérifie que :

C ?  2  Anet  fu
N SdAB  N tSd  N tRd  N uRd 
M2

Boulons : d  16 mm  d0  16  2  18 mm
p1  40 mm  2,5  d0  2,5  18  45 mm   2  0,4
Anet   60606  A = 6,91 cm2 = 691 mm2
Anet = A – t  d0 = 691 – 6  18 = 583 mm2

Vérification :
0,4  583  0,36
NtRd  NuRd   67,16 kN  NtSd  57 kN
1,25
La barre «AB »est donc vérifiée àla traction.

You might also like