L 4000 B
B 1,000.00 L/4 1,000.00
h 200 b+16t 3,450.00
H 300 C-C spacing 4,000.00
b 250
ycog 331.818181818182
xcog 500
area 275000
Ixx 4638257575.75758
Iyy 17057291666.6667
rx 129.870670994544
ry 249.051229973905
J 21695549242.4242
L 4000 B
B 633.33 L/4 633.33
h 200 b+16t 1,500.00
H 300 C-C spacing 4,300.00
b 300
ycog 296.153846153846 b
xcog 247.44
area 216666.666666667
Ixx 2464529914.52991
Iyy 6,370,489,078.82
rx 106.652489195876
ry 171.470864250673
J 8835018993.35232
B
h
B
h
H
Design for One-way slab
f'c 28 MPa
Fy 415 MPa
L 4000 m
hmin 142.857 mm
Use: 150 mm
Assume
bar dia 10 mm
d 105 mm
Weight of slab:
3750 Pa
Factored Load of Slab:
29450 Pa
Maximum Factored Moment:
29450 N-m
Ru:
2.968002016
p
0.007663895
pmin
0.003373494 ok
pmax
0.022422414 ok
For Main Bars
As
804.7089679 sqmm
Spacing
97.60027472 mm
Max spacing
1 450 mm
2 450 mm
Use: 10mm dia bars spaced at 100mm on centers
For temperature bars:
As 300
Spacing
261.7993878 mm
Max spacing
1 750 mm
2 450 mm
Use: 10mm dia bars spaced at 300mm on centers
Design for Beam
Edge Beam
b 200 mm
h 300 mm
d 200 mm
l 4000 mm
f'c 28 MPa
Fy 415 MPa
Factored Load
14902.1 Pa
Mu
14902.1 N-m
Ru
2.069736111
p
0.00522537
pmin
0.003373494
pmax
0.022422414
As
313.5221866
N
1.55933143
Use: 2pcs 16mm dia top and bottom at midspan and support for 200x300 edge beam
Interior Beam
Height of Slab:
Length = 4000 mm
One end Continuous: L/24
One end Continuous: 166.6666667 mm
Both End Continuous: L/28
Both End Continuous: 142.8571429 mm
Use: 200 mm depth of roof slab, h
Edge Beam:
L = 4,000.00 mm
B = 633.33 mm
h = 200.00 mm
H = 300.00 mm
b = 300.00 mm
Area = 216666.6667 mm2
Interior Beam:
L = 4,000.00 mm
B = 1,000.00 mm
h = 200.00 mm
H = 300.00 mm
b = 250.00 mm
Area = 275,000.00 mm2
Edge Column:
D = 250.00 mm
W = 250.00 mm
H = 3,000.00 mm
Area = 62,500.00 mm2
Interior Column:
D = 300.00 mm
W = 300.00 mm
H = 3,000.00 mm
Area = 90,000.00 mm2
Dead Load computation:
1. Floor Load
Slab 5 KN/m2
Floor Finish 1.2 KN/m2
Ceiling Plaster 0.288 KN/m2
Total 6.488 KN/m2
2. Edge Beam 5.42 KN/m
3. Interior Beam 6.88 KN/m
4. Edge Column 1.56 KN/m
5. Interior Column 2.25 KN/m
Live Load Computation:
1. Assume 2 KN/m2
Tributary Area
Edge Beam
L 4m
W 2m
Area 8 m2
Interior Beam
L 4m
W 4m
Area 16 m2
Edge Column
L 2m
W 2m
Area 4 m2
Interior Column
L 4m
W 4m
Area 16 m2
Weight imposed in Edge Beam:
Weight 73.32 KN/m
Weight imposed in Interior Beam:
Weight 142.68 KN/m
Weight imposed in Edge Column
Weight 78.85 KN/m
Weight imposed in Interior Column
Weight 156.06 KN/m
Moment of Inertia for Edge Beam:
Ixx 2464529915 mm4
Moment of Inertia for Interior Beam:
Ixx 4638257576 mm4
Computing Moment by Moment Distribution Method
Length 4m
Kab 0.001159564
Kbc 0.001159564
Kcd 0.001159564
Kde 0.001159564
Distribution Factors
DFab 1
DFba 0.5
DFbc 0.5
DFcb 0.5
DFcd 0.5
DFdc 0.5
DFde 0.5
Dfed 1
Fixed End Moments
FEMab -190.244
FEMba 190.24
FEMbc -190.244
FEMcb 190.24
FEMcd -190.244
FEMdc 190.24
FEMde -190.244
FEMed 190.24
Using Relative K
Joint A BB CC DD
DF 1.00 0.50 0.50 0.50 0.50 0.50 0.50
FEM -190.24 190.24 -190.24 190.24 -190.24 190.24 -190.24
190.24 0.00 0.00 0.00 0.00 0.00 0.00
0.00 95.12 0.00 0.00 0.00 0.00 -95.12
0.00 -47.56 -47.56 0.00 0.00 47.56 47.56
-23.78 0.00 0.00 -23.78 23.78 0.00 0.00
23.78 0.00 0.00 0.00 0.00 0.00 0.00
0.00 11.89 0.00 0.00 0.00 0.00 -11.89
0.00 -5.95 -5.95 0.00 0.00 5.95 5.95
-2.97 0.00 0.00 -2.97 2.97 0.00 0.00
2.97 0.00 0.00 0.00 0.00 0.00 0.00
SUM 0.00 243.75 -243.75 163.49 -163.49 243.75 -243.75
Ma 0
Mb -243.75
Mc -163.49
Md -243.75
Me 0
Seismic Design Analysis
Design Criteria
Seismic Importance Factor = 1.00 Table 208-1
Soil Profile Type = SD Table 208-2
Seismic Zone Factor = 0.4 Zone 4
Near Source Factor, Na = 1.00 Table 208-4
Near Source Factor, Nv = 1.00 Table 208-5
Seismic coefficient, Ca = 0.44Na Table 208-7
Seismic coefficient, Cv = 0.64Nv Table 208-8
Numerical Coefficients, R = 8.5 Table 208-5
Ct = 0.0731
f'c = 28 Mpa
E = 4700√f'c
24870.06
G = 9.92
hn = 3
Total Weight, WT = 830.46 KN
Elastic Fundamental Period, T =
= 0.166632 sec
For Vertical distribution:
Storey Wxhx/ΣWx
Floor Level Height Δh Wxhx Fx
weight hx
Roof deck 3 3 6.49 19.46 1.00 1.73
Ground ΣWxhx 19.46
Base shear:
V= 128.9661741
Vertical distrubution:
FT = 1.57
Individual frame analysis
Along x- direction
Frame Column b d h Area I δf
1 1A 0.25 0.25 3 0.0625 0.000326 0.28
1B 0.25 0.25 3 0.0625 0.000326 0.28
1C 0.25 0.25 3 0.0625 0.000326 0.28
1D 0.25 0.25 3 0.0625 0.000326 0.28
1E 0.25 0.25 3 0.0625 0.000326 0.28
2 2A 0.25 0.25 3 0.0625 0.000326 0.28
2B 0.35 0.35 3 0.1225 0.001251 0.07
2C 0.35 0.35 3 0.1225 0.001251 0.07
2D 0.35 0.35 3 0.1225 0.001251 0.07
2E 0.25 0.25 3 0.0625 0.000326 0.28
3 3A 0.25 0.25 3 0.0625 0.000326 0.28
3B 0.25 0.25 3 0.0625 0.000326 0.28
3C 0.25 0.25 3 0.0625 0.000326 0.28
3D 0.25 0.25 3 0.0625 0.000326 0.28
3E 0.25 0.25 3 0.0625 0.000326 0.28
Frame Column k Kt
1 1A 3.52
1B 3.52 10.57
1C 3.52
2 2A 3.52
2B 13.28 30.08
2C 13.28
3 3A 3.52
3B 3.52 10.57
2C 3.52
Along y- direction
Frame Column b d h Area I δf
A A1 0.25 0.25 3 0.0625 0.000326 0.28
A2 0.25 0.25 3 0.0625 0.000326 0.28
A3 0.25 0.25 3 0.0625 0.000326 0.28
B B1 0.25 0.25 3 0.0625 0.000326 0.28
B2 0.35 0.35 3 0.1225 0.001251 0.07
B3 0.25 0.25 3 0.0625 0.000326 0.28
C C1 0.25 0.25 3 0.0625 0.000326 0.28
C2 0.35 0.35 3 0.1225 0.001251 0.07
C3 0.25 0.25 3 0.0625 0.000326 0.28
D D1 0.25 0.25 3 0.0625 0.000326 0.28
D2 0.35 0.35 3 0.1225 0.001251 0.07
D3 0.25 0.25 3 0.0625 0.000326 0.28
E E1 0.25 0.25 3 0.0625 0.000326 0.28
E2 0.25 0.25 3 0.0625 0.000326 0.28
E3 0.25 0.25 3 0.0625 0.000326 0.28
Frame Column k Kt
A A1 3.52
A2 3.52 10.57
A3 3.52
B B1 3.52
B2 13.28 20.33
B3 3.52
C C1 3.52
C2 13.28 20.33
C3 3.52
D D1 3.52
D2 13.28 20.33
D3 3.52
E E1 3.52
E2 3.52 10.57
E3 3.52
Center of rigidity:
Frame Kt y kxy Frame Kt x
1 10.57 4 42.29 A 10.57 16
2 30.08 8 240.66 B 20.33 12
3 10.57 12 126.88 C 20.33 8
Σkx 51.23 Σkxy 303.14 D 20.33 4
E 10.57 0
Σky 51.23 Σkyx
Xr = 11.23837614 m Yr = 5.917442 m
Center of mass:
Xm = 8m
Ym = 4m
Eccentricity:
ex = 3.719376139 m
ey = 2.047441591 m
Calculation of horizontal seismic force at roof level:
Horizontal distribution along x-axis
Direct kid^2/Σk
Frame Kt rel stiff d d^2 kid^2
force id^2
1 10.57 0.206396023 0.206396 -5.917442 16.00 169.17 0.5911
2 30.08 0.587207954 0.587208 -1.92 3.68 110.60 0.4088
3 10.57 0.206396023 0.206396 2.08256 4.34 45.86 0.000112
Σkx 51.23 Σkid^2 626.35
Vertical distribution along y-axis
Direct kid^2/Σk
Frame Kt rel stiff d d^2 kid^2
force id^2
A 10.57 0.13 0.13 -11.23838 126.30 1335.432 0.51
B 20.33 0.25 0.25 -7.238376 52.39 1065.048 0.41
C 20.33 0.25 0.25 -3.238376 10.49 213.1776 0.08
D 20.33 0.25 0.25 0.761624 0.58 11.79147 0.00
E 10.57 0.13 0.13 4.761624 22.67 239.7313 0.09
Σky 82.13 Σkid^2 2613.658
Frame Coeff
1 0.80
2 1.00
3 0.21
A 0.64
B 0.65
C 0.33
D 0.25
E 0.22
Along x- direction
Storey Lateral Force Frame 1 Frame 2 Frame 3
Roofdeck 1.73 0.80 1.38 1.00 1.72 0.21 0.36
Along y- direction
Storey Lateral Force Frame A Frame B Frame C
Roofdeck 1.73 0.64 1.10 0.65 1.13 0.33 0.57
E
1.00
190.24
-190.24
0.00
0.00
23.78
-23.78
0.00
0.00
2.97
-2.97
0.00
δv δt
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.00 0.08
0.00 0.08
0.00 0.08
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
δv δt
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
kyx
169.17
243.93
162.62
81.31
-
575.73
Torsion +
Direct
0.80
1.00
0.21
Torsion +
Direct
0.64
0.65
0.33
0.25
0.22
Frame D Frame E
0.25 0.44 0.22 0.38