0% found this document useful (0 votes)
81 views17 pages

Section

The document provides detailed structural design calculations for a one-way slab and beams, including parameters such as dimensions, material strengths, loads, and reinforcement requirements. It also includes moment of inertia calculations, seismic design analysis, and individual frame analysis for both x and y directions. The calculations ensure compliance with design standards and safety factors for the specified building structure.

Uploaded by

Ghie Ghie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
81 views17 pages

Section

The document provides detailed structural design calculations for a one-way slab and beams, including parameters such as dimensions, material strengths, loads, and reinforcement requirements. It also includes moment of inertia calculations, seismic design analysis, and individual frame analysis for both x and y directions. The calculations ensure compliance with design standards and safety factors for the specified building structure.

Uploaded by

Ghie Ghie
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 17

L 4000 B

B 1,000.00 L/4 1,000.00


h 200 b+16t 3,450.00
H 300 C-C spacing 4,000.00
b 250
ycog 331.818181818182
xcog 500
area 275000
Ixx 4638257575.75758
Iyy 17057291666.6667
rx 129.870670994544
ry 249.051229973905
J 21695549242.4242

L 4000 B
B 633.33 L/4 633.33
h 200 b+16t 1,500.00
H 300 C-C spacing 4,300.00
b 300
ycog 296.153846153846 b
xcog 247.44
area 216666.666666667
Ixx 2464529914.52991
Iyy 6,370,489,078.82
rx 106.652489195876
ry 171.470864250673
J 8835018993.35232
B
h

B
h

H
Design for One-way slab

f'c 28 MPa
Fy 415 MPa
L 4000 m

hmin 142.857 mm
Use: 150 mm

Assume
bar dia 10 mm
d 105 mm

Weight of slab:
3750 Pa

Factored Load of Slab:


29450 Pa

Maximum Factored Moment:


29450 N-m

Ru:
2.968002016

p
0.007663895

pmin
0.003373494 ok

pmax
0.022422414 ok

For Main Bars

As
804.7089679 sqmm

Spacing
97.60027472 mm

Max spacing
1 450 mm
2 450 mm

Use: 10mm dia bars spaced at 100mm on centers

For temperature bars:


As 300

Spacing
261.7993878 mm

Max spacing
1 750 mm
2 450 mm

Use: 10mm dia bars spaced at 300mm on centers


Design for Beam

Edge Beam
b 200 mm
h 300 mm
d 200 mm
l 4000 mm
f'c 28 MPa
Fy 415 MPa

Factored Load
14902.1 Pa

Mu
14902.1 N-m

Ru
2.069736111

p
0.00522537

pmin
0.003373494

pmax
0.022422414

As
313.5221866

N
1.55933143

Use: 2pcs 16mm dia top and bottom at midspan and support for 200x300 edge beam

Interior Beam
Height of Slab:
Length = 4000 mm

One end Continuous: L/24


One end Continuous: 166.6666667 mm

Both End Continuous: L/28


Both End Continuous: 142.8571429 mm

Use: 200 mm depth of roof slab, h

Edge Beam:
L = 4,000.00 mm
B = 633.33 mm
h = 200.00 mm
H = 300.00 mm
b = 300.00 mm
Area = 216666.6667 mm2

Interior Beam:
L = 4,000.00 mm
B = 1,000.00 mm
h = 200.00 mm
H = 300.00 mm
b = 250.00 mm
Area = 275,000.00 mm2

Edge Column:
D = 250.00 mm
W = 250.00 mm
H = 3,000.00 mm
Area = 62,500.00 mm2

Interior Column:
D = 300.00 mm
W = 300.00 mm
H = 3,000.00 mm
Area = 90,000.00 mm2

Dead Load computation:


1. Floor Load
Slab 5 KN/m2
Floor Finish 1.2 KN/m2
Ceiling Plaster 0.288 KN/m2
Total 6.488 KN/m2

2. Edge Beam 5.42 KN/m


3. Interior Beam 6.88 KN/m
4. Edge Column 1.56 KN/m
5. Interior Column 2.25 KN/m

Live Load Computation:


1. Assume 2 KN/m2

Tributary Area
Edge Beam
L 4m
W 2m
Area 8 m2

Interior Beam
L 4m
W 4m
Area 16 m2

Edge Column
L 2m
W 2m
Area 4 m2

Interior Column
L 4m
W 4m
Area 16 m2

Weight imposed in Edge Beam:


Weight 73.32 KN/m

Weight imposed in Interior Beam:


Weight 142.68 KN/m

Weight imposed in Edge Column


Weight 78.85 KN/m

Weight imposed in Interior Column


Weight 156.06 KN/m
Moment of Inertia for Edge Beam:
Ixx 2464529915 mm4

Moment of Inertia for Interior Beam:


Ixx 4638257576 mm4

Computing Moment by Moment Distribution Method

Length 4m
Kab 0.001159564
Kbc 0.001159564
Kcd 0.001159564
Kde 0.001159564

Distribution Factors
DFab 1
DFba 0.5
DFbc 0.5
DFcb 0.5
DFcd 0.5
DFdc 0.5
DFde 0.5
Dfed 1

Fixed End Moments

FEMab -190.244
FEMba 190.24
FEMbc -190.244
FEMcb 190.24
FEMcd -190.244
FEMdc 190.24
FEMde -190.244
FEMed 190.24

Using Relative K
Joint A BB CC DD
DF 1.00 0.50 0.50 0.50 0.50 0.50 0.50
FEM -190.24 190.24 -190.24 190.24 -190.24 190.24 -190.24
190.24 0.00 0.00 0.00 0.00 0.00 0.00
0.00 95.12 0.00 0.00 0.00 0.00 -95.12
0.00 -47.56 -47.56 0.00 0.00 47.56 47.56
-23.78 0.00 0.00 -23.78 23.78 0.00 0.00
23.78 0.00 0.00 0.00 0.00 0.00 0.00
0.00 11.89 0.00 0.00 0.00 0.00 -11.89
0.00 -5.95 -5.95 0.00 0.00 5.95 5.95
-2.97 0.00 0.00 -2.97 2.97 0.00 0.00
2.97 0.00 0.00 0.00 0.00 0.00 0.00
SUM 0.00 243.75 -243.75 163.49 -163.49 243.75 -243.75

Ma 0
Mb -243.75
Mc -163.49
Md -243.75
Me 0

Seismic Design Analysis


Design Criteria
Seismic Importance Factor = 1.00 Table 208-1
Soil Profile Type = SD Table 208-2
Seismic Zone Factor = 0.4 Zone 4
Near Source Factor, Na = 1.00 Table 208-4
Near Source Factor, Nv = 1.00 Table 208-5
Seismic coefficient, Ca = 0.44Na Table 208-7
Seismic coefficient, Cv = 0.64Nv Table 208-8
Numerical Coefficients, R = 8.5 Table 208-5
Ct = 0.0731
f'c = 28 Mpa
E = 4700√f'c
24870.06
G = 9.92
hn = 3

Total Weight, WT = 830.46 KN

Elastic Fundamental Period, T =


= 0.166632 sec

For Vertical distribution:


Storey Wxhx/ΣWx
Floor Level Height Δh Wxhx Fx
weight hx
Roof deck 3 3 6.49 19.46 1.00 1.73
Ground ΣWxhx 19.46

Base shear:
V= 128.9661741

Vertical distrubution:

FT = 1.57

Individual frame analysis


Along x- direction
Frame Column b d h Area I δf
1 1A 0.25 0.25 3 0.0625 0.000326 0.28
1B 0.25 0.25 3 0.0625 0.000326 0.28
1C 0.25 0.25 3 0.0625 0.000326 0.28
1D 0.25 0.25 3 0.0625 0.000326 0.28
1E 0.25 0.25 3 0.0625 0.000326 0.28
2 2A 0.25 0.25 3 0.0625 0.000326 0.28
2B 0.35 0.35 3 0.1225 0.001251 0.07
2C 0.35 0.35 3 0.1225 0.001251 0.07
2D 0.35 0.35 3 0.1225 0.001251 0.07
2E 0.25 0.25 3 0.0625 0.000326 0.28
3 3A 0.25 0.25 3 0.0625 0.000326 0.28
3B 0.25 0.25 3 0.0625 0.000326 0.28
3C 0.25 0.25 3 0.0625 0.000326 0.28
3D 0.25 0.25 3 0.0625 0.000326 0.28
3E 0.25 0.25 3 0.0625 0.000326 0.28

Frame Column k Kt
1 1A 3.52
1B 3.52 10.57
1C 3.52
2 2A 3.52
2B 13.28 30.08
2C 13.28
3 3A 3.52
3B 3.52 10.57
2C 3.52

Along y- direction
Frame Column b d h Area I δf
A A1 0.25 0.25 3 0.0625 0.000326 0.28
A2 0.25 0.25 3 0.0625 0.000326 0.28
A3 0.25 0.25 3 0.0625 0.000326 0.28
B B1 0.25 0.25 3 0.0625 0.000326 0.28
B2 0.35 0.35 3 0.1225 0.001251 0.07
B3 0.25 0.25 3 0.0625 0.000326 0.28
C C1 0.25 0.25 3 0.0625 0.000326 0.28
C2 0.35 0.35 3 0.1225 0.001251 0.07
C3 0.25 0.25 3 0.0625 0.000326 0.28
D D1 0.25 0.25 3 0.0625 0.000326 0.28
D2 0.35 0.35 3 0.1225 0.001251 0.07
D3 0.25 0.25 3 0.0625 0.000326 0.28
E E1 0.25 0.25 3 0.0625 0.000326 0.28
E2 0.25 0.25 3 0.0625 0.000326 0.28
E3 0.25 0.25 3 0.0625 0.000326 0.28

Frame Column k Kt
A A1 3.52
A2 3.52 10.57
A3 3.52
B B1 3.52
B2 13.28 20.33
B3 3.52
C C1 3.52
C2 13.28 20.33
C3 3.52
D D1 3.52
D2 13.28 20.33
D3 3.52
E E1 3.52
E2 3.52 10.57
E3 3.52

Center of rigidity:
Frame Kt y kxy Frame Kt x
1 10.57 4 42.29 A 10.57 16
2 30.08 8 240.66 B 20.33 12
3 10.57 12 126.88 C 20.33 8
Σkx 51.23 Σkxy 303.14 D 20.33 4
E 10.57 0
Σky 51.23 Σkyx

Xr = 11.23837614 m Yr = 5.917442 m

Center of mass:
Xm = 8m
Ym = 4m
Eccentricity:
ex = 3.719376139 m
ey = 2.047441591 m

Calculation of horizontal seismic force at roof level:


Horizontal distribution along x-axis
Direct kid^2/Σk
Frame Kt rel stiff d d^2 kid^2
force id^2
1 10.57 0.206396023 0.206396 -5.917442 16.00 169.17 0.5911
2 30.08 0.587207954 0.587208 -1.92 3.68 110.60 0.4088
3 10.57 0.206396023 0.206396 2.08256 4.34 45.86 0.000112
Σkx 51.23 Σkid^2 626.35

Vertical distribution along y-axis


Direct kid^2/Σk
Frame Kt rel stiff d d^2 kid^2
force id^2
A 10.57 0.13 0.13 -11.23838 126.30 1335.432 0.51
B 20.33 0.25 0.25 -7.238376 52.39 1065.048 0.41
C 20.33 0.25 0.25 -3.238376 10.49 213.1776 0.08
D 20.33 0.25 0.25 0.761624 0.58 11.79147 0.00
E 10.57 0.13 0.13 4.761624 22.67 239.7313 0.09
Σky 82.13 Σkid^2 2613.658

Frame Coeff
1 0.80
2 1.00
3 0.21
A 0.64
B 0.65
C 0.33
D 0.25
E 0.22

Along x- direction
Storey Lateral Force Frame 1 Frame 2 Frame 3
Roofdeck 1.73 0.80 1.38 1.00 1.72 0.21 0.36

Along y- direction
Storey Lateral Force Frame A Frame B Frame C
Roofdeck 1.73 0.64 1.10 0.65 1.13 0.33 0.57
E
1.00
190.24
-190.24
0.00
0.00
23.78
-23.78
0.00
0.00
2.97
-2.97
0.00
δv δt
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.00 0.08
0.00 0.08
0.00 0.08
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28

δv δt
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.00 0.08
0.01 0.28
0.01 0.28
0.01 0.28
0.01 0.28

kyx
169.17
243.93
162.62
81.31
-
575.73
Torsion +
Direct
0.80
1.00
0.21

Torsion +
Direct
0.64
0.65
0.33
0.25
0.22

Frame D Frame E
0.25 0.44 0.22 0.38

You might also like