0% found this document useful (0 votes)
73 views18 pages

Horizontal Distribution of Lateral Forces: The Typical Floor Plan

This document contains calculations for the deflection and stiffness of frame members in the x and y directions of a building. It analyzes columns in frames A through F in the x direction, and frames 1 through 3 in the y direction. For each column, it provides dimensions, area, moment of inertia, flexural and shear deflections, total deflection, and stiffness. The total stiffness is calculated for each frame in both directions.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
73 views18 pages

Horizontal Distribution of Lateral Forces: The Typical Floor Plan

This document contains calculations for the deflection and stiffness of frame members in the x and y directions of a building. It analyzes columns in frames A through F in the x direction, and frames 1 through 3 in the y direction. For each column, it provides dimensions, area, moment of inertia, flexural and shear deflections, total deflection, and stiffness. The total stiffness is calculated for each frame in both directions.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

Name: CRISELLE ANNE D.

BALDOZA Date: 12/12/2022


Instructor: ENGR. EDNA P. MONTAÑEZ Year & Section: 4B

Horizontal Distribution of Lateral Forces

The Typical Floor Plan


Base Shear and Lateral Forces of the Building

Frame elevation along Grids A, B and C

Frame elevation along Grids 1, 2 and 3


Deflection & Stiffness along X-Direction

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌𝑨 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
A A1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A2 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A3 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A4 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A5 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A6 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
A7 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 156.50

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4 𝟏
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉
𝒌B =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
B B1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
B3 0.4X0.4 3 0.16 0.002133 0.042459 0.002117 0.044576 22.43
B4 0.4X0.4 3 0.16 0.002133 0.042459 0.002117 0.044576 22.43
B5 0.4X0.4 3 0.16 0.002133 0.042459 0.002117 0.044576 22.43
B7 0.4X0.4 3 0.16 0.002133 0.042459 0.002117 0.044576 22.43
SUM = 112.09

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌C =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
C C1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
C2 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
C3 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
C5 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
C6 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
C7 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 134.15

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4 𝟏
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉
𝒌D =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
D D1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D2 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D3 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D4 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D5 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D6 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
D7 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 156.50
Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness
2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌E =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
E E1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
E2 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
E4 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
E6 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
E7 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌F =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
F F1 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F2 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F3 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F4 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F5 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F6 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
F7 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 156.50

Deflection & Stiffness along Y-Direction

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌𝟏 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
1 1A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
1B 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
1C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
1D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
1E 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
1F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 134.15

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌2 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
2 2A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
2C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
2D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
2E 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
2F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌3 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
3 3A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
3B 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
3C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
3D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
3F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌4 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
4 4A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
4B 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
4D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
4E 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
4F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌5 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
5 5A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
5B 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
5C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
5D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
5F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79

Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness


2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌6 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
6 6A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
6C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
6D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
6E 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
6F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 111.79
Frame Col bxd Height Area I 𝜹𝒇 = 𝜹𝑽 = Total 𝜹 Stiffness
2 4
(m) (m) (m ) (m ) 𝑷𝒉𝟑 𝟏. 𝟐𝑷𝒉 𝟏
𝒌7 =
𝟏𝟐𝑬𝒄𝑰 𝑮𝑨 𝜹
7 7A 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
7B 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
7C 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
7D 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
7E 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
7F 0.4X0.4 3 0.16 0.002133 0.042459 0.002268 0.044727 22.36
SUM = 134.15

Center of Mass
𝛴 𝑀𝑥
𝑥𝑚 = = 10m 𝒇𝒓𝒐𝒎 𝒈𝒓𝒊𝒅 A
𝛴𝑀
𝛴𝑀𝑥
𝑦𝑚 = = 10m 𝒇𝒓𝒐𝒎 𝒈𝒓𝒊𝒅 7
𝛴𝑀

Center of Rigidity

(156.5 ∗ 0) + (112.09 ∗ 4) + (134.15 ∗ 8) + (156.5 ∗ 12) + (111.79 ∗ 16) + (156.5 ∗ 20)


𝑥𝑟 =
156.5 + 112.09 + 134.15 + 156.5 + 111.79 + 156.5
𝒙𝒓 = 10.05 𝒎 𝒇𝒓𝒐𝒎 𝒈𝒓𝒊𝒅 A

(134.15 ∗ 0) + (111.79 ∗ 3.5) + (111.79 ∗ 7) + (111.79 ∗ 10.5) + (111.79 ∗ 14) + (111.79 ∗ 17.5) + (134.15 ∗ 20)
𝑥𝑟 =
134.15 + 111.79 + 111.79 + 111.79 + 111.79 + 111.79 + 134.15

𝒚𝒓 = 10.34 𝒎 𝒇𝒓𝒐𝒎 𝒈𝒓𝒊𝒅 7


Calculation of eccentricity 𝒆𝒙 and 𝒆𝒚

𝑒𝑥 = (𝑥𝑟 − 𝑥𝑚) + 5%(20𝑚)


𝑒𝑥 = (10.05 − 10) + 0.05 (20)

𝒆𝒙 = 1.05 𝒎

𝑒𝑦 = (𝑦𝑟 − 𝑦𝑚) + 5%(20𝑚)

𝑒𝑦 = (10.34 − 10) + 0.05 (20)

𝒆𝒚 =1.34𝒎
Center of Rigidity

𝐽𝑟 = (134.15 𝑥 10.342 + 111.79 𝑥 6.842 + 111.79 𝑥 3.342 + 111.79 𝑥 0.342 + 111.79 𝑥


2.662 + 111.79 𝑥 6.162 + 134.15 𝑥 9.662 + 156.50 𝑥 10.052 + 112.09 𝑥 6.052 + 134.15 𝑥
2.052 + 156.50 𝑥 1.952 + 111.79 𝑥 5.952 + 156.50 𝑥 9.952)

𝐽𝑟 = 78 904.164 𝑘𝑁. 𝑚
Calculation of force Px along Grid 7

(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟎. 𝟏 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟏𝟖. 𝟐𝟖𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = 𝟖𝟐𝟕.𝟐𝟓
+ 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
= 𝟐𝟑𝟖. 𝟕 𝒌𝑵
(𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟓𝟗. 𝟏𝟖𝟏 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids 7

Calculation of force along Grid 6

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟓 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟐𝟑𝟔 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟗𝟏𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟔𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
Frame elevation along Grids 6

Calculation of force along Grid 5

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟓 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟐𝟑𝟔 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟗𝟏𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟔𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids 5


Calculation of force along Grid 4

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟓 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟐𝟑𝟔 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟗𝟏𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟔𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids 4

Calculation of force along Grid 3

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟓 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟐𝟑𝟔 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟗𝟏𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟔𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
Frame elevation along Grids 3

Calculation of force along Grid 2

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟓 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟐𝟑𝟔 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟗𝟏𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟔𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids 2


Calculation of force Px along Grid 1

(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟑𝟒)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟎. 𝟏 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟑𝟒)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟏𝟖. 𝟐𝟖𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟑𝟒)
𝑷𝟑𝒓𝒅 = + = 𝟐𝟑𝟖. 𝟕 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟑𝟒)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟓𝟗. 𝟏𝟖𝟏 𝒌𝑵
𝟖𝟐𝟕.𝟐𝟓 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids 1

Calculation of force Py along Grid A

(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟑. 𝟑𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟕𝟎. 𝟎𝟕𝟖 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟐𝟕𝟕. 𝟓𝟑𝟖 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = 𝟖𝟐𝟕.𝟓𝟑
+ 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
= 𝟏𝟖𝟓. 𝟎𝟖𝟐 𝒌𝑵
Frame elevation along Grids A

Calculation of force Py along Grid B

(𝟏𝟏𝟐. 𝟎𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟐. 𝟎𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟕𝟑𝟗 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟐. 𝟎𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟐. 𝟎𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟓. 𝟎𝟔𝟏 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟐.𝟎𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟐.𝟎𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟕𝟖𝟏 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟐.𝟎𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟐.𝟎𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟑𝟐. 𝟓𝟔𝟏 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids B


Calculation of force Py along Grid C

(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟎. 𝟎𝟑𝟑 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟑𝟒. 𝟏𝟓)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟏𝟕. 𝟐𝟐𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟑𝟒.𝟏𝟓)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟐𝟑𝟕. 𝟗𝟎𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟑𝟒.𝟏𝟓)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟓𝟖. 𝟔𝟓 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids C

Calculation of force Py along Grid D

(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟑. 𝟑𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟕𝟎. 𝟎𝟕𝟖 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟐𝟕𝟕. 𝟓𝟑𝟖 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟖𝟓. 𝟎𝟖𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
Frame elevation along Grids D

Calculation of force Py along Grid E

(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)


𝑷𝑹𝑶𝑶𝑭 = + = 𝟏𝟔. 𝟔𝟗𝟒 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟏𝟏. 𝟕𝟗)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟐𝟔𝟒. 𝟑𝟓𝟐 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟏𝟏.𝟕𝟗)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟏𝟗𝟖. 𝟐𝟒𝟗 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟏𝟏.𝟕𝟗)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = 𝟖𝟐𝟕.𝟓𝟑
+ 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
= 𝟏𝟑𝟐. 𝟐𝟎𝟕 𝒌𝑵

Frame elevation along Grids E

Calculation of force Py along Grid F


(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟐𝟐. 𝟐𝟑 ∗ 𝟏. 𝟎𝟓)
𝑷𝑹𝑶𝑶𝑭 = + = 𝟐𝟑. 𝟑𝟕 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔) (𝟏𝟓𝟔. 𝟓𝟎)(𝟏𝟗𝟑𝟓. 𝟓𝟔 ∗ 𝟏. 𝟎𝟓)
𝑷𝟒𝒕𝒉 = + = 𝟑𝟕𝟎. 𝟎𝟕𝟖 𝒌𝑵
𝟖𝟐𝟕. 𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒. 𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔) (𝟏𝟓𝟔.𝟓𝟎)(𝟏𝟒𝟓𝟏.𝟓𝟔∗𝟏.𝟎𝟓)
𝑷𝟑𝒓𝒅 = + = 𝟐𝟕𝟕. 𝟓𝟑𝟖 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒
(𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓) (𝟏𝟓𝟔.𝟓𝟎)(𝟗𝟔𝟖.𝟎𝟎𝟓∗𝟏.𝟎𝟓)
𝑷𝟐𝒏𝒅 = + = 𝟏𝟖𝟓. 𝟎𝟖𝟐 𝒌𝑵
𝟖𝟐𝟕.𝟓𝟑 𝟕𝟖 𝟗𝟎𝟒.𝟏𝟔𝟒

Frame elevation along Grids F

You might also like