0% found this document useful (0 votes)
108 views33 pages

Frame Calculation - Example: 1 Frame's Data: Node's Properties Units

1. The document presents the frame calculation example of a 4-member frame structure with nodes and members labeled 1 through 8. 2. The frame properties including member areas, moduli, inertias, node coordinates, supports and loads are defined. 3. The procedure for calculating the member stiffness matrix for member 1 is shown, including defining the local stiffness matrix [k'] through area, modulus of elasticity, and moment of inertia values, and applying the transformation matrix [T] to obtain the global stiffness matrix [k].

Uploaded by

chhay long
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
108 views33 pages

Frame Calculation - Example: 1 Frame's Data: Node's Properties Units

1. The document presents the frame calculation example of a 4-member frame structure with nodes and members labeled 1 through 8. 2. The frame properties including member areas, moduli, inertias, node coordinates, supports and loads are defined. 3. The procedure for calculating the member stiffness matrix for member 1 is shown, including defining the local stiffness matrix [k'] through area, modulus of elasticity, and moment of inertia values, and applying the transformation matrix [T] to obtain the global stiffness matrix [k].

Uploaded by

chhay long
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 33

Frame Calculation - Example: 1

Frame's Data

1,220.00 kg/m 1,220.00 kg/m 1,220.00 kg/m

5 6 7 8
5 6 7
1 2 3 4
2.70 m

1 2 3 4

5.85 m 7.50 m 5.85 m

Node's Properties Units


node x-co y-co support Distance : m Point Load : kg
m m Shear & Axial Force : kg Distributed Load : kg/m
#1 0.00 0.00 Hinge Bending Moment : kg-m Moment Load : kg-m
#2 5.85 0.00 Fixed-end Deflecion : mm Area, A : cm2
#3 13.35 0.00 Fixed-end Reaction : kg Elastic Modulus, E : kg/cm2
#4 19.20 0.00 Fixed-end Moment of Inertia, I : cm4
#5 0.00 2.70
#6 5.85 2.70
#7 13.35 2.70
#8 19.20 2.70

Member's Properties
member from node to node Area, A Modulus, E Inertia, I
cm2 kg/cm2 cm4
#1 #1 #5 1,050.00 2.53E+05 78,750.00
#2 #2 #6 1,750.00 2.53E+05 3.65E+05
#3 #3 #7 1,750.00 2.53E+05 3.65E+05
#4 #4 #8 1,050.00 2.53E+05 78,750.00
#5 #5 #6 13,200.00 2.53E+05 5.32E+05
#6 #6 #7 13,200.00 2.53E+05 5.32E+05
#7 #7 #8 13,200.00 2.53E+05 5.32E+05

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 1
Frame Calculation - Example: 1

Load's Properties
load at member load type value @ from node @ to node
m m
#1 #5 1,220.00 kg/m 0.00E+00 0.00E+00
#2 #6 1,220.00 kg/m 0.00E+00 0.00E+00
#3 #7 1,220.00 kg/m 0.00E+00 0.00E+00

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 2
Frame Calculation - Example: 1

Global DOF

14 17 20 23

15 18 21 24
5 13 6 16 7 19 8 22
5 6 7
21 52 83 11 4
2.70 m

3 6 9 12
1 1 2 4 3 7 4 10

5.85 m 7.50 m 5.85 m

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 3
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #1


14

15
5 13
node #1 = (0.00 , 0.00)
node #5 = (0.00 , 2.70)
1
x2 - x1 0.00 - 0.00
2 c = cos = = = 0.00
L 2.70
3
y2 - y1 2.70 - 0.00
s = sin = = = 1.00
1 1 L 2.70

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 0.10 m2, E = 2.53E+07 kN/m2, I = 7.88E-04 m4, L = 2.70 m

AE/L = 0.10 x 2.53E+07 / 2.70 = 9.83E+05


3 3
12EI/L = 12 x 2.53E+07 x 7.88E-04 / 2.70 = 12,130.98
2 2
6EI/L = 6 x 2.53E+07 x 7.88E-04 / 2.70 = 16,376.82
4EI/L = 4 x 2.53E+07 x 7.88E-04 / 2.70 = 29,478.28
2EI/L = 2 x 2.53E+07 x 7.88E-04 / 2.70 = 14,739.14

9.83E+05 - - (9.83E+05) - -
- 12,130.98 16,376.82 - (12,130.98) 16,376.82

then, [k'] = - 16,376.82 29,478.28 - (16,376.82) 14,739.14


(9.83E+05) - - 9.83E+05 - -
- (12,130.98) (16,376.82) - 12,130.98 (16,376.82)
- 16,376.82 14,739.14 - (16,376.82) 29,478.28

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 4
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 - 1.00 - - - -


-sin cos 0 0 0 0 (1.00) - - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - - 1.00 -
0 0 0 -sin cos 0 - - - (1.00) - -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 - (1.00) - - - -


sin cos 0 0 0 0 1.00 - - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - - (1.00) -
0 0 0 sin cos 0 - - - 1.00 - -
0 0 0 0 0 1 - - - - - 1.00

12,130.98 - (16,376.82) (12,130.98) - (16,376.82)


- 9.83E+05 - - (9.83E+05) -

then, [k] = (16,376.82) - 29,478.28 16,376.82 - 14,739.14


(12,130.98) - 16,376.82 12,130.98 - 16,376.82
- (9.83E+05) - - 9.83E+05 -
(16,376.82) - 14,739.14 16,376.82 - 29,478.28

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 5
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #2


17

18
6 16
node #2 = (5.85 , 0.00)
node #6 = (5.85 , 2.70)
2
x2 - x1 5.85 - 5.85
5 c = cos = = = 0.00
L 2.70
6
y2 - y1 2.70 - 0.00
s = sin = = = 1.00
2 4 L 2.70

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 0.17 m2, E = 2.53E+07 kN/m2, I = 3.65E-03 m4, L = 2.70 m

AE/L = 0.17 x 2.53E+07 / 2.70 = 1.64E+06


3 3
12EI/L = 12 x 2.53E+07 x 3.65E-03 / 2.70 = 56,161.90
2 2
6EI/L = 6 x 2.53E+07 x 3.65E-03 / 2.70 = 75,818.56
4EI/L = 4 x 2.53E+07 x 3.65E-03 / 2.70 = 1.36E+05
2EI/L = 2 x 2.53E+07 x 3.65E-03 / 2.70 = 68,236.70

1.64E+06 - - (1.64E+06) - -
- 56,161.90 75,818.56 - (56,161.90) 75,818.56

then, [k'] = - 75,818.56 1.36E+05 - (75,818.56) 68,236.70


(1.64E+06) - - 1.64E+06 - -
- (56,161.90) (75,818.56) - 56,161.90 (75,818.56)
- 75,818.56 68,236.70 - (75,818.56) 1.36E+05

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 6
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 - 1.00 - - - -


-sin cos 0 0 0 0 (1.00) - - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - - 1.00 -
0 0 0 -sin cos 0 - - - (1.00) - -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 - (1.00) - - - -


sin cos 0 0 0 0 1.00 - - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - - (1.00) -
0 0 0 sin cos 0 - - - 1.00 - -
0 0 0 0 0 1 - - - - - 1.00

56,161.90 - (75,818.56) (56,161.90) - (75,818.56)


- 1.64E+06 - - (1.64E+06) -

then, [k] = (75,818.56) - 1.36E+05 75,818.56 - 68,236.70


(56,161.90) - 75,818.56 56,161.90 - 75,818.56
- (1.64E+06) - - 1.64E+06 -
(75,818.56) - 68,236.70 75,818.56 - 1.36E+05

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 7
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #3


20

21
7 19
node #3 = (13.35 , 0.00)
node #7 = (13.35 , 2.70)
3
x2 - x1 13.35 - 13.35
8 c = cos = = = 0.00
L 2.70
9
y2 - y1 2.70 - 0.00
s = sin = = = 1.00
3 7 L 2.70

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 0.17 m2, E = 2.53E+07 kN/m2, I = 3.65E-03 m4, L = 2.70 m

AE/L = 0.17 x 2.53E+07 / 2.70 = 1.64E+06


3 3
12EI/L = 12 x 2.53E+07 x 3.65E-03 / 2.70 = 56,161.90
2 2
6EI/L = 6 x 2.53E+07 x 3.65E-03 / 2.70 = 75,818.56
4EI/L = 4 x 2.53E+07 x 3.65E-03 / 2.70 = 1.36E+05
2EI/L = 2 x 2.53E+07 x 3.65E-03 / 2.70 = 68,236.70

1.64E+06 - - (1.64E+06) - -
- 56,161.90 75,818.56 - (56,161.90) 75,818.56

then, [k'] = - 75,818.56 1.36E+05 - (75,818.56) 68,236.70


(1.64E+06) - - 1.64E+06 - -
- (56,161.90) (75,818.56) - 56,161.90 (75,818.56)
- 75,818.56 68,236.70 - (75,818.56) 1.36E+05

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 8
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 - 1.00 - - - -


-sin cos 0 0 0 0 (1.00) - - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - - 1.00 -
0 0 0 -sin cos 0 - - - (1.00) - -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 - (1.00) - - - -


sin cos 0 0 0 0 1.00 - - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - - (1.00) -
0 0 0 sin cos 0 - - - 1.00 - -
0 0 0 0 0 1 - - - - - 1.00

56,161.90 - (75,818.56) (56,161.90) - (75,818.56)


- 1.64E+06 - - (1.64E+06) -

then, [k] = (75,818.56) - 1.36E+05 75,818.56 - 68,236.70


(56,161.90) - 75,818.56 56,161.90 - 75,818.56
- (1.64E+06) - - 1.64E+06 -
(75,818.56) - 68,236.70 75,818.56 - 1.36E+05

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 9
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #4


23

24
8 22
node #4 = (19.20 , 0.00)
node #8 = (19.20 , 2.70)
4
x2 - x1 19.20 - 19.20
11 c = cos = = = 0.00
L 2.70
12
y2 - y1 2.70 - 0.00
s = sin = = = 1.00
4 10 L 2.70

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 0.10 m2, E = 2.53E+07 kN/m2, I = 7.88E-04 m4, L = 2.70 m

AE/L = 0.10 x 2.53E+07 / 2.70 = 9.83E+05


3 3
12EI/L = 12 x 2.53E+07 x 7.88E-04 / 2.70 = 12,130.98
2 2
6EI/L = 6 x 2.53E+07 x 7.88E-04 / 2.70 = 16,376.82
4EI/L = 4 x 2.53E+07 x 7.88E-04 / 2.70 = 29,478.28
2EI/L = 2 x 2.53E+07 x 7.88E-04 / 2.70 = 14,739.14

9.83E+05 - - (9.83E+05) - -
- 12,130.98 16,376.82 - (12,130.98) 16,376.82

then, [k'] = - 16,376.82 29,478.28 - (16,376.82) 14,739.14


(9.83E+05) - - 9.83E+05 - -
- (12,130.98) (16,376.82) - 12,130.98 (16,376.82)
- 16,376.82 14,739.14 - (16,376.82) 29,478.28

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 10
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 - 1.00 - - - -


-sin cos 0 0 0 0 (1.00) - - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - - 1.00 -
0 0 0 -sin cos 0 - - - (1.00) - -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 - (1.00) - - - -


sin cos 0 0 0 0 1.00 - - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - - (1.00) -
0 0 0 sin cos 0 - - - 1.00 - -
0 0 0 0 0 1 - - - - - 1.00

12,130.98 - (16,376.82) (12,130.98) - (16,376.82)


- 9.83E+05 - - (9.83E+05) -

then, [k] = (16,376.82) - 29,478.28 16,376.82 - 14,739.14


(12,130.98) - 16,376.82 12,130.98 - 16,376.82
- (9.83E+05) - - 9.83E+05 -
(16,376.82) - 14,739.14 16,376.82 - 29,478.28

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 11
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #5

14 17 node #5 = (0.00 , 2.70)


node #6 = (5.85 , 2.70)
15 18
5 13 6 16
x2 - x1 5.85 - 0.00
5 c = cos = = = 1.00
L 5.85
y2 - y1 2.70 - 2.70
s = sin = = = 0.00
L 5.85

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 1.32 m2, E = 2.53E+07 kN/m2, I = 5.32E-03 m4, L = 5.85 m

AE/L = 1.32 x 2.53E+07 / 5.85 = 5.70E+06


3 3
12EI/L = 12 x 2.53E+07 x 5.32E-03 / 5.85 = 8,063.19
2 2
6EI/L = 6 x 2.53E+07 x 5.32E-03 / 5.85 = 23,584.84
4EI/L = 4 x 2.53E+07 x 5.32E-03 / 5.85 = 91,980.88
2EI/L = 2 x 2.53E+07 x 5.32E-03 / 5.85 = 45,990.44

5.70E+06 - - (5.70E+06) - -
- 8,063.19 23,584.84 - (8,063.19) 23,584.84

then, [k'] = - 23,584.84 91,980.88 - (23,584.84) 45,990.44


(5.70E+06) - - 5.70E+06 - -
- (8,063.19) (23,584.84) - 8,063.19 (23,584.84)
- 23,584.84 45,990.44 - (23,584.84) 91,980.88

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 12
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 1.00 - - - - -


-sin cos 0 0 0 0 - 1.00 - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - 1.00 - -
0 0 0 -sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 1.00 - - - - -


sin cos 0 0 0 0 - 1.00 - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - 1.00 - -
0 0 0 sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

5.70E+06 - - (5.70E+06) - -
- 8,063.19 23,584.84 - (8,063.19) 23,584.84

then, [k] = - 23,584.84 91,980.88 - (23,584.84) 45,990.44


(5.70E+06) - - 5.70E+06 - -
- (8,063.19) (23,584.84) - 8,063.19 (23,584.84)
- 23,584.84 45,990.44 - (23,584.84) 91,980.88

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 13
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #6

17 20 node #6 = (5.85 , 2.70)


node #7 = (13.35 , 2.70)
18 21
6 16 7 19
x2 - x1 13.35 - 5.85
6 c = cos = = = 1.00
L 7.50
y2 - y1 2.70 - 2.70
s = sin = = = 0.00
L 7.50

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 1.32 m2, E = 2.53E+07 kN/m2, I = 5.32E-03 m4, L = 7.50 m

AE/L = 1.32 x 2.53E+07 / 7.50 = 4.45E+06


3 3
12EI/L = 12 x 2.53E+07 x 5.32E-03 / 7.50 = 3,826.40
2 2
6EI/L = 6 x 2.53E+07 x 5.32E-03 / 7.50 = 14,349.02
4EI/L = 4 x 2.53E+07 x 5.32E-03 / 7.50 = 71,745.09
2EI/L = 2 x 2.53E+07 x 5.32E-03 / 7.50 = 35,872.54

4.45E+06 - - (4.45E+06) - -
- 3,826.40 14,349.02 - (3,826.40) 14,349.02

then, [k'] = - 14,349.02 71,745.09 - (14,349.02) 35,872.54


(4.45E+06) - - 4.45E+06 - -
- (3,826.40) (14,349.02) - 3,826.40 (14,349.02)
- 14,349.02 35,872.54 - (14,349.02) 71,745.09

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 14
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 1.00 - - - - -


-sin cos 0 0 0 0 - 1.00 - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - 1.00 - -
0 0 0 -sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 1.00 - - - - -


sin cos 0 0 0 0 - 1.00 - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - 1.00 - -
0 0 0 sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

4.45E+06 - - (4.45E+06) - -
- 3,826.40 14,349.02 - (3,826.40) 14,349.02

then, [k] = - 14,349.02 71,745.09 - (14,349.02) 35,872.54


(4.45E+06) - - 4.45E+06 - -
- (3,826.40) (14,349.02) - 3,826.40 (14,349.02)
- 14,349.02 35,872.54 - (14,349.02) 71,745.09

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 15
Frame Calculation - Example: 1

Member Stiffness Matrix: Member #7

20 23 node #7 = (13.35 , 2.70)


node #8 = (19.20 , 2.70)
21 24
7 19 8 22
x2 - x1 19.20 - 13.35
7 c = cos = = = 1.00
L 5.85
y2 - y1 2.70 - 2.70
s = sin = = = 0.00
L 5.85

[k] = [T]T [k'] [T]

Local Stiffness Matrix: [k']

AE/L 0 0 -AE/L 0 0
0 12EI/L3 6EI/L2 0 -12EI/L3 6EI/L2

[k'] = 0 6EI/L2 4EI/L 0 -6EI/L2 2EI/L


-AE/L 0 0 AE/L 0 0
0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2
0 6EI/L2 2AE/L 0 -6EI/L2 4EI/L

where, A = 1.32 m2, E = 2.53E+07 kN/m2, I = 5.32E-03 m4, L = 5.85 m

AE/L = 1.32 x 2.53E+07 / 5.85 = 5.70E+06


3 3
12EI/L = 12 x 2.53E+07 x 5.32E-03 / 5.85 = 8,063.19
2 2
6EI/L = 6 x 2.53E+07 x 5.32E-03 / 5.85 = 23,584.84
4EI/L = 4 x 2.53E+07 x 5.32E-03 / 5.85 = 91,980.88
2EI/L = 2 x 2.53E+07 x 5.32E-03 / 5.85 = 45,990.44

5.70E+06 - - (5.70E+06) - -
- 8,063.19 23,584.84 - (8,063.19) 23,584.84

then, [k'] = - 23,584.84 91,980.88 - (23,584.84) 45,990.44


(5.70E+06) - - 5.70E+06 - -
- (8,063.19) (23,584.84) - 8,063.19 (23,584.84)
- 23,584.84 45,990.44 - (23,584.84) 91,980.88

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 16
Frame Calculation - Example: 1

Global Stiffness Matrix: [k]

cos sin 0 0 0 0 1.00 - - - - -


-sin cos 0 0 0 0 - 1.00 - - - -

[T] = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos sin 0 - - - 1.00 - -
0 0 0 -sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

cos -sin 0 0 0 0 1.00 - - - - -


sin cos 0 0 0 0 - 1.00 - - - -

[T]T = 0 0 1 0 0 0 = - - 1.00 - - -
0 0 0 cos -sin 0 - - - 1.00 - -
0 0 0 sin cos 0 - - - - 1.00 -
0 0 0 0 0 1 - - - - - 1.00

5.70E+06 - - (5.70E+06) - -
- 8,063.19 23,584.84 - (8,063.19) 23,584.84

then, [k] = - 23,584.84 91,980.88 - (23,584.84) 45,990.44


(5.70E+06) - - 5.70E+06 - -
- (8,063.19) (23,584.84) - 8,063.19 (23,584.84)
- 23,584.84 45,990.44 - (23,584.84) 91,980.88

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 17
Frame Calculation - Example: 1

Structure Stiffness Matrix: [K]

35.69 81.43 81.43 35.69


14 17 20 23
1,220.00 kg/m 1,220.00 kg/m 1,220.00 kg/m
15 2 18 5 21 8 24 11
13 16 19 22
1
34.79 2
22.39 3 4 1 2 3 4
5 6 7 5 6 7
(22.39) (34.79) 3 6 9 12
1 4 7 10

[Q] = [K][D] + [Qf]

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 18
Structure Stiffness Matrix: [K]

[Q] = [K][D] + [Qf]

3 13 14 15 16 17 18 19 20 21 22 23 24
0.00 29,478.28 16,376.82 - 14,739.14 - - - - - - - - - 3 D3 0.00
0.00 16,376.82 5.71E+06 - 16,376.82 (5.70E+06) - - - - - - - - 13 D13 0.00
0.00 - - 9.91E+05 23,584.84 - (8,063.19) 23,584.84 - - - - - - 14 D14 35.69
0.00 14,739.14 16,376.82 23,584.84 1.21E+05 - (23,584.84) 45,990.44 - - - - - - 15 D15 34.79
0.00 - (5.70E+06) - - 1.02E+07 - 75,818.56 (4.45E+06) - - - - - 16 D16 0.00
0.00 - - (8,063.19) (23,584.84) - 1.65E+06 (9,235.82) - (3,826.40) 14,349.02 - - - 17 D17 81.43
= +
0.00 - - 23,584.84 45,990.44 75,818.56 (9,235.82) 3.00E+05 - (14,349.02) 35,872.54 - - - 18 D18 22.39
0.00 - - - - (4.45E+06) - - 1.02E+07 - 75,818.56 (5.70E+06) - - 19 D19 0.00
0.00 - - - - - (3,826.40) (14,349.02) - 1.65E+06 9,235.82 - (8,063.19) 23,584.84 20 D20 81.43
0.00 - - - - - 14,349.02 35,872.54 75,818.56 9,235.82 3.00E+05 - (23,584.84) 45,990.44 21 D21 (22.39)
0.00 - - - - - - - (5.70E+06) - - 5.71E+06 - 16,376.82 22 D22 0.00
0.00 - - - - - - - - (8,063.19) (23,584.84) - 9.91E+05 (23,584.84) 23 D23 35.69
0.00 - - - - - - - - 23,584.84 45,990.44 16,376.82 (23,584.84) 1.21E+05 24 D24 (34.79)

Solve matrix equation for [D] :

D3 0.0002 rad
D13 (2.3567E-05) m
D14 (2.8685E-05) m
D15 (0.0003) rad
D16 (2.4005E-05) m
D17 (5.4423E-05) m
=
D18 (3.0407E-05) rad
D19 (2.5388E-05) m
D20 (5.4123E-05) m
D21 4.4025E-05 rad
D22 (2.6132E-05) m
D23 (2.8790E-05) m
D24 0.0003 rad

Page 19
Frame Calculation - Example: 1

Member #1

28.19
14
+∞
2
15 2.50
1 13 1 1
3 6.74 +∞
1
Member Fixed-End Forces 0.00 Global Memeber Force

[q]1 = [k]1 [d]1 + [qF]1

1 2 3 13 14 15
q1 12,130.98 - (16,376.82) (12,130.98) - (16,376.82) 1 - 0.00
q2 - 9.83E+05 - - (9.83E+05) - 2 - 0.00
q3 = (16,376.82) - 29,478.28 16,376.82 - 14,739.14 3 0.0002 + 0.00
q13 (12,130.98) - 16,376.82 12,130.98 - 16,376.82 13 (2.3567E-05) 0.00
q14 - (9.83E+05) - - 9.83E+05 - 14 (2.8685E-05) 0.00
q15 (16,376.82) - 14,739.14 16,376.82 - 29,478.28 15 (0.0003) 0.00

2.50 kN 28.19 kN
28.19 kN Transform to Local Member Force (2.50) kN

= 0.00 kN-m = 0.00 kN-m


T
(2.50) kN [q'] = [T] [q] (28.19) kN
(28.19) kN 2.50 kN
(6.74) kN-m (6.74) kN-m

(28.19)
28.19

2.50
5
(6.74) (2.50)
1
0.00

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 20
Frame Calculation - Example: 1

Member #2

89.13
17
+∞
5
18 3.65
2 16 2 2
6 5.97 +∞
4
Member Fixed-End Forces -∞ Memeber Force
Global

[q]2 = [k]2 [d]2 + [qF]2

4 5 6 16 17 18
q4 56,161.90 - (75,818.56) (56,161.90) - (75,818.56) 4 - 0.00
q5 - 1.64E+06 - - (1.64E+06) - 5 - 0.00
q6 = (75,818.56) - 1.36E+05 75,818.56 - 68,236.70 6 - + 0.00
q16 (56,161.90) - 75,818.56 56,161.90 - 75,818.56 16 (2.4005E-05) 0.00
q17 - (1.64E+06) - - 1.64E+06 - 17 (5.4423E-05) 0.00
q18 (75,818.56) - 68,236.70 75,818.56 - 1.36E+05 18 (3.0407E-05) 0.00

3.65 kN 89.13 kN
89.13 kN Transform to Local Member Force (3.65) kN

= (3.89) kN-m = (3.89) kN-m


T
(3.65) kN [q'] = [T] [q] (89.13) kN
(89.13) kN 3.65 kN
(5.97) kN-m (5.97) kN-m

(89.13)
89.13

3.65
6
(5.97) (3.65)
2
(3.89)

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 21
Frame Calculation - Example: 1

Member #3

88.64
20
+∞
8
21 1.91
3 19 3 3
9 4.08 -∞
7
Member Fixed-End Forces Global Memeber +∞
Force

[q]3 = [k]3 [d]3 + [qF]3

7 8 9 19 20 21
q7 56,161.90 - (75,818.56) (56,161.90) - (75,818.56) 7 - 0.00
q8 - 1.64E+06 - - (1.64E+06) - 8 - 0.00
q9 = (75,818.56) - 1.36E+05 75,818.56 - 68,236.70 9 - + 0.00
q19 (56,161.90) - 75,818.56 56,161.90 - 75,818.56 19 (2.5388E-05) 0.00
q20 - (1.64E+06) - - 1.64E+06 - 20 (5.4123E-05) 0.00
q21 (75,818.56) - 68,236.70 75,818.56 - 1.36E+05 21 4.4025E-05 0.00

(1.91) kN 88.64 kN
88.64 kN Transform to Local Member Force 1.91 kN

= 1.08 kN-m = 1.08 kN-m


T
1.91 kN [q'] = [T] [q] (88.64) kN
(88.64) kN (1.91) kN
4.08 kN-m 4.08 kN-m

(88.64)
88.64

(1.91)
7
4.08 1.91
3
1.08

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 22
Frame Calculation - Example: 1

Member #4

28.29
23
+∞
11
24 4.24
4 22 4 4
12 7.77 -∞
10
Member Fixed-End Forces Global Memeber Force +∞

[q]4 = [k]4 [d]4 + [qF]4

10 11 12 22 23 24
q10 12,130.98 - (16,376.82) (12,130.98) - (16,376.82) 10 - 0.00
q11 - 9.83E+05 - - (9.83E+05) - 11 - 0.00
q12 = (16,376.82) - 29,478.28 16,376.82 - 14,739.14 12 - + 0.00
q22 (12,130.98) - 16,376.82 12,130.98 - 16,376.82 22 (2.6132E-05) 0.00
q23 - (9.83E+05) - - 9.83E+05 - 23 (2.8790E-05) 0.00
q24 (16,376.82) - 14,739.14 16,376.82 - 29,478.28 24 0.0003 0.00

(4.24) kN 28.29 kN
28.29 kN Transform to Local Member Force 4.24 kN

= 3.67 kN-m = 3.67 kN-m


T
4.24 kN [q'] = [T] [q] (28.29) kN
(28.29) kN (4.24) kN
7.77 kN-m 7.77 kN-m

(28.29)
28.29

(4.24)
8
7.77 4.24
4
3.67

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 23
Frame Calculation - Example: 1

Member #5

35.69 35.69 +∞ 43.18


14 17
1,220.00 kg/m
15 18 +∞ 2.50
13 16
5 34.79 5 +∞ 5 50.61
(34.79)
Member Fixed-End Forces Global Memeber Force

[q]5 = [k]5 [d]5 + [qF]5

13 14 15 16 17 18
q13 5.70E+06 - - (5.70E+06) - - 13 (2.3567E-05) 0.00
q14 - 8,063.19 23,584.84 - (8,063.19) 23,584.84 14 (2.8685E-05) 35.69
q15 = - 23,584.84 91,980.88 - (23,584.84) 45,990.44 15 (0.0003) + 34.79
q16 (5.70E+06) - - 5.70E+06 - - 16 (2.4005E-05) 0.00
q17 - (8,063.19) (23,584.84) - 8,063.19 (23,584.84) 17 (5.4423E-05) 35.69
q18 - 23,584.84 45,990.44 - (23,584.84) 91,980.88 18 (3.0407E-05) (34.79)

2.50 kN
28.19 kN

= 6.74 kN-m
(2.50) kN
43.18 kN
(50.61) kN-m

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 24
Frame Calculation - Example: 1

Member #6

45.75 45.75 +∞ 45.56


17 20
1,220.00 kg/m
18 21 +∞ 6.15
16 19
6 57.19 6 +∞ 6 55.12
(57.19)
Member Fixed-End Forces Global Memeber Force

[q]6 = [k]6 [d]6 + [qF]6

16 17 18 19 20 21
q16 4.45E+06 - - (4.45E+06) - - 16 (2.4005E-05) 0.00
q17 - 3,826.40 14,349.02 - (3,826.40) 14,349.02 17 (5.4423E-05) 45.75
q18 = - 14,349.02 71,745.09 - (14,349.02) 35,872.54 18 (3.0407E-05) + 57.19
q19 (4.45E+06) - - 4.45E+06 - - 19 (2.5388E-05) 0.00
q20 - (3,826.40) (14,349.02) - 3,826.40 (14,349.02) 20 (5.4123E-05) 45.75
q21 - 14,349.02 35,872.54 - (14,349.02) 71,745.09 21 4.4025E-05 (57.19)

6.15 kN
45.94 kN

= 56.58 kN-m
(6.15) kN
45.56 kN
(55.12) kN-m

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 25
Frame Calculation - Example: 1

Member #7

35.69 35.69 +∞ 28.29


20 23
1,220.00 kg/m
21 24 +∞ 4.24
19 22
7 34.79 7 +∞ 7 7.77
(34.79)
Member Fixed-End Forces Global Memeber Force

[q]7 = [k]7 [d]7 + [qF]7

19 20 21 22 23 24
q19 5.70E+06 - - (5.70E+06) - - 19 (2.5388E-05) 0.00
q20 - 8,063.19 23,584.84 - (8,063.19) 23,584.84 20 (5.4123E-05) 35.69
q21 = - 23,584.84 91,980.88 - (23,584.84) 45,990.44 21 4.4025E-05 + 34.79
q22 (5.70E+06) - - 5.70E+06 - - 22 (2.6132E-05) 0.00
q23 - (8,063.19) (23,584.84) - 8,063.19 (23,584.84) 23 (2.8790E-05) 35.69
q24 - 23,584.84 45,990.44 - (23,584.84) 91,980.88 24 0.0003 (34.79)

4.24 kN
43.08 kN

= 51.04 kN-m
(4.24) kN
28.29 kN
(7.77) kN-m

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 26
Frame Calculation - Example: 1

Frame's Reactions

1,220.00 kg/m 1,220.00 kg/m 1,220.00 kg/m

5 6 7 8
5 6 7
1 389.492 kg-m 107.923kg-m 367.294kg-m
2.70 m

249.80 kg 365.36 kg 191.20 kg 423.95 kg


1 2 3 4

2,818.64 kg 8,912.78 kg 8,863.68 kg 2,828.89 kg

5.85 m 7.50 m 5.85 m

Equilibrium check:
+ sum Fx = 0, + 2.50 + 3.65 - 1.91 - 4.24 = (0.0000) kN OK
+
sum Fy = 0, + 28.19 + 89.13 + 88.64 + 28.29 - 71.37 - 91.50 - 71.37 = (0.0000) kN OK

+ sum Mz = 0, - 3.89 + (89.13)(5.85) + 1.08 + (88.64)(13.35) + 3.67 + (28.29)(19.20) -


(@ node #1) (71.37)(2.92) - (91.50)(9.60) - (71.37)(16.27) = (0.0000) kN-m OK

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 27
Frame Calculation - Example: 1

S.F.D. (kg)

4,594.43 4,308.11
2,818.64

(249.80) (365.36) 191.20 423.95

5 6 7
1 2 3 (2,828.89)
4
(4,318.36) (4,555.57)
(249.80) (365.36) 191.20 423.95

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 28
Frame Calculation - Example: 1

B.M.D. (kg-m)

2,581.06 2,664.32 2,502.12


(674.45)
(674.45) (596.98) 408.33 777.38
(777.38)

5 (5,061.12)
(5,658.09) 6 (5,104.07)
(5,512.40) 7
1 2 3 4

389.49 (107.92) (367.29)

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 29
Frame Calculation - Example: 1

Frame Deformation (mm)

5 6 7 8
5 6 7
1 2 3 4

1 2 3 4

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 30
Frame Calculation - Example: 1

Node's Reactions & Deflections


node type Rx Ry Mz disp-x disp-y rotation
(kg) (kg) (kg-m) (mm) (mm) (rad)
1 249.80 2,818.64 0.00 0.00 0.00 0.00
2 365.36 8,912.78 (389.49) 0.00 0.00 0.00
3 (191.20) 8,863.68 107.92 0.00 0.00 0.00
4 (423.95) 2,828.89 367.29 0.00 0.00 0.00
5 0.00 0.00 0.00 (0.02) (0.03) (0.00)
6 0.00 0.00 0.00 (0.02) (0.05) (0.00)
7 0.00 0.00 0.00 (0.03) (0.05) 0.00
8 0.00 0.00 0.00 (0.03) (0.03) 0.00

Member's End Forces


member Axial Force Shear Moment Axial Force Shear Moment
(kg) (kg) (kg-m) (kg) (kg) (kg-m)
1 2,818.64 (249.80) 0.00 (2,818.64) 249.80 (674.45)
2 8,912.78 (365.36) (389.49) (8,912.78) 365.36 (596.98)
3 8,863.68 191.20 107.92 (8,863.68) (191.20) 408.33
4 2,828.89 423.95 367.29 (2,828.89) (423.95) 777.38
5 249.80 2,818.64 674.45 (249.80) 4,318.36 (5,061.12)
6 615.15 4,594.43 5,658.09 (615.15) 4,555.57 (5,512.40)
7 423.95 4,308.11 5,104.07 (423.95) 2,828.89 (777.38)

Section Forces & Displacement : Member 1


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 0.00 0.00 0.00 2,818.64 (249.80) (0.00)
2 0.54 (0.08) (0.01) 0.00 2,818.64 (249.80) (134.89)
3 1.08 (0.15) (0.01) 0.00 2,818.64 (249.80) (269.78)
4 1.62 (0.17) (0.02) (0.00) 2,818.64 (249.80) (404.67)
5 2.16 (0.14) (0.02) (0.00) 2,818.64 (249.80) (539.56)
6 2.70 (0.02) (0.03) (0.00) 2,818.64 (249.80) (674.45)

Section Forces & Displacement : Member 2


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 0.00 0.00 0.00 8,912.78 (365.36) 389.49
2 0.54 (0.01) (0.01) 0.00 8,912.78 (365.36) 192.20
3 1.08 (0.02) (0.02) 0.00 8,912.78 (365.36) (5.10)
4 1.62 (0.03) (0.03) 0.00 8,912.78 (365.36) (202.39)

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 31
Frame Calculation - Example: 1

Section Forces & Displacement : Member 2


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
5 2.16 (0.03) (0.04) (0.00) 8,912.78 (365.36) (399.68)
6 2.70 (0.02) (0.05) (0.00) 8,912.78 (365.36) (596.98)

Section Forces & Displacement : Member 3


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 0.00 0.00 0.00 8,863.68 191.20 (107.92)
2 0.54 0.00 (0.01) (0.00) 8,863.68 191.20 (4.67)
3 1.08 0.00 (0.02) (0.00) 8,863.68 191.20 98.58
4 1.62 0.00 (0.03) 0.00 8,863.68 191.20 201.83
5 2.16 (0.01) (0.04) 0.00 8,863.68 191.20 305.08
6 2.70 (0.03) (0.05) 0.00 8,863.68 191.20 408.33

Section Forces & Displacement : Member 4


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 0.00 0.00 0.00 2,828.89 423.95 (367.29)
2 0.54 0.02 (0.01) (0.00) 2,828.89 423.95 (138.36)
3 1.08 0.06 (0.01) (0.00) 2,828.89 423.95 90.58
4 1.62 0.09 (0.02) (0.00) 2,828.89 423.95 319.51
5 2.16 0.07 (0.02) 0.00 2,828.89 423.95 548.44
6 2.70 (0.03) (0.03) 0.00 2,828.89 423.95 777.38

Section Forces & Displacement : Member 5


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 (0.02) (0.03) (0.00) 249.80 2,818.64 (674.45)
2 1.17 (0.02) (0.36) (0.00) 249.80 1,391.24 1,788.33
3 2.34 (0.02) (0.53) (0.00) 249.80 (36.16) 2,581.06
4 3.51 (0.02) (0.44) 0.00 249.80 (1,463.56) 1,703.72
5 4.68 (0.02) (0.20) 0.00 249.80 (2,890.96) (843.67)
6 5.85 (0.02) (0.05) (0.00) 249.80 (4,318.36) (5,061.12)

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 32
Frame Calculation - Example: 1

Section Forces & Displacement : Member 6


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 (0.02) (0.05) (0.00) 615.15 4,594.43 (5,658.09)
2 1.50 (0.02) (0.40) (0.00) 615.15 2,764.43 (138.96)
3 3.00 (0.02) (0.81) (0.00) 615.15 934.43 2,635.18
4 4.50 (0.02) (0.81) 0.00 615.15 (895.57) 2,664.32
5 6.00 (0.03) (0.41) 0.00 615.15 (2,725.57) (51.54)
6 7.50 (0.03) (0.05) 0.00 615.15 (4,555.57) (5,512.40)

Section Forces & Displacement : Member 7


section @ position disp-x disp-y rotation-z Axial Force Shear Force Moment
no (m) (mm) (mm) radian (kg) (kg) (kg-m)
1 0.00 (0.03) (0.05) 0.00 423.95 4,308.11 (5,104.07)
2 1.17 (0.03) (0.18) (0.00) 423.95 2,880.71 (898.62)
3 2.34 (0.03) (0.42) (0.00) 423.95 1,453.31 1,636.78
4 3.51 (0.03) (0.50) 0.00 423.95 25.91 2,502.12
5 4.68 (0.03) (0.34) 0.00 423.95 (1,401.49) 1,697.40
6 5.85 (0.03) (0.03) 0.00 423.95 (2,828.89) (777.38)

Note1 Note2 Prepared by: Calculation Date:


Engineering Clinic Design and Construction Surasak Ngamsanit Aug 26, 2560 BE
Page 33

You might also like