I    Find the Laplace transforms of the following functions, using the information in Table 3.1.
(However, some of the individual terms in these functions may not have Laplace transforms.)
               (a) f(t)=5+e−3t +te−4t
               (b) f(t)=sin(4t)+t−3+e −(t−3) +5/t
               (c) f(t)=t cos(4t)+t/5
               (d) f(t)=(t−1) cos(4(t−1))+t2 
An        a. f ( t )=5+ e−3t +te−4 t
s            Using rules 2, 5, and 7 from the Table
                       5  1     1
               F ( s) = +    +
                       s s+ 3 ¿¿
                                             5
                                       − ( t −3 )
          b. f ( t )=sin ( 4 t )+ t−3+e           +
                                              t
               Transform using Table 3.1 from the book
                         4     e−3 s e−3 s       1
               F (s) ¿ 2
                      s +16 s
                             + 2 +
                                     s+1
                                           +5 L
                                                 t        ()
                                            1
               ¿ No Laplace Transform for
                                             t
                                    t
          c. f ( t )=tcos ( 4 t ) +
                                    5
               Transform using Table 3.1 from the book; for functions multiplied with “t”, solve for the
               Laplace of the other function then find its negative derivative with respect to the same
               variable.
                                        1
                                          ∗1
                        −d      s       5
               F ( s) =
                              (
                        ds s 2 +16
                              2
                                        )
                                       + 2
                                          s
                        −−s +16 1
               F ( s) = 2         2
                                      + 2
                         ( s +16 ) 5 s
          d. f ( t )=( t−1 ) cos ( 4 ( t−1 ) ) +t 2
             f ( t )=tcos ( 4 t−4 )−cos ( 4 t−4 ) +t 2
             For the first term of the equation, use the same principle with that on letter C, and for the
             rest, solve using Table 3.4 from the book.
                       −d cos ( 4 s ) +4 sin ( 4 ) cos ( 4 s )+ 4 sin ( 4 ) 2
             F ( s) =
                        ds    (     s 2+16
                                                    −
                                                      )   s2 +16
                                                                           + 3
                                                                            s
           −−cos ( 4 s 2 )−8 sin ( 4 s ) +16 cos ( 4 )       cos ( 4 s )+ 4 sin ( 4 ) 2
F ( s) =                               2
                                                         −           2
                                                                                     + 3
                             2
                           ( s +16 )                                s +16             s